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ABSTRACT

Aim:  Understanding the conditions that promote biological invasions is a critical step to developing
successful management strategies. However, the level of invasion is affected by complex interactions
among  environmental  factors  that  might  change  across  habitats  and  regions  making  broad
generalizations  uninformative  for  management.  We  aimed  to  quantify  the  context-dependent
association of climate and human activity at landscape scale (i.e. disturbance and propagule pressure)
with the level of plant invasion at local scale across different stages of invasion, habitat types and
bioclimatic regions.

Location: Mainland Spain.

Methods: Based on an extensive database of vegetation plots (~50,000) we used hierarchical Bayesian
models to test  how climate and human activity at  a landscape scale  (i.e.  land-cover variables) are
associated  with  establishment  (i.e.  presence)  and  dominance  (i.e.  relative  species  richness  and
abundance  in  invaded  plots)  of  non-native  plants  across  nine  habitat  types  and  three  bioclimatic
regions.  Results:  The association of climate with establishment and dominance of non-native plants
varied depending on habitat type but not bioclimatic region. These associations also varied depending
on the stage of invasion under consideration. Establishment of non-native species was more likely close
to the coast,  while  their  dominance  increased in  wet  and warm continental  areas.  Human activity
variables  were  associated  with  establishment  and  dominance  similarly  across  bioclimatic  regions.
Non-native  species  establishment  and  abundance  peaked  in  human-altered  landscapes.  Different
habitats showed different susceptibilities to establishment versus dominance by non-native species (e.g.
woodlands had medium levels of establishment but very low dominance).

Main conclusions: This study highlights how complex interactions among climate, human activity, and
habitats can determine patterns of invasions across broad landscapes. Successful management of plant
invasions will depend on understanding these context-dependent effects across habitats at the different
stages of the invasion process. 

Keywords:  level  of  invasion,  Bayesian,  hierarchical,  stages  of  invasion,  establishment,  propagule
pressure
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INTRODUCTION

Biological invasions pose a major threat to the native biota and ecosystem functioning (Vilà  et al.,

2011). Thus, prevention and management of invasions are critical for the conservation of natural and

semi-natural ecosystems. Successful management of biological invasions relies on understanding the

mechanisms behind the invasion process. Recent conceptual models have suggested that invasions are

affected by multiple interacting factors, including abiotic conditions, human activity, and habitat type,

which may act at different scales and stages of invasion (Catford  et al., 2009; Milbau  et al., 2009).

Such complexity hampers our ability to disentangle the mechanisms underlying invasions and thus the

forecasting of future invasions. Climatic effects on invasion are perhaps the most commonly studied

within abiotic factors. This approach can be successful at large scales to the extent that climatic patterns

shape the macro-environmental conditions determining species distribution from continental to regional

scales (Pearson & Dawson, 2003; Milbau et al., 2009). Human activity can also clearly affect patterns

of invasion (Ibáñez et al., 2009a; Vilà & Ibáñez, 2011; González-Moreno et al., 2013b). For example,

human land-covers types such as built-up areas or crops are highly associated with plant invasions due

to the increased propagule pressure and disturbance that benefit non-natives establishment (Ohlemüller

et al., 2006; Gassó et al., 2009; Gavier-Pizarro et al., 2010). In addition, the level of plant invasion has

also been shown to vary among habitat types at a local scale (Vilà  et al., 2007; Ibáñez et al., 2009a)

with anthropogenic, mesic, and nutrient rich habitats being more invaded than natural, dry, and nutrient

poor  habitats  (Chytrý  et  al.,  2008b).  These  differences  among habitats,  partly  explained  by biotic

interactions and human influence at a local scale, highlight the paramount importance of habitat type

for influencing invasions on top of the combined effects of climate and human activity at larger spatial

scales.

The effects of climate, human activity and habitat type on plant invasions are likely interactive rather

than additive, further complicating efforts to understand the relative importance of different drivers of

invasion  (Catford  et  al.,  2009;  Jiménez-Valverde  et  al.,  2011).  Patterns  of  invasion  appear  highly

idiosyncratic when different habitats  types are modelled separately. For example, identical climates

may result in a different level of invasion depending on the habitat type and bioclimatic region (i.e.

biogeographical region sensu  EEA, 2008) (Ibáñez  et al.,  2009b). In addition, the effects of human

activity, derived from land-cover variables, may also vary across bioclimatic regions. For example,



regions often have distinct landscape compositions as a result of the interaction of human activities and

their  climatic  drivers.  In  regions  with  a  predominance  of  agricultural  land  and  dispersed  human

settlements, crops may be the most important source of non-native propagules. In contrast, in highly

urbanized regions, ornamental plants may be the source of most non-native plants while crops could

help to buffer the spread of these species into natural habitats (González-Moreno et al., 2013b). Given

these complex interactions, a comprehensive understanding of the invasion process is critical and may

even require new analytical approaches that account for those interactions.

