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Abstract 

We measure the directional predictability between electricity and natural gas prices at different 

quantiles of the two price distributions. This enables us to uncover significant nonlinearities in 

the relationship that feature the markets of gas and electricity in New England and the 

Pennsylvania-New Jersey-Maryland interconnected market. We show that there is a double 

causality from gas to electricity and the other way around, which is larger when the observed 

prices in the market are higher. In general these effects are considerably high for the median-

up ranges of the two prices. That is, when both electricity and gas prices are recorded above 

the median market prices. The feedback effect from electricity to gas is stronger for New 

England where 50% of power generation mix consists of natural gas-fired plants, than for 

Pennsylvania-New Jersey-Maryland, where 24% of the generation mix relies on natural gas 

sources.  
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1. Introduction 

We carry out a systematic examination of the relationship between natural gas and electricity 

prices in the Pennsylvania-New Jersey-Maryland (PJM) and the New England (NE) 

interconnection markets, by the means of recently proposed cross-quantilogram functions 

(Han et al., 2016). Our approach enables us to test for directional predictability running from 

natural gas to electricity prices and from electricity to gas, not only at different lags, but also at 

different conditional quantiles of the distribution of the two variables. In order to understand 

the dynamics of energy markets featured by strong seasonalities both in demand and supply, 

we propose to test for directional predictability between these variables while we consider 

nonlinearities across the quantiles of the energy price distribution. Hence, our results are 

relevant for the optimal design of hedging mechanisms by generators and consumers of 

electricity and natural gas, and for the construction of an optimal policy framework under 

which the market may operate smoothly by mitigating, for instance, episodes such as the 

California energy crisis extended from May 2000 to June 2001. 

Our analysis builds a bridge between two different branches of the recent literature in energy 

economics. The first one has studied and measured directional predictability between electricity 

and natural gas prices (see for instance Woo et al., 2006; Brown & Yücel, 2008; Chae et al., 

2012; Nakajima & Hamori, 2013; Alexopoulos, 2017) and the second one has analyzed the 

price dynamics of energy prices across different fragments of their distribution (see Bunn et al., 

2016; Hagfors et al., 2016; Mosquera-López et al., 2017). By so doing we are able to 

characterize significant nonlinearities that describe the relationship between natural gas and 

electricity prices. To the best of our knowledge, we are the first in describing these nonlinear 

features, and therefore the first that can give some advice to market practitioners and 

regulators that explicitly considers the price level recorded in the market on a given date. As 
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mentioned above, it turns out that in terms of predictability and contemporaneous association, 

the joint gas and electricity market behaves remarkably different when prices are relatively high 

or relatively low. For example, we show that there is higher predictability from natural gas to 

electricity when the two series of prices are at a high quantile (i.e. their 90th percentile), and that 

this predictability reduces considerably for other quantiles, particularly for the lowest quantiles 

of the energy prices (i.e. its 10th percentile).  

We also present significant evidence of a double causality between the two prices, which has 

been neglected in previous studies that focus only on the mean-to-mean effect. i.e. how a 

change in the mean of the first variable predicts a change in the mean of the second variable 

(see Brown & Yücel, 2008 and Alexopoulos, 2017), or even in studies that document a mean-

to-variance effect (Nakajima & Hamori, 2013). This double causality can be understood 

following Woo et al., (2006) as a consequence of a supply-push effect and a demand-pull effect.  

The former refers to the well-documented impact of gas on electricity. Natural gas prices affect 

market clearing and price formation in electricity markets in two ways as stressed out by 

Alexopoulos (2017). The first one emerges because gas based power producers are frequently 

the last ones to be included in the merit-order curve and therefore they determine the 

wholesale electricity rates, which also affects retail electricity rates provided by Load Serving 

Entities (LSE). In the PJM and NE markets studied here, indeed, the generation mix of 

electricity includes 24% and 50% of power that is produced using natural gas power sources, 

respectively 2 . Second, LSE may own directly gas power stations and, in this case, they 

implement a direct pass through with automatic mechanisms of the unexpected fuel costs to 

electricity consumers. The other direction of the causal relationship, namely from electricity to 

gas, is less understood and has been frequently overlooked in the literature. Woo et al., (2006) 

                                                        
2 Generation mix data source: https://www.eia.gov/electricity/data.php#generation 
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refers to it as a demand-pull effect that operates as follows. Suppose that a random increase in 

electricity demand triggered by cold weather is observed. Then, ceteris paribus, such an 

increment in the demand will translate into a wider spark-spread between electricity prices 

minus the fuel cost of a natural gas-fired power plant. The larger spread will raise the demand 

for natural gas not only by increasing the willingness to pay for it, but also by inducing less 

efficient plants to start operating. As has been explained by Woo et al., (2006) this in turn will 

manifest in higher bids for spot gas in bilateral trading and higher realized natural gas prices. 

