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We argue that the photon spectra in radiative decays of various heavy quarkonium states provide
important information on their nature. If two of these states are in the strong coupling regime, we are able
to produce a parameter-free model-independent formula, which holds at next-to-leading order and
includes both direct and fragmentation contributions. When the formula is checked against recent
CLEO data it favors Y(2S) and Y(3S) in the strong coupling regime and disfavors Y(15) in it.
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Heavy quarkonium systems have played a major role in
our understanding of QCD (see [1] for a review). Inclusive
heavy quarkonium decays to light particles involve a short
distance process, in which the heavy quark and antiquark
annihilate into gluons or photons, and a long distance
process, which takes into account that the heavy quark
and antiquark are bound in a color singlet state. Because
of the asymptotic freedom of QCD the short distance
process can be calculated using perturbation theory in
a,(m), m being the heavy quark mass. It was believed
for some time that in order to have a color singlet state
the heavy quark and antiquark in it had to be in a color
singlet state themselves. This allowed us to parameterize
the long distance process by a wave function at the origin
(or derivatives of it). In spite of the fact that this wave
function was not computable from perturbative QCD
(pQCD), it canceled in suitable ratios, and hence predic-
tions depending on pQCD only could be put forward.
Nevertheless, it was soon noticed that the above framework
had difficulties due to the infrared divergences which
showed up at higher orders of ag(m) [2]. The introduction
of color octet operators in the framework of nonrelativistic
QCD (NRQCD) [3] provided a rigorous way to understand
and to deal with these divergences [4]. The price to be paid
was the introduction of new nonperturbative parameters,
the color octet matrix elements, which made predictions
depending on pQCD only more difficult to obtain.

Later on, it was pointed out that of the hierarchy of
relevant scales in heavy quarkonium m > mv > mv?, v
being the relative velocity, only the first inequality was
exploited in NRQCD and that the velocity counting pro-
posed in [3] did not necessarily follow from it. It was also
shown how the last inequality could be exploited by con-
structing a further effective theory, namely, potential
NRQCD (pNRQCD) [5,6](see [7] for a review). The inter-
play of Agcp with the scales mv and muv? above dictates
the degrees of freedom of pNRQCD. Two regimes have
been identified: (i) the weak coupling regime, Agcp =
mv?, and (ii) the strong coupling regime mv? < Agep <
mv. In the weak coupling regime, the relevant degrees of
freedom are a singlet and an octet wave function fields
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interacting with (perturbative) potentials and with ultrasoft
gluons. The original NRQCD counting [3] belongs to this
regime. Moreover, the use of diagrammatic and quantum
mechanical methods allows us to carry out explicit calcu-
lations at higher orders of a(mv) [8]. In the strong cou-
pling regime, the essential degree of freedom is a singlet
wave function field interacting with a (nonperturbative)
potential. In this regime, the matrix elements of both color
singlet and color octet NRQCD operators reduce to wave
functions at the origin plus a few universal parameters [9].

Because of the fact that none of the scales involved in the
hierarchies above are directly accessible experimentally,
given a heavy quarkonium state, it is not obvious to which
regime it must be assigned. Only the Y(1S) appears to
belong to the weak coupling regime, since weak coupling
calculations in a(mv) converge reasonably well. The fact
that the spectrum of excitations is not Coulombic suggests
that the higher excitations are not in the weak coupling
regime, which can be understood from the fact that
O(Aqcp) effects in this regime are proportional to a high
power of the principal quantum number [10]. Nevertheless,
there have been claims in the literature, using renormalon-
based approaches, that Y(25) and even Y(3S) can also be
understood within the weak coupling regime [11]. We
argue in this Letter that the photon spectra in semi-
inclusive radiative decays of heavy quarkonia to light
hadrons provide important information which may even-
tually settle this question.