Ecological  theory and conceptual  models of invasions  also suggest  that  the relative importance of

climate, human activity and habitat type shaping invasions will depend on the stage of the invasion

process  under  consideration  (Catford  et  al.,  2009;  Leung  et  al.,  2012).  For  example,  initial

establishment of a single species may be driven by propagule pressure from the neighbouring landscape

(i.e. human activity), while subsequent dominance may be more dependent on the existence of suitable

climatic and local conditions (i.e. habitat type) for plant and population growth (Catford et al., 2009;

Leung et al., 2012). The framework of invasion stages for single species can also be applied to groups

of non-native species invading plant communities (Catford et al., 2011; Polce et al., 2011). Following

the initial  establishment  of a  particular  non-native species  within a  community,  this  species  might

increase in abundance at the time that new non-native species are establishing and becoming abundant

(i.e.  increase  in  non-native  species  richness  and  abundance  respectively).  Developing  a  better

understanding  of  how  the  combination  of  climatic  conditions,  human  activity,  and  habitat

characteristics affect both the establishment and dominance of non-native species in the community

will be critical to inform more targeted management actions (Polce et al., 2011; Leung et al., 2012).

In this study we used an extensive database of vegetation plots (~50000) and hierarchical Bayesian

statistical models to investigate how climate, human activity and habitat type interact to explain local

patterns  of  non-native  species  establishment  (i.e.  presence)  and  dominance  (i.e.  richness  and

abundance) across mainland Spain. We used data on native and non-native plant species presence and

abundance  as proxy of invasion success  (Catford  et al., 2012).  Specifically, we asked the following

questions:  (1)  Does  the  relationship  between  climate  and  plant  invasions  vary  across  bioclimatic

regions and habitats? (2) Does the association of human activity (in terms of land-cover variables) with

plant invasions depend on the regional bioclimatic context? And finally, (3) Do these associations and

the relative importance of climatic conditions and human activity depend on the metric of invasion

(presence, richness and abundance of non-natives, as surrogates of the invasion stages establishment

and dominance)? To answer these questions we compared the results of two modelling approaches: a



hierarchical model (context-dependent) that nested the effects of climate across bioclimatic regions and

habitat  types  and  allowed  variation  of  human  activity  variables  along  bioclimatic  regions  and  a

classical non-hierarchical model (non context-dependent) that included the different driving variables

in an additive  and independent  fashion.  Finally,  we discuss  the  benefits  of  hierarchical  models  to

investigate current determinants of the level of plant invasion and the potential to identify the current

and future incidence of plant invasions.

METHODS

Plant species dataset

In order to quantify plant invasions across mainland Spain, we used data from the Information System

of Iberian and Macaronesian Vegetation (SIVIM) (Font  et al.,  2012; see Appendix S1 for database

characteristics). We  gathered  53  345  relevés  (plots,  hereafter)  from  1970  to  2011  that  had  a

phytosociological alliance assignment and location accuracy at least of 10 Km UTM.  Our selection

covers  most  environmental  gradients  across  mainland  Spain  and  therefore  a  wide  range  of  plant

communities. A higher density of plots was located in mountain and coastal areas compared to plateau

and large valleys (Fig. 1). According to a survey gap analysis based on multivariate environmental

similarity surface index (MESS) (Elith et al., 2010; Rossi, 2012, see code in Appendix S3) the dataset

provided a good coverage of the entire environmental conditions of the study area with only exceptions

in rare areas with extremely high precipitation (North western Spain), urban development (Madrid) and

agriculture cover (Guadalquivir basin in Southern Spain). Plot size was variable but with ranges per

habitat type following European standards (Appendix S1). Despite the long time frame of the dataset,

we  found  little  association  between  level  of  invasion  and  time  of  collection  (Appendix  S1).

Furthermore, we did not find any significant bias in the sampling through time across different habitats,

regions or geographical areas.

For each plot we identified the bioclimatic region (i.e. Alpine, Atlantic and Mediterranean; Fig.1, Table

1, details in Appendix S1) (EEA, 2008) and the habitat type following a classification based on the

Level 1 of the European Nature Information System of 2007 (EUNIS). We identified the habitat type

using a crosswalk table between the phytosociological alliance assigned in SIVIM and the most likely

EUNIS habitat type as in Vilà et al. (2007) and Chytrý et al. (2008b): coastal, aquatic (inland surface

waters), grasslands, scrubland including heathlands, woodlands, rocky, ruderal, agriculture and saline

habitats (Appendix S2). This classification informs both the type of native community and the human

influence  at  a  local  scale.  We developed  the  crosswalk  table  using  expert  knowledge  and habitat



information provided by Rivas-Martínez et al. (2002) and Rodwell et al. (2002). Our expertise on the

species  composition  of  the  phytosociological  alliances  guaranties  the  validity  of  grouping them in

broad habitat types. 