These authors also highlight that following this general mechanism, depending on the elasticity 

of natural gas supply, an increase in the demand for electricity may translate one-to-one into 

higher natural gas prices, which in turn may generate a feedback effect on electricity prices, 

leading to a possible scaling up of the original shocks that may endanger the operation of the 

two markets. Here it becomes fundamental some previous insights from the recent literature 

that point out prominent nonlinearities in the price distribution of electricity, which condition 

on fundamental factors such as weather and market variables (Bunn et al., 2016; Hagfors et al., 

2016; Mosquera-López et al., 2017). For instance, Mosquera-López et al., (2017) show that 

weather factors induce a significant and nonlinear influence on electricity prices, which varies 

depending on the conditional percentile of the prices. They also document that, as expected, 

the main influence of weather occurs at the tails of the electricity price distribution, where 

abnormally high and low prices are recorded. We expect these sorts of nonlinearities to 

manifest themselves in an asymmetric reaction of electricity prices following changes in natural 

gas prices and vice versa. Thus, we study by the first time this possibility here, and we find that 

indeed this is the case. The predictive-causality between electricity prices and natural gas prices 

depend at a large extent on the observed market prices, and therefore, vary greatly according to 

the quantile prices of both electricity and gas. We also find that the intricate double causality 
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that characterizes the operation of the two markets seems to be related to the extent to which 

electricity generators rely on natural gas power sources. Thus, the higher the generation mix of 

electricity is composed by natural gas, the higher the predictive causality from natural gas to 

electricity at all the quantiles of the price distribution. We support this latter assertion based on 

a comparison of our main results for PJM and NE.  

We show that the predictive causality goes in the two directions, from gas to electricity and 

from electricity to gas. Nevertheless, the relationship changes remarkably conditioning on 

different quantiles of the price distribution. In both markets the strongest directional 

predictability is recorded when the electricity and gas prices have reached their 90th percentile, 

which is precisely when market impairments are more likely. In PJM the cross-correlation 

between the quantile-hit functions lie between 20% and 30%, from gas to energy, and it is 

around 15% from electricity to gas, at the 90th percentile of the series (although it only lasts for 

one week in the latter case, in contrast with the former that remains significant as long as two 

months). In the New England market, which in contrast to PJM is described by a mix of 

primary sources that heavily relies on natural gas, these numbers range in both directions, 

between 40% and 60%, and the relationship lasts approximately 40 days.  

The rest of this paper is organized as follows. In section 2 we present our main methods. In 

section 3 we describe our data and data sources. Our results are reported in section 4, 

regarding the PJM and the NE markets. In section 5 we conclude, summarize our main 

findings and discuss policy implications for energy markets, their regulators and practitioners.  
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2. Methodology 

Our methodology relies on the work by Han et al. (2016), who proposed the cross-

quantilogram as a measure of serial dependence between two series at different conditional 

quantile levels, and an application of the Box-Ljung Q-statistic to test for directional 

predictability between the two series. Thus, we followed closely their presentation and notation 

in this section. Notice that the cross-quantilogram is a generalization of the quantilogram 

proposed by Linton and Whang (2007), which is indeed equivalent to the former in the special 

case of a single series.  

2.1. The cross-quantilogram 

Let {(𝒚𝑡, 𝒙𝑡): 𝑡 ∈ ℤ}  be a stationary price time series with 𝒚𝑡 = (𝑦1𝑡, 𝑦2𝑡)′ ∈ ℝ  and 𝒙𝑡 =

(𝑥1𝑡, 𝑥2𝑡) ∈ ℝ𝑑1 × ℝ𝑑2 , where 𝑥𝑖𝑡 = [𝑥𝑖𝑡
(1)

, … , 𝑥𝑖𝑡

(𝑑𝑖)
]