The contributions to the decay width of a state n can be
split into direct and fragmentation, dI,,/dz = dI'%"/dz +
dT'*8 /dz. Direct contributions are those in which the ob-
served photon is emitted from the heavy quarks and frag-
mentation contributions are those in which it is emitted
from the decay products (light quarks). z € [0, 1] is de-
fined as z = 2E, /M, (M, is the mass of the heavy quark-
onium state), namely, the fraction of the maximum energy
the photon may have in the heavy quarkonium rest frame.
The approximations required to calculate the direct con-
tributions are different in the lower end-point region (z —
0), in the central region (z ~ 0.5), and in the upper end-
point region (z — 1) of the spectrum [12]. We shall restrict
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our discussion to z in the central region, in which no further
scale is introduced beyond those inherent of the nonrela-
tivistic system. Consequently, the photon spectrum can be
expressed in terms of matrix elements of local NRQCD
operators @ with matching coefficients C[Q](z) which
depend on m and z.
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8¢ is an integer which follows from the dimension of @,
(Q), = (Vo(nS)|Q|Vy(nS)), and Vy(nS) stands for a
vector S-wave state of principal quantum number n. The
fragmentation contributions read [13]
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ay(x, m) are the fragmentation functions and C,[Q ](x)
the partonic kernels. It is important for what follows that
the fo(z) are universal and do not depend on the speciﬁc
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bound state n. Because of the behavior of the fragmenta-
tion functions above, the fragmentation contributions are
expected to dominate the spectrum in the lower z region
and to be negligible in the upper z one. In the central
region, which we will focus on, they can be treated as a
perturbation, as we will show below.

Let us first consider the weak coupling regime, for which
the original NRQCD velocity counting holds [3]. The
direct contributions are given at leading order (LO) by
the ©,(3S,) operator; the next-to-leading order (NLO)
(v? suppressed) term is given by the P;(3S,) operator.
The contributions of color octet operators start at order
v* and are not a; !(m) enhanced in the central region. The
fragmentation contributions are more difficult to organize
since the importance of each term is not only fixed by the
velocity counting alone but also involves the size of the
fragmentation functions. It will be enough for us to restrict
ourselves to the LO operators both in the singlet and octet
sectors. The LO color singlet operator is O;(*S,) as well.
The leading color octet contributions are v* suppressed but
do have a a; '(m) ~ 1/v? enhancement with respect to the
singlet ones here. They involve Oz(3S,), Og('S,), and
Og(*P,). Then in the central region, the NRQCD expres-
sion (at the order described above) reads

P.CS O4(’S
PO g, OO

Py 5

C1[3S,](z) and C[3S,](z) are the only short distance matching coefficients that will be eventually needed. They can be
found in [14,15], respectively. If we are in the strong coupling regime and use the so-called conservative counting, the color
octet matrix elements are suppressed by v? rather than by v*. Hence, we should include the color octet operators in the
direct contributions as well. In practice, this only amounts to the addition of Cy’s to the fo,’s. Furthermore, f¢, ¢ SJ)(Z)
foys )(z) and fo P )(z) are proportional to Dgy(x m), which is small (in the central reglon) according to the widely
accepted model [16] foycs )(z) is proportional to D, (x, m), which has been measured at LEP [17]. It turns out that
numerically f ¢ (2) ~ Cgt S,](z) in the central reglon Therefore, all the LO fragmentation contributions can be treated
as a perturbation. Consequently, the ratio of decay widths of two states with different principal quantum numbers is given
at NLO by
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where in terms of the measured leptonic decay widths
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Note that the a(m) corrections to the matching coeffi-
cients give rise to negligible next-to-next-to-leading order
contributions in the ratios above. No further simplifications
can be achieved at NLO without explicit assumptions on
the counting. If the two states n and r are in the weak
coupling regime, then R} m(E, — E,) (E, is the
binding energy) [18]. In adléltlon the ratio of matrix ele-
ments in front of the right-hand side of (4) can be expressed

_ Imgee(3S1) En - Er
|:1 Imfee(BSI) m :| (6)

Img,, and Imf,, are short distance matching coefficient
which may be found in [3]. Equation (6) and the expression
for R also hold if both n and r are in the strong
couphng couphng regime [9,19], but none of them does if
one of the states is in the weak coupling regime and the
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other in the strong coupling regime. In the last case, the
NRQCD expression depends on five unknown parameters,
which depend on »n and r. If both n and r are in the strong
coupling regime further simplifications occur. The matrix
elements of the color octet NRQCD operators are propor-
tional to the wave function at the origin times universal
(bound state independent) nonperturbative parameters
[9,19]. Since (O,(3S,)), is also proportional to the wave
function at the origin, the latter cancels in the ratios in-
volved in (5). Hence, ’R"Q’ = 0 for the octet operators
appearing in (4). Then, the pNRQCD expression for the
ratio of decay widths reads
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Therefore, in the strong coupling regime we can predict,
using pNRQCD, the ratio of photon spectra at NLO [in the
v?, (Agep/m)? 191 and a,(,/mAqep)y/Agep/m [19] ex-
pansion], which is the main result of this Letter. On the
other hand, if one of the states n is in the weak coupling
regime of pNRQCD, fR”Q’ will have a nontrivial depen-
dence on the principal quantum number n and hence it is
not expected to vanish. Therefore, expression (7) provides
invaluable help for identifying the nature of heavy quark-
onium states. If the two states are in the strong coupling
regime, the ratio must follow the formula (7); on the other
hand, if (at least) one of the states is in the weak coupling
regime the ratio is expected to deviate from (7), and should
follow the general formula (4). We illustrate the expected
deviations in the plots (dashed curves) by assigning to the
unknown Rs in (4) the value v* (v*> ~ 0.1), according to
the original NRQCD velocity scaling.