Table  1:  Summary of  climate  (averages  period  1971-2007)  and human activity  at  landscape  scale
characteristics (CORINE land-cover maps) in different bioclimatic regions in mainland Spain.

 Alpine Atlantic Mediterranean
Annual precipitation (mm) 965.56 1301.72 552.38
Summer precipitation (mm) 218.42 173.43 70.99
Winter minimum temperature (ºC) -5.56 1.1 0.77
Temperature seasonality (SD) 6.46 4.85 6.46
Urban cover (%) 1 5.38 7.13
Agriculture cover (%) 3.53 12.12 30.63
Grassland cover (%) 47.72 45.41 29.11
Woodland cover (%) 28.85 29.78 17.12
Land-cover diversity 1.07 1.08 1.26

Figure 1. Number of vegetation plots and mean relative non-native species richness at invaded plots per

10-Km UTM grid in mainland Spain.

Relaying on the strong association between the number of introductions and the incidence of invasive

species (Catford et al., 2011; Polce et al., 2011; Catford et al., 2012) we calculated three widely used

metrics  in  invasion  ecology:  (i)  presence-absence  of  non-native  species  in  all  plots,  (ii)  relative

non-native species richness in invaded plots, calculated as the number of non-native species within a



plot in relation to the total number of species, and (iii) relative non-native abundance in invaded plots

calculated as the accumulated percentage of non-native vegetation cover divided by the cover of all

species. Only non-natives introduced after 1500 a.c. were considered. We did not restrict the study to

only invasive species as we might have missed species limited to early stages in the invasion process

(Catford  et  al.,  2012).  These different  metrics  are  surrogates  for  different  stages  of  invasion,  with

presence (i)  representing the establishment  stage and richness  (ii)  and abundance (iii)  indicating a

dominance stage (Polce et al.,  2011; Catford et al.,  2011). The presence-absence of any non-native

plant would inform about the likely of recruitment of at least an individual plant irrespective of its

ability to reproduce and become naturalized. In contrast, an increase in abundance of the species or the

recruitment  of new species would inform about a later  phase in the invasion process where given

suitable ecological conditions, non-native species are expanding and ultimately becoming dominant in

the community. 

Climate and human activity data

We selected several climatic and land-cover variables (our proxy for human activity at landscape scale).

All variables selected have been commonly used in plant invasion studies (description in Appendix S2).

The geographic location of each plot was only known within the 10-Km UTM grid.  We therefore

characterized the climate and human activity context of each plot at the grid level. We discarded UTM

grids with size lower than 60 Km2 or less than 60% of land (versus ocean) to ensure comparable values

of predictors and to avoid possible misplacement of plots located at UTM borders.

We  obtained  climate  data  from  the  UNEX  Spatial  Data  Infrastructure  (http://ide.unex.es),  which

provides  average  monthly precipitation,  minimum and maximum temperature at  1-Km grid across

Spain for the period 1971-2007. From this dataset we extracted the following biologically-relevant

climate  variables  per  UTM  grid  using  the  R-package  DISMO:  annual  precipitation,  summer

precipitation (i.e. warmest quarter of the year), precipitation seasonality (i.e. coefficient of variation),

annual temperature, winter minimum temperature (i.e. coldest month), summer maximum temperature

(i.e.  warmest  month)  and temperature  seasonality  (i.e.  standard  deviation).  We also  calculated  the

distance from each grid cell border to the coast to reflect a gradient in climate continentality. 

Finally,  we  extracted  the  following  human  activity  variables  for  each  grid  from  the  CORINE

Land-cover Map (2006): percentage of urban (including major transport infrastructures), agriculture,

woodland  and  grasslands  land-cover  and  the  Shannon  diversity  index  of  these  land-cover  types

(land-cover diversity, hereafter). 

http://ide.unex.es/


Model development

We  modelled  initial  establishment  of  non-native  species  (i.e.  presence  data  in  53345  plots)  and

subsequent dominance (i.e. richness and abundance data in 8146 invaded plots) in order to test whether

these different stages are associated with different variables (Catford et al., 2011; Polce et al., 2011).