′

∈ ℝ𝑑𝑖  and 𝑑𝑖 ∈ ℕ  for 𝑖 = 1,2.  We 

denote 𝐹𝑦𝑖|𝑥𝑖
(∙|𝑥𝑖𝑡)  to the function of the series 𝑦𝑖𝑡  given 𝑥𝑖𝑡 , and 𝑓𝑦𝑖|𝑥𝑖

(∙|𝑥𝑖𝑡)  to the 

corresponding density. In this context, 𝑞𝑖𝑡(𝜏𝑖) = inf{𝑣: 𝐹𝑦𝑖|𝑥𝑖
(𝑣|𝑥𝑖𝑡) ≥ 𝜏𝑖}  for 𝜏𝑖 ∈ (0,1) , 

and for 𝑖 = 1,2. The cross quantilogram is a measure of serial dependence between two events 

{𝑦1𝑡 ≤ 𝑞1,𝑡(𝜏1)} and {𝑦2𝑡−𝑘 ≤ 𝑞2𝑡−𝑘(𝜏2)} for any pair of 𝜏 = (𝜏1, 𝜏2)′ and for an integer 𝑘. 

It can be understood as the cross-correlation of the quantile-hit processes given by {1[𝑦𝑖𝑡 ≤

𝑞𝑖𝑡(∙)]}, and is defined by the following equation: 

𝜌𝜏(𝑘) =
𝐸[𝜓𝜏1(𝑦1𝑡−𝑞1𝑡(𝜏1))𝜓𝜏2(𝑦2𝑡−𝑘−𝑞2𝑡−𝑘(𝜏2))]

√𝐸[𝜓𝜏1
2 (𝑦1𝑡−𝑞1𝑡(𝜏1))]√𝐸[𝜓𝜏2

2 (𝑦2𝑡−𝑘−𝑞2𝑡−𝑘(𝜏2))]
,   (1) 

for 𝑘 = 0, ±1, ±2, …,  where  𝜓𝑎(𝑢) ≡ 1[𝑢 < 0] − 𝑎 . It is a well-defined statistic even for 

processes with infinite moments and it is invariant to any strictly monotonic transformation 

applied to both series, including taking logs.  
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The sample counterpart of equation 1, which relies on a linear quantile regression as proposed 

by Koenker and Bassett (1978) to estimate the conditional quantile functions, 𝑞̂𝑖𝑡(𝜏𝑖), is given 

by:  

𝜌̂𝜏(𝑘) =
∑ 𝜓𝜏1(𝑦1𝑡−𝑞̂1𝑡(𝜏1))𝜓𝜏2(𝑦2𝑡−𝑘−𝑞̂2𝑡−𝑘(𝜏2))𝑇

𝑡=𝑘+1

√∑ 𝜓𝜏1
2 (𝑦1𝑡−𝑞1𝑡(𝜏1))𝑇

𝑡=𝑘+1 √∑ 𝜓𝜏2
2 (𝑦2𝑡−𝑘−𝑞2𝑡−𝑘(𝜏2))𝑇

𝑡=𝑘+1

.    (2) 

Notice that the cross-quantilogram considers dependence in terms of the direction of 

deviation from conditional quantiles and therefore measures the directional predictability from 

one series to another. For this reason what is series 1 and what is series 2 matters in our 

empirical implementation in which we considered the two cases for natural gas and electricity 

prices. 𝜌̂𝜏(𝑘) lies between -1 and 1, and naturally 𝜌̂𝜏(𝑘) = 0 corresponds to the case of non-

directional predictability. 

2.2. Q-test for directional predictability 

In the case in which one is interested in testing the null hypothesis 𝐻0: 𝜌𝜏(1) = ⋯ = 𝜌𝜏(𝑝) =

0  against the alternative that 𝜌𝜏(𝑘) ≠ 0  for some 𝑘 ∈ {1, … , 𝑝}, that is, in testing the 

directional predictability of events up to 𝑝 , Han et al. (2016) propose to use a traditional Box-

Pierce statistic for small samples (Box-Ljung) given in this context by:  

𝑄̂𝜏
𝑝 ≡ 𝑇(𝑇 + 2) ∑ 𝜌̂𝜏

2(𝑘) [𝑇 − 𝑘]⁄𝑝
𝑘=1 ,   (3) 

2.3. The stationary bootstrap 

Han et al., (2016) propose as well the stationary bootstrap of Politis and Romano (1994) to 

approximate the null distribution of the cross-quantilogram and the Q-statistic presented 

above, while avoiding the dependence on nuisance parameters of the asymptotic distribution. 