Recently CLEO [20] has measured the photon spectrum
for the Y(1S) radiative decay (with very good precision)
and also (for the first time) the spectra for the Y(2S) and
Y (35) radiative decays. We will use these data to check our
predictions. In order to do the comparison we use the
following procedure. First we efficiency correct the data
(using the efficiencies modeled by CLEO). Then we per-
form the ratios 15/2S, 15/3S, and 2S/3S (we add the
errors of the different spectra in quadrature). Now we
want to discern which of these ratios follow Eq. (7) and
which ones deviate from it; to do that we fit Eq. (7) to each
of the ratios leaving only the overall normalization as a free
parameter (the experimental normalization is unknown).
The fits are done in the central region, that is z € [0.4, 0.7],
where Eq. (7) holds. A good (bad) y? obtained from the fit
will indicate that the ratio does (not) follow the shape
dictated by Eq. (7). In Figs. 1-3 we plot the ratios
1S5/2S, 1S/3S, and 28/3S, respectively, together with
Eq. (7) and the estimate of (4) mentioned above (overall
normalizations fitted for all curves, the number of d.o.f. is
then 45). The figures show the spectra for z € [0.2, 1] for
an easier visualization but remember that we are focusing
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FIG. 1 (color online). Ratio of the Y(1S) and Y(2S) photon
spectra. The points are obtained from the CLEO data [20]. The
solid line is Eq. (7) (overall normalization fitted), the dashed line
is the estimate of (4) (see text). Agreement between the solid
curve and the points in the central (unshaded) region would
indicate that the two states are in the strong coupling regime.

in the central z region, denoted by the unshaded region in
the plots. The theoretical errors due to higher orders in
ay(m) and in the expansions below (7) are negligible
with respect to the experimental ones. For the 1§/2§
ratio we obtain a y?/d.o.f.|g /25 ~ 1.2, which corresponds
to an 18% C.L. The errors for the Y(3S) photon spectrum
are considerably larger than those of the other two states,
this causes the ratios involving the 3§ state to be less
conclusive than the other one. In any case we obtain
x?/d.o.f.];5/35 ~ 0.9, which corresponds to a 68% C.L.,
and x?/d.o.f.|5/35 ~0.75 which corresponds to an
89% C.L. Hence, the data disfavors Y(1S) in the strong
coupling regime but is consistent with Y(25) and Y (3S) in
it. For completeness we also quote the numbers corre-
sponding to the estimate of Eq. (4) (dashed lines):
X2/d'0'f'|lS/25 ~1.93 (02% CL), XZ/d.O.f.lls/:z,S ~.56
(99% C.L.), and x*/d.o.f.]55/35 ~ .66 (96% C.L.). Recall
that these curves are only estimates to illustrate what the
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FIG. 2 (color online). Same as Fig. 1 for Y(1S5) and Y(3S).
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FIG. 3 (color online). Same as Fig. 1 for Y(2S) and Y(3S).

differences from Eq. (7) to Eq. (4) may be and do not
intend to best fit the data.

In summary, using pNRQCD we have worked out a
model-independent formula which involves the photon
spectra of two heavy quarkonium states and holds at
NLO in the strong coupling regime. When this formula is
applied to the upsilon system, current data indicate that the
Y(2S) and the Y(35) are consistent as states in the strong
coupling regime, whereas the Y(1S) in this regime is
disfavor. A decrease of the current experimental errors
for Y(2S) and, especially, for the Y(3S) is necessary to
confirm this indication. This is important, since it would
validate the use of the formulas in [9,19], and others which
may be derived in the future under the same assumptions,
not only for the Y(25) and Y (35) but also for the y;,(2P)s,
since their masses lie in between, as well as for their
pseudoscalar partners.
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