For  each  of  these  two  stages  of  invasion  we  constructed  hierarchical  Generalized  Linear  Models

(HGLMs)  in  order  to  allow the  associations  with  climate  to  vary  among  bioclimatic  regions  and

habitats, and human activity variables to depend on bioclimatic region. We compared the results of this

model structure with a more traditional approach using non-hierarchical Generalized Linear Models

(GLMs) in which we included all the sets of variables and models with only habitat, climate or human

activity variables. In contrast to the context-dependent associations considered in the HGLMs, GLMs

just  test  the  independent  effects  of  the  variables  included.  We  fit  all  models  using  a  Bayesian

framework, which is useful for complex models or when sample sizes within sub-groups are highly

variable (Clark, 2004; see Appendix S3 for details).

Modelling the presence of non-native species 

The presence-absence of non-native species at each plot was estimated from a Bernoulli distribution

with probability of being present pi:

Ni ~Bernoulli (pi) 

 logit(pi) = αhabitat (i)+βXi +eg (i)

where αhabitat represents the intercept for each habitat type. Random effects for each UTM grid, g, were

estimated from the same grid level distribution. The matrix of explanatory variables, X i, included all

the climate and human activity variables and their associated coefficients, β, were estimated using a

hierarchical and non-hierarchical approach (Fig. 2). 

Modelling the richness and abundance of non-native species 

Non-native  species  richness  at  each  plot,  NNSRi,  was modelled  using a  Binomial  distribution with

parameters TRi , total species richness, and qi. , the probability of being non-native: 

NNSRi~ Binomial (qi ,TRi) 

Logit(qi) = αhabitat(i) + βXi  + eg(i)



To  ensure  positive  values,  and  also  improve  convergence,  non-native  species  relative  abundance,

NNSRAi:  NNSAi/TAi,(non-native species abundance/total vegetation abundance), was modelled using a

Log-Normal distribution with mean µAi and variance σA:

 NNSRAi~Log-Normal(µAi, σ2
A) 

 µAi = αhabitat(i)+ βXi  + eg(i) 

The habitat-related  intercepts,  αhabitat,  the  vector  of  coefficients  associated  with climate  and human

activity variables, β, and the plot level random effects, eg, were modelled following the same approach

described above.

Figure 2. Model  structure that  defines the vector  of  coefficients  associated with each climate and

human  activity  predictor  (βXi)  using  both  hierarchical  and  non-hierarchical  approaches.  In  the

hierarchical  section,  the  level  Region  defines  the  association  of  each  climate  and  human  activity

variable in each bioclimatic region. The level Region and habitats represents the vector of coefficients

associated with each combination of climate variables across regions and habitat types.

Variable selection

We tested the collinearity among the predictors using pair-wise Pearson’s correlation tests (Appendix

S2). First, we selected variables that had a pair-wise correlation lower than 0.75 in both datasets (i.e. in

all plots and in invaded plots). Among the variables with correlations greater than 0.75, we selected

those  with  the  strongest  ecological  meaning  and  explanatory  power.  This  process  resulted  in  the

following climate variables: annual precipitation, summer precipitation, winter minimum temperature,

temperature seasonality and distance to the coast. Human activity variables were not highly correlated,



and thus we included them all. All variables were standardized by subtracting the mean (centred) and

dividing  by the  standard  deviation  (standardized)  in  order  to  improve model  convergence  and aid

interpretation of coefficient estimates (Gelman & Hill, 2007). 

Model comparison and validation

We  implemented  four  non-hierarchical  (GLM)  models:  1)  only  climate  variables,  2)  only  human

activity variables, 3) only habitat type, and 4) all variables (i.e. full model). We compared these models

with the hierarchical model (HGLM), which included all variables but allowed climate effects to vary

among  habitats  and  regions  and  human  activity  effects  among  regions.  We  used  the  Deviance

Information Criteria (DIC) to compare the performance of the models (Spiegelhalteret al., 2002). First,

we compared the performance of the five models to identify the best-fit model. Then, we compared the

first three models to quantify the relative importance of climate variables, human activity variables and

habitat  type  on  the  presence,  richness  and  abundance  of  non-natives.  Finally,  we  compared  the

relationships estimated using the HGLM with those of the GLMs in order to test for the importance and

differences of context-dependent relationships versus independent ones. 

Preliminary analyses using the Moran’s Index, did not detect significant spatial autocorrelation in the

models’ residuals  at  any  distance  bigger  than  10  Km  (I<0.1).  Therefore  we  proceeded  without

modelling  spatial  random effects.  It  is  possible  that  there  is  spatial  autocorrelation  in  patterns  of

invasion  within  10-km  grid  cells,  but  we  could  not  test  this  because  we  lacked  more  precise

information for plots location. 

We randomly set apart 20% of total  plots for model validation and calibrated the models with the

remaining 80%. Goodness of fit of the validation data was calculated using the sum of squares errors

(SSE, Predicted-Observed) for each model. Models that minimized this value were considered to fit

better the data. For the presence model we also calculated the Area Under the Curve (AUC), a widely

used  method  to  evaluate  presence-absence  data  models  (Jiménez-Valverde,  2011).  Models  with

AUC>0.5 discriminate the presences and absences better than chance. 