The stationary bootstrap is a method for block bootstrapping with blocks of random lengths. 



8 
 

Let {𝐾𝑖}𝑖∈ℕ be a sequence of iid random variables, which are drawn from a discrete uniform 

distribution on {𝑘 + 1, … , 𝑇} , and are independent on the original data and a sequence  

{𝐿𝑖}𝑖∈ℕ  of random block lengths. 𝐵𝐾𝑖,𝐿𝑖
 represents the blocks of length 𝐿𝑖  that are used to 

generate the bootstrapped samples {(𝒚𝑡𝑘
∗ , 𝒙𝑡𝑘

∗ )}𝑡=𝑘+1
𝑇 . These (re)samples are then use to 

estimate the conditional quantile function 𝑞𝑖𝑡
∗ (𝜏𝑖) for each 𝑖 = 1,2. The cross-quantilogram 

based on the stationary bootstrap resample is given by:  

𝜌̂𝜏
∗(𝑘) =

∑ 𝜓𝜏1(𝑦1𝑡
∗ −𝑞̂1𝑡

∗ (𝜏1))𝜓𝜏2(𝑦2𝑡−𝑘
∗ −𝑞̂2𝑡−𝑘

∗ (𝜏2))𝑇
𝑡=𝑘+1

√∑ 𝜓𝜏1
2 (𝑦1𝑡

∗ −𝑞̂1𝑡
∗ (𝜏1))𝑇

𝑡=𝑘+1 √∑ 𝜓𝜏2
2 (𝑦2𝑡−𝑘

∗ −𝑞̂2𝑡−𝑘
∗ (𝜏2))𝑇

𝑡=𝑘+1

,  (4) 

then the bootstrap is used to construct a confidence interval for each statistic of 𝑝 cross-

quantilograms {𝜌̂𝜏(1), … , 𝜌̂𝜏(𝑝)} for a finite positive 𝑝 (lags). The technique is also followed 

to construct a confidence interval for the Q-statistic presented in equation 3. See Han et al., 

(2016) for a formal proof of the validity of the procedure and for further technical 

clarifications.  

The authors also advanced a self-normalized version of the cross-quantilogram and the Q-

statistic, following the works by Lobato, (2001) and Shao (2010). We also considered this 

alternative in our empirical implementation but our results remain unchanged compared to the 

case when the inference was carried out using the stationary bootstrap, which has been just 

described, thus in the sake of space we do not report them. Moreover Han et al., 2016 

document a better performance in term of power of the stationary bootstrap over the 

competing alternatives for small samples in their Montecarlo simulations. 
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3. Data 

The U.S. wholesale electricity market has traditionally regulated areas (vertically-integrated 

utilities responsible for the generation, transmission and distribution systems) and restructured 

competitive markets. The latter ones, named as Regional Transmission Organizations 

(RTO)/Independent System Operators (ISO), are responsible for serving two-thirds of the 

country’s load, and wholesale market participants can bid or offer electricity generation (see the 

colored areas in Figure 1). The largest ISO operating in the U.S., and one of the largest in the 

world, is the Pennsylvania-New Jersey-Maryland (PJM) interconnection with an installed 

capacity of 165 GW, a geographical footprint of 243,417 squared-miles, and serves 13 states 

(Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, 

Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia) with a 

population of 65 million people3. PJM interconnection was founded in 1927 with a pool of 

only three utilities in Pennsylvania and New Jersey. In 1956, Maryland entered the 

interconnected market, and by 1996 PJM became a fully functioning ISO.  

Given the importance of PJM in the U.S. wholesale electricity market, we chose this market for 

our analysis of the directional predictability between electricity and natural gas prices. Hence, 

natural gas in PJM’s generation mix stands only for the 24%, we also carry out or study for the 

ISO functioning in New England (ISO-NE), where natural gas is the principal source and 

represents the 50% of the system’s supply.  We use the daily spot electricity and natural gas 

prices of the hubs in PJM and New England markets published by the Intercontinental 

Exchange (ICE), and republished by the U.S Energy Information Administration (EIA). The 

frequency of the prices is daily, and the sample period starts on March 2014, and ends on 

December 2017. 

                                                        
3 Data source: https://www.ferc.gov/market-oversight/mkt-electric/pjm.asp 
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Figure 1. Price hub locations for wholesale electricity and natural gas reported by 
Intercontinental Exchange 

 

 
Note: the colored areas correspond to Regional Transmission Organizations (RTO)/Independent 

System Operators (ISO). Retrieved from U.S Energy Information Administration (EIA).   

 

Table 1 presents the descriptive statistics for the prices of the two regions, and Figure 1 depicts 

them. PJM WH Real Time Peak is the ICE electricity product name for the electricity hub PJM 

West, and TETCO-M3 is the name of the product from the natural gas hub TETCO-M3, both 

from the region of PJM. Nepool MH DA LMP Peak is the ICE electricity product name for 

the electricity hub Mass Hub, and Algonquin Citygates is the product name from the natural 

gas hub Algonquin of the New England region. On average Nepool electricity prices are 

higher than PJM’s prices, which accounts for PJM being a bigger more competitive market. In 

the case of natural gas, the same dynamics is found.  Moreover, New England’s electricity and 

natural gas prices tend to be more volatile than PJM’s prices, but they present similar dynamics 

in terms of peaks in the market.  



11 
 

Table 1. Descriptive statistics wholesale electricity and natural gas spot prices for PJM 
and New England markets 

 

 
 
 
 
Figure 2. Wholesale electricity and natural gas spot prices for PJM and New England 

markets 

 
Note: own elaboration with data from the Intercontinental Exchange (ICE) republished by the U.S 

Energy Information Administration (EIA).  

 
  

Region

 Mean 39.51 2.43 45.61 4.49

 Std. Dev. 15.77 1.98 26.14 4.11

 Minimum 22.70 0.38 16.00 0.78

10
th

 percentile 28.00 1.21 25.62 1.82

50
th

 percentile 36.04 1.92 38.77 3.26

90
th

 percentile 52.86 3.76 67.79 8.13

 Maximum 231.54 20.65 199.73 52.22

 Observations 946 946 656 656

PJM

New EnglandPJM

TETCO-

M3
Nepool

Algonquin 

Citygates 
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4. Results 

1.1. Results for the Pennsylvania-New Jersey-Maryland interconnection 

Figure 3 shows the estimated cross-quantilogram that measures directional predictability at 

different quantiles and different lags between gas and electricity prices at the PJM market, with 

the causality (in the Granger sense) running from the series of natural gas to the series of 

electricity. The results vary depending on the analyzed conditional quantile, both in the 

predicted variable (i.e. electricity power), which is presented in the rows of the figure, and the 

predicting variable (i.e. natural gas), which is shown in columns. Figure 4 depicts the Q-

statistics that test the null of non-predictability from gas to electricity at different cumulated 

lags and that condition on different quantiles also at the PJM market. The larger pockets of 

predictability appear when electricity prices are near to their median range (50th percentile), or 

when both electricity and gas prices are at their highest quantiles (90th percentile in our 

estimations). In both cases the cross-correlation among the quantile hit functions ranges 

approximately between 15% and 25%, and it can even increase above 30% when both 

electricity and gas prices reach the 90th percentile. It is also noticeable that predictability is 

considerably lower when we focus on the lowest percentiles of the electricity prices (10th 

percentile), being bellow 15% by general rule and statistically insignificant in most of the cases. 

Additionally, we also observe that the predictability from gas to electricity seems to increase 

according to the quantile of the natural gas prices. That is, it turns out that the higher the 

prices of natural gas (for example due to abnormally low temperatures or a relative scarcity of 

the resource) the more these prices can be used to predict future electricity prices. This is true 

disregarding the electricity quantile, but it is especially true for prices of electricity recorded 

above its own median. 
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Figure 3. Cross-quantilogram to measure the directional predictability from natural gas 

to electricity prices: PJM 

 

         𝜏1 = 0.1        𝜏1 = 0.5      𝜏1 = 0.9 

 

 

𝜏2 = 0.1 

 

 

 

 

𝜏2 = 0.5 

 

 

 

 

𝜏2 = 0.9 

In the figure are presented the sample cross-quantilograms 𝜌̂𝜏(𝑘) for 𝑘 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.9) for 

𝑖 = 1,2. The cross-quantilogram measures the directional predictability from natural gas to electricity prices, in 

PJM. In the rows are sorted the quantiles of the natural gas prices, while in the columns of the electricity prices. 