Final models were run in OpenBUGS 3.2.1 (Lunn et al., 2009). Models were run until convergence of

the parameters was ensured (~50,000 iterations), after which posterior distributions of the parameters

were calculated from 100,000 iterations (code of the models in Appendix S3).

RESULTS



Model comparison

The hierarchical model (HGLM) considering all context-dependent effects performed better than all

classical non-hierarchical models (GLMs) across all metrics according to DIC values (i.e. smallest DIC

value, Table 2). Differences were greater for the presence of non-native species than for richness or

abundance. Validation of the models with independent data yielded similar model rankings, except for

richness (Table 2).

Table 2. Comparison of models used to explain presence, relative richness and abundance of non-native

plant  species  at  invaded  plots  in  mainland  Spain  using  habitat  type,  climate  and  human  activity

variables. Best indicators for each plant invasion metric are shown in bold.

CALIBRATION VALIDATION

Model DIC DIF pD AUC SSE AUC SSE

PRESENCE All hierarchical 30150 0.00 1059 0.82 4254.61 0.78 1147.83

All non-hierarchical 30830 0.02 1038 0.81 4379.33 0.77 1169.46

Habitat 30940 0.03 1147 0.82 4367.25 0.77 1170.76

Climate 33200 0.10 1150 0.78 4753.87 0.71 1263.78

Human activity 33260 0.10 1174 0.78 4753.92 0.71 1261.99

RICHNESS All hierarchical 16660 0.00 297.6 4804.64 1077.34

All non-hierarchical 16670 0.00 280.4 4839.52 1064.28

Habitat 16780 0.01 382.5 4596.59 1091.85

Human activity 17100 0.03 381.9 4988.25 1094.51

Climate 17110 0.03 399.2 4962.87 1098.45

ABUNDANCE All hierarchical -20100 0.00 494.9 116.64 28.55

All non-hierarchical -20000 0.00 439.3 120.92 28.99

Habitat -19980 0.01 456.5 121.24 29.04

Human activity -19510 0.03 446.6 129.67 30.93

Climate -19510 0.03 466.4 130.43 31.31
DIC: Deviance Information Criteria, DIF: increment in relative DIC compared to best model; pD:
effective number of parameters, AUC: Area Under the Curve, SSE: Sum of Square Errors.

Models including the three groups of variables together (i.e. climate, human activity and habitat type)

performed better than models considering only a group of variables for all non-native plant metrics

(Table  2).  The  difference  in  DIC between  climate  and  human  activity  models  was  rather  low in

comparison to the difference with the habitat  model for all  metrics.  Validation of the models with

independent data yielded similar results. 



The association of climate, human activity and habitat type with non-native plant metrics

The two types  of  models,  GLMs and HGLM, provided different  insights  about  the association  of

non-native plant metrics with climate, human activity, and habitat type. The hierarchical model tested

regional and habitat dependent association of these variables with non-native plant metrics, while the

classical non-hierarchical model estimated their association independently. In the following subsections

we compare the results for both types of models. 

Association of climate with non-native plant metrics

Considering independent effects (i.e. non-hierarchical model), the significance of the climate predictors

varied  between  the  presence  of  non-native  species  and the  richness  and  abundance  of  non-native

species  models  (Fig  3).  Presence  of  non-native  species  was  positively  correlated  to  summer

precipitation  and  proximity  to  the  coast  (Fig  3).  In  contrast,  both  richness  and  abundance  were

positively associated with high annual precipitation and negatively with summer precipitation (Fig 3).

Furthermore, richness was also positively associated with temperature seasonality and winter minimum

temperature (Fig 3).

Although the  independent  effects  of  some climate  variables  on  non-native  plant  metrics  were  not

significant (Fig 3), the hierarchical analyses revealed significant associations within specific habitat

types (Table 3, Appendix S2 Table S8-S10). For instance, the effect of annual precipitation on presence

was  different  among  habitat  types:  in  grasslands,  rocky  and  agriculture  habitats,  presence  was

associated with low annual precipitation while in coastal, scrubland, woodland and ruderal habitats it

was associated with high annual precipitation (Table 3). These habitat-specific associations were more

prevalent with presence than with richness or abundance of non-native species (Table 3).



Figure 3: Posterior means (with credible intervals) of the independent mean coefficients for habitat,

climate and human activity variables in the non-hierarchical models for the presence of non-native

species  and their  relative  richness  and  abundance  at  invaded  plots  in  mainland Spain.  Filled  dots

indicate that the 95% credible interval around the parameter mean values did not include zero. To

facilitate comparison, habitat coefficients are centred around the mean of all habitat coefficients.