The bars represent 𝜌̂𝜏(𝑘), while the dotted lines are confidence intervals at 95% of confidence constructed by the 

stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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In terms of the lag structure, which measures how the quantile correlation changes depending 

on the number of lags separating electricity and natural gas prices, we also document 

significant asymmetries conditioning on different quantiles. For example, when both electricity 

and natural gas prices are low (namely at their 10th percentile), there is not predictive power 

running from gas to electricity approximately up to the lag 30. That is, the cross-qauntilogram 

becomes significant in this case only after days 30-35. On the contrary, when the price of 

electricity is relatively high (90th percentile) and the gas is still cheap, the pattern is just the 

opposite: some predictability arises from natural gas to electricity up to lag 30 and it disappears 

afterwards. For the ranges in which both electricity and natural gas prices are above their 

median the cross-qauntilogram displays a clear persistence across all lags.   

Turning our attention to Figure 4, we confirm the causality (in terms of predictability) running 

from natural gas prices to electricity prices, especially for the quantiles of electricity above its 

own median. In these cases the Q-statistic is always above the bootstrapped confidence 

interval at the 95% level of confidence. When the price of electricity is relatively low (10th 

percentile) the predicting power of natural gas prices is considerably reduced, particularly when 

its own prices are bellow its median, in which the Q-statistic signals non-directional 

predictability at most of the lags. Once again it is possible to note that the highest Q-statistics, 

informing about a large predictability from gas to electricity, arise when both series are 

recorded at their respective 90th percentiles. Remarkably, these high prices naturally correspond 

to situations of relatively scarcity of both resources, perhaps due to a reduction in the 

temperature and other weather effects that exacerbate the energy demand, or produce a 

shortage of the energy supply, and push up the market prices.  
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Figure 4.  Box-Ljung test and directional predictability from natural gas to electricity 

prices: PJM 

 

         𝜏1 = 0.1        𝜏1 = 0.5      𝜏1 = 0.9 

 

 

𝜏2 = 0.1 

 

 

 

 

𝜏2 = 0.5 

 

 

 

 

𝜏2 = 0.9 

In the figure are presented the sample 𝑄̂𝜏
(𝑝)

for 𝑝 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.6) for 𝑖 = 1,2. The solid lines 

are the Q-Box-Ljung statistics, while the dotted lines are confidence intervals at 95% of confidence, constructed 

by the stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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Now we focus on the predictability from electricity to natural gas prices. As explained in the 

introduction, this is an often-overlooked relation that we find, however, to be crucial. In Figure 

5, we present the cross-quantilogram for the PJM market, with the causality running from 

electricity to natural gas prices, and in Figure 6 we present the respective Q-statistics. When we 

focus on the quantiles close to the median of either electricity or natural gas prices, we 

document a significant causality (in the Granger sense) from electricity to natural gas. This 

predicting power of electricity on natural gas reduces considerably for the extreme quantiles of 

both energy prices. That is, when we consider the left-top scenario depicted by Figure 3, in 

which both electricity and natural gas prices are relatively low (10th percentile), or the scenarios 

on the top-right and bottom-left, in which either electricity or natural gas a relatively low-

priced, the predictive power of electricity on natural gas almost disappears (or it is rendered as 

statistically insignificant by our model). The exception to this rule comes when both electricity 

and natural gas prices reach very high levels (90th percentiles). In this case, there is a strong 

causality from electricity to gas that, nevertheless, disappears after approximately 8 days (with a 

peak on the day of the original shock above 30% in the cross-quantilogram).  

All in all, we can confidently state that there is also predictive causality running from electricity 

to natural gas prices, and this causality seems to operate specially at the “median scenarios”, in 

which one or the two prices are recorded near to its median values, or when high prices are 

induced in both markets by a relatively scarcity of the resources (that is, when both prices are 

recorded at the right tail of their respective distributions, 90th percentiles). The causality from 

electricity to gas is, as expected, lower than the effect running from natural gas to electricity 

and it virtually disappears when at least one of the two resources are relatively cheap (10th 

percentile). Our analysis is confirmed by the Q-statistics reported in Figure 4. 
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Figure 5. Cross-quantilogram to measure the directional predictability from electricity 

to natural gas prices: PJM 
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In the figure are presented the sample cross-quantilograms 𝜌̂𝜏(𝑘) for 𝑘 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.9) for 

𝑖 = 1,2. The cross-quantilogram measures the directional predictability from electricity to natural gas prices, in 

PJM. In the rows are sorted the quantiles of the electricity prices, while in the columns of the natural gas prices. 

The bars represent 𝜌̂𝜏(𝑘), while the dotted lines are confidence intervals at 95% of confidence constructed by the 

stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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Figure 6. Box-Ljung test and directional predictability from electricity to natural gas: 

PJM 
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In the figure are presented the sample 𝑄̂𝜏
(𝑝)

for 𝑝 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.6) for 𝑖 = 1,2. The solid lines 

are the Q-Box-Ljung statistics, while the dotted lines are confidence intervals at 95% of confidence, constructed 

by the stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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1.2. Results for the New England interconnection 

Figure 7 depicts the cross-quantilogram with 60 lags and different quantiles, with the 

predictability running from natural gas to electricity prices, for the New England market. As it 

occurred for the PJM market, the results vary depending on the analyzed conditional quantile, 

both in the predicted variable (electricity power in rows) and the predicting variable (natural 

gas in columns). Figure 8 presents the corresponding Q-statistics that test the null of non-

predictability from gas to electricity at different cumulated lags and that condition on different 

quantiles. The same pattern documented before arises, perhaps more clearly, when we focus 

on Figure 7: the higher the conditional quantiles of prices, the higher the levels of 

predictability. For this reason, the cross-quantilograms are larger when the figure depicts the 

intersection between the quantiles above the median of both electricity and natural gas prices. 

By the contrary when one or the two series are at their 10th percentile, the predictability 

reduces both in magnitude and persistence. Finally, when the two prices are relatively high (90th 

percentile) the predictability increases considerably, arising to more than 60%, either 

contemporaneously or with a few lags. These observations are ratified when we observe Figure 

8. In none of the cases the hypothesis of predictability running from natural gas to electricity 

prices can be rejected, but the rejection of the null of non-predictability is stronger precisely 

when both prices reach their respective 90th percentiles.  

  



20 
 

Figure 7. Cross-quantilogram to measure the directional predictability from natural gas 

to electricity prices: New England 
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In the figure are presented the sample cross-quantilograms 𝜌̂𝜏(𝑘) for 𝑘 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.6) for 

𝑖 = 1,2. The cross-quantilogram measures the directional predictability from natural gas to electricity prices, in 

New England. In the rows are sorted the quantiles of the natural gas prices, while in the columns of the electricity 

prices. The bars represent 𝜌̂𝜏(𝑘), while the dotted lines are confidence intervals at 95% of confidence constructed 

by the stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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Figure 8. Box-Ljung test and directional predictability from natural gas to electricity 

prices: New England 
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In the figure are presented the sample 𝑄̂𝜏
(𝑝)

for 𝑝 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.6) for 𝑖 = 1,2. The solid lines 

are the Q-Box-Ljung statistics, while the dotted lines are confidence intervals at 95% of confidence, constructed 

by the stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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We turn now to analyze the predictability from electricity to natural gas prices in the New 

England market. Figure 9 shows the estimated cross-quantilogram, with the causality running 

from electricity to natural gas prices, and in Figure 10 we present the respective Q-statistics. 

The hypothesis of the double causality cannot be rejected, this time, even clearer than for the 

PJM market. The magnitude of the predictability equals that observed from gas to electricity 

and even overpasses it at different quantiles, as for instance the median quantiles of the 

predicting variable (electricity). Noticeable the predictability increases considerably when we 

move from low to high quantiles of the predicting variable (electricity), especially when the 

predicted variable remains itself above its own median. In general, when one of the two prices 

is relatively low, that is at the 10th percentile, the predictability is low as well compared to the 

cases of the highest quantiles in the two series. Figure 8 complements the analysis and tells us 

that the hypothesis of non-predictability from electricity to natural gas prices is always rejected 

at all quantiles in both series, but especially at the intersection of the highest quantiles.  