The effect  of  climate  across  regions  was very  consistent  for  non-native  plant  metrics  within  each

habitat  type (Table  3).  We only found divergence in  the association  of  summer precipitation with

presence, which was positive in the Mediterranean region for most habitats and highly variable in the

Alpine and Atlantic regions (Table 3, Appendix S2 Table S8).

Table 3: Sign of the coefficients for climate variables across bioclimatic regions and habitat types in the

full hierarchical models explaining presence of non-native species, relative richness and abundance at

invaded plots in mainland Spain. Only results for combinations of climate variables and bioclimatic

region with at least one significant coefficient for habitat type are shown. For full results see Appendix

S2.



Model Habitat type Winter
Minimum
temperature

Temperature
seasonality

Annual precipitation Summer precipitation Distance to coast

Region  Atl Med Atl Med Alp Atl Med  Alp Atl Med Alp Med

Presence Coastal n.s. - n.s. n.s. n.s. + n.s. n.s. - + n.s. n.s.

 Aquatic - - n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

 Grassland + n.s. n.s. + - - - n.s. n.s. + n.s. -

 Scrubland + n.s. n.s. n.s. n.s. + n.s. n.s. - + n.s. n.s.

 Woodland - n.s. n.s. + n.s. n.s. + n.s. n.s. + n.s. n.s.

 Rocky n.s. n.s. n.s. n.s. n.s. - - n.s. n.s. + n.s. -

 Agriculture n.s. n.s. n.s. n.s. n.s. - n.s. n.s. + + n.s. -

 Ruderal n.s. + n.s. + n.s. + n.s. n.s. n.s. + - -

Richness Grassland + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. - n.s. n.s.

 Scrubland n.s. + n.s. n.s. n.s. n.s. n.s. n.s. n.s. - n.s. n.s.

 Saline n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. - n.s. n.s.

 Agriculture n.s. + n.s. + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

 Ruderal + + n.s. + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Abundance Coastal n.s. n.s. n.s. n.s. n.s. + n.s. n.s. n.s. n.s. n.s. n.s.

 Aquatic n.s. - n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

 Grassland n.s. n.s. n.s. + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

 Scrubland n.s. n.s. + n.s. n.s. + n.s. n.s. n.s. n.s. n.s. n.s.

 Woodland n.s. - + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

 Rocky n.s. - n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

 Saline n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. - n.s. n.s.

 Agriculture n.s. n.s. n.s. n.s. n.s. n.s. + - n.s. n.s. n.s. n.s.

 Ruderal n.s. + n.s. n.s. n.s. n.s. + - n.s. n.s. n.s. n.s.

 Alp: Alpine; Atl: Atlantic; Med: Mediterranean; +: positive association; -: negative association; n.s.: non-significant association

Association of human activity with non-native plant metrics

Considering independent associations (i.e. non-hierarchical model), the presence of non-native species

was  positively  associated  with  agriculture  and  urban  land-cover  and  negatively  with  woodland

land-cover (Fig 3). The pattern was different for richness and abundance of non-native species, which

were negatively associated only with grassland land-cover (Fig. 3). Richness also showed a negative

association with land-cover diversity.

For  human activity  variables  we hypothesized  that  their  association  with  non-native  plant  metrics

would  vary  regionally.  We  found  that  most  associations  were  in  fact  only  significant  in  the

Mediterranean region (Fig. 4). For instance, presence of non-native species was only associated with

urban land-cover and land-cover diversity in the Mediterranean region. 

Non-native plant metrics across habitat types



Presence, richness and abundance of non-natives were significantly different among habitat types in the

non-hierarchical model (Fig.  3,  Appendix S2 -  Table S6).  Agriculture and ruderal  habitats  had the

highest  presence,  richness  and  abundance  of  non-native  species  while  scrublands  had  the  lowest.

Differences  among  several  habitats  varied  depending  on  the  non-native  plant  metric  under

consideration (Fig. 3). For instance, woodlands showed medium presence values of non-native species

but very low richness and abundance; aquatic habitats had medium presence and abundance values but

rather high richness. These trends were similar for the hierarchical model (Appendix S2: Fig. S2 and

Table S7).

Figure 4:  Posterior means (with credible intervals) of the coefficients for human activity variables

across bioclimatic regions in the hierarchical models for the presence of non-native species and their

relative richness and abundance at invaded plots in mainland Spain. Filled dots indicate that the 95%

credible interval around the parameter mean values did not include zero.