Comparing the results for the New England interconnection with those of the PJM market, it 

becomes evident that predictability is larger almost always in the former market, especially 

when the power resources are relatively scarce and the prices are relatively high. This may be 

related to greater dependence in the New England market of natural-gas power generation 

(50% of the total), compared to the case of PJM (24%).  
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Figure 9. Cross-quantilogram to measure the directional predictability from electricity 

to natural gas prices: New England 
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In the figure are presented the sample cross-quantilograms 𝜌̂𝜏(𝑘) for 𝑘 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.6) for 

𝑖 = 1,2. The cross-quantilogram measures the directional predictability from electricity to natural gas prices, in 

New England. In the rows are sorted the quantiles of the electricity prices, while in the columns of the natural gas 

prices. The bars represent 𝜌̂𝜏(𝑘), while the dotted lines are confidence intervals at 95% of confidence constructed 

by the stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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Figure 10. Box-Ljung test and directional predictability from electricity to natural gas: 

New England 
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In the figure are presented the sample 𝑄̂𝜏
(𝑝)

for 𝑝 = 1 … 60 and 𝜏𝑖 = (0.1, 0.5, 0.6) for 𝑖 = 1,2. The solid lines 

are the Q-Box-Ljung statistics, while the dotted lines are confidence intervals at 95% of confidence, constructed 

by the stationary bootstrap centered at zero with 𝐵 = 1000 number of repetitions. 
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5. Conclusion 

We test for directional predictability between electricity and gas prices at different quantiles of 

the price distribution in the PJM and the New England interconnections. The predictive 

causality goes in the two directions, from gas to electricity and from electricity to gas. 

Nevertheless, the relationship changes remarkably conditioning on different quantiles of the 

price distribution. In the two analyzed markets the soundest directional predictability is 

recorded when the electricity and gas prices are at their 90th percentile. In PJM the cross-

correlation between the quantile-hit functions is found to be around 20% -30% from gas to 

energy, and around 15% from electricity to gas, at the 90th percentile of the series. In the New 

England market these numbers lie between 40% and 60% (in both directions) and the relation 

lasts in average 40 days.  

In all the cases the directional predictability is considerably reduced for the lower quantiles 

(10th percentile) of the two series, but in the case of PJM, this is especially true when the 

predicting variable (either gas or electricity) has reached its 10th percentile. In general the cross-

quantilograms are significant in the median-up ranges of the two variables, namely in the 

intersection between the 50th and 90th percentiles of the series. This informs about the 

existence of a significant a positive feedback effect between the two markets during both, 

relatively regular market scenarios, and in cases of relatively scarcity of the resources when the 

prices hit the 90th percentile in the two markets, simultaneously. This analysis is possible by 

exploring the two quantile-dimensions that cross-quantilograms offer as an empirical device, 

and therefore are novel to the literature.  

The remarkable decreasing in the price of natural gas that the world economy has witnessed 

during the last years (with a perspective of even further decreases), the environmental 
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regulations targeted to force old coal based power stations to curtail their production and to 

phase-out of nuclear power plants, and the increment in the global supply of power coming 

from intermittent renewables sources, particularly wind, guarantee the future role of natural gas 

prices as the main determinant of electricity prices. Our analysis for the PJM and the New 

England interconnections shows that indeed natural gas prices can be used as a predictor of 

electricity prices, but also the other way around, electricity prices predict natural gas prices, 

especially when both resources are trading relatively high in the market (at or around the 90th 

percentile). Regulators and policy makers must consider this growing importance of gas as a 

primary fuel, in order to exploit its benefits and avoid its main dangers. For example, particular 

attention should be placed on investing in flexible and efficient gas-based power stations, in 

transportation infrastructures, distribution and storage of natural gas. So as in the design of 

policies that foster gas power plans capacity as a factor in the main grid, and therefore may 

attenuate the effect of natural gas on electricity (and vice versa, given the documented 

feedback effect from electricity to gas), especially when energy sources are relatively scarce and 

therefore prices are relatively high.  

The empirical evidence provided in this study argues in favor of an integrated approach when 

considering natural gas and electricity markets. Thus, energy policy recommendations should 

be bounded to an integrated approach of the two markets that considers the intertwined 

mechanisms that tie their prices. To reduce the over-reliance on gas, as a primary source of 

power, inefficient gas-fired generators should be replaced with newer facilities and renewable 

energy devices, which have witnessed a remarkably increase as a primary power source around 

the world from 2003 and on. 

Our results, being conditional on the market prices, are particularly insightful about the 

feedback effect between natural gas and electricity prices that takes place precisely when the 
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prices are high. These effects, and therefore the possibility of witnessing an energy crisis, 

increase precisely when the resources are more valued, that is, when energy is more scarce and 

expensive. Therefore it becomes fundamental assuring a steady and adequate supply of natural 

gas, especially under these circumstances, by preventing bottlenecks in natural- gas pipelines or 

their monopolization, and by assuring appropriated natural-gas storage capacity. 
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