DISCUSSION

Conceptual models to explain invasion success have pointed to the combination of having enough

propagules and a suitable environment, biotic and abiotic (Catford et al., 2009; Chytrý et al., 2008a). In

our work, climate was used to estimate abiotic suitability (Thuiller  et al., 2005), human activity at a

landscape scale was used as a proxy for propagule availability (Chytrý et al., 2008a; González-Moreno

et al., 2013b), and habitat type represented both characteristics of the native community and the human

influence at a local scale (Chytrý et al., 2008a). Among these variables, we found habitat type to be the

single most important factor associated with invasion. Furthermore, these factors are likely interactive

rather than additive and might act at different spatial scales and stages (Catford et al., 2009; Milbau et

al.,  2009;  Jiménez-Valverde  et  al.,  2011).  However,  few  empirical  studies  have  quantified  these

complex patterns (Gassó et al., 2012). Here, we have explored how a hierarchical modelling approach

can quantify the context-dependent association of these variables with the presence and abundance of

non-native plants (i.e. our proxy for plant invasion). We found that the associations of climate and

human activity with non-natives patterns were mainly dependent on the habitat type but not on the

bioclimatic  region.  Furthermore,  non-native  plant  metrics  across  habitats  varied  depending  on the

metric  of  invasion.  As the different  metrics  could be considered surrogates  for  different  stages  of

invasion, our results reinforce that different stages might be controlled by different factors (Catford et

al., 2009; Polce et al., 2011)

Climate and plant invasions

At large scales, climate is the most important abiotic aspect shaping non-native species distribution

(Thuiller et al., 2005; Broennimann et al., 2007). In our study, non-native species were more likely to

be present in areas with high summer precipitation and close to the coast (i.e. the Atlantic part of the

study area), reflecting higher presence in mesic areas without extreme seasonality (Polce et al., 2011).

Presence of non-natives in coastal areas could also be enhanced by the increased propagule pressure

associated with higher human influence in these regions (Gassó et al., 2009; González-Moreno et al.,

2013b).  Still,  we  already  accounted  by  human  activity  by  adding  the  land-cover  variables  and

considered distance to the coast as a good proxy for low seasonality. In contrast, higher richness and

abundance of non-natives was associated with higher climate seasonality, but also with higher wet and

warm conditions. Thus, although it is more likely to find at least one non-native species close to the

coast, wet areas towards the interior are also hubs for non-native species diversity and abundance.



Climate variables that were not significantly associated with non-native plant metrics independently

(i.e. non-hierarchical model), were found to be important in specific habitats (i.e. hierarchical model).

Climatic effects on plant invasions are mediated by the ecological characteristics of different habitats

such as biotic resistance or abiotic constraints. For instance, we found higher presence of non-native

species with low annual precipitation in grasslands, rocky and agriculture habitats while the opposite

trend was relevant in coastal,  scrubland, woodlands and ruderal habitats. In contrast  to more open

habitats,  an  increase  in  annual  precipitation  might  counteract  the  competition  for  water  in  woody

habitats  and  the  excess  of  salinity  in  coastal  habitats.  Although  the  mechanisms  underlying  these

interactions  require  further  research,  our  results  suggest  that  considering  habitat-dependent  effects

seems fundamental to understand and predict plant invasions (Gassó et al., 2012).

There was high consistency in the associations of climate variables with all non-native plant metrics

across bioclimatic regions. Within specific habitat types, only the association of summer precipitation

with presence showed divergences for coastal and scrubland habitats. In the humid Atlantic region,

presence was enhanced in relative drier environments (lower summer precipitation) while in the drier

Mediterranean region we found the  opposite  trend.  This  finding agrees  with  plant  invasion  being

enhanced in mesic conditions (i.e. intermediate temperature and moisture levels) (Polce et al., 2011). 

Human activity and plant invasions

Besides suitable climatic conditions, plant invasions are facilitated by increasing disturbance levels and

propagule pressure of non-native species from regional to landscape scales. Such patterns are highly

associated with human land-covers (i.e. agriculture or urban), while natural areas (i.e. higher grassland

and woodland cover) might act as a buffer to plant invasions (Ohlemüller et al., 2006; Carboni et al.,

2010). We found the same pattern for all non-native plant metrics: invasive plants were negatively

associated with natural areas and positively associated with human-altered areas. Unlike other studies

(e.g.  Pino  et al.,  2005; Marini  et  al.,  2009;  González-Moreno  et  al.,  2013b),  we found a negative

association of land-cover diversity and non-native richness. Diverse landscapes usually enhance local

non-native species richness by increasing variability of ecological conditions, however if the number of

land-covers characterized is low, land-cover diversity could show the pattern of the most predominant

land-cover type (i.e. agriculture land-cover). 

As for the relationships with climate variables, we also found that the relationships between invasion

and human activity were highly consistent spatially, exhibiting similar relationships across bioclimatic

regions. In fact, we found that human activity variables were only significant in the Mediterranean



region probably due to its higher human alteration and disproportionate number of plots (five times

more samples in the Mediterranean than in the Atlantic). Considering the high consistency found for

climate and human activity effects across bioclimatic regions, we suggest that broad patterns of plant

invasion could be feasibly extrapolated among neighbouring regions.

Habitat types and plant invasions

Following previous studies, anthropogenic habitats (i.e.  agriculture and ruderal)  yielded the highest

values of non-natives metrics and natural habitats the lowest values (i.e. scrubland) (Vilà et al., 2007;

Chytrý et al., 2008b). Nevertheless, for several habitats there were some discrepancies. For instance,

woodlands showed high non-native species presence but extremely low richness and abundance. The

few  shade-tolerant  non-native  species  that  could  overcome  the  limitation  of  light  availability  in

woodlands are very likely to survive even if it is in low numbers (Martin et al., 2009). However, the

species able to invade woodlands are generally rare or might be still in an incipient phase of expansion

(Martin  et al.,  2009; González-Moreno  et al., 2013a), reflecting low local richness and abundance.

Thus, further research should confirm if the potential differences between the presence and abundance

of non-native plants is mediated by their different traits in relation to the habitat they invade or by the

stage of the invasion process.

Analysis of multi-species invasion 

Several metrics have been proposed to quantify the level of plant invasions such as the richness or

abundance of non-native species (Catford  et al., 2012). We have found different patterns of climate,

human  activity,  and  habitat  type  associations  with  each  metric,  suggesting  that  different  variables

control the overall presence and abundance of non-native species, our proxies for establishment and

dominance during multi-species invasions (Polce et al., 2011; Catford et al., 2011). We expected higher

importance of human activity at a landscape scale (i.e. proxy for propagule pressure) than climate (i.e.

defining suitable abiotic conditions) in the establishment stage. Nevertheless, both groups of variables

showed similar  importance  for  predicting  the  establishment  and dominance  of  non-native  species.

Further studies could explore if these patterns are also similar in other stages of the invasion process

such as transport or expansion (Blackburn & Duncan, 2001; Leung et al., 2012) or consider the human

activity predictors at a finer scale (González-Moreno et al., 2013b). 

Modelling strategies to understand the context-dependence of invasions



Our  model  results  have  shown  how  a  hierarchical  approach  better  reflects  plant  invasions  than

non-hierarchical models. Although proven a powerful modelling strategy (Pearson et al., 2004; Diez &

Pulliam, 2007; Vicente et al., 2011), hierarchical modelling has been rarely used to model biological

invasions (Ibáñez et al., 2009a, 2014; Diez et al., 2012). Hierarchical modelling can accommodate the

frequently proposed issue of considering the invasion process across spatial scales (Collingham et al.,

2000;  Pearson & Dawson, 2003; Milbau  et  al.,  2009).  Climate,  topography and human activity  at

regional level might drive invasion variability at large scales while local variability may be determined

by changes in biotic interactions, disturbance or microclimate which are highly associated with habitat

type (Milbau et al., 2009).

Hierarchical models can also be used to test the consistency in the associations of plant invasions and

environmental variables. Context-dependent associations are usually assessed by calibrating the same

model with different datasets (Broennimann et al., 2007; Gassó et al., 2012). This modelling strategy is

problematic when the number of categories is large due to the increasing number of parameters to

estimate, the unbalanced number of samples per category, and the difficulty to interpret differences.

Hierarchical  models  can  partially  solve  these  problems,  especially  when  the  data  have  a  nested

structure, and when partial pooling of information across groups is likely to be helpful. Because these

are common characteristics of ecological studies, hierarchical approaches may be widely useful for

quantifying context-dependent patterns of invasion and developing predictions of invasion risk. 

Concluding remarks 

It  is  important  to  consider  the  stage  of  the  invasion  process  when  managing  new  introductions

(Simberloff,  2009).  Areas  with  high  establishment  probability  might  not  be  the  ones  with  higher

dominance  of  non-native  species  (Catford  et  al.,  2011).  These  invasion  hot  spots  regarding

establishment might be colonized by only a few widespread species but not highly abundant because of

environmental  constraints.  Screening  non-native  species  presence  together  with  richness  and

abundance provide a simple method to anticipate successful plant invasions and not only potential

establishment. 

Although future patterns of invasions will not necessarily mirror past invasions, given our stage of

knowledge, the information we can obtain from past invasions is our best bet on how future invasions

may develop. Given this information,  hierarchical models can help management of plant invasions

through  a  better  accountability  of  context-dependent  effects  (i.e.  the  interactions  between  climate

suitability, human activity and the conditions of the local habitat). The outputs from these models might



be used to develop invasion risk scenarios within particular habitats and bioclimatic regions, delivering

more detailed information to prevent future invasions.
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