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ABSTRACT 8 

Cross-hole electrical resistivity tomography is a useful tool in geotechnical, hydrogeological or 9 

fluid/gas plume migration studies. It allows to better characterizing deep subsurface structures and 10 

monitoring the involved processes. However, due to the large amount of possible four-electrode 11 

combinations between boreholes, the choice of the most efficient ones for rapid plume migration 12 

experiments (real-time monitoring) becomes a challenge. In this work, a numerical simulation to 13 

assess the capabilities and constraints of the most common cross-hole configurations for real-time 14 

monitoring is presented. Four-electrode configurations, sensitivity, dependence on the body location 15 

and amount of data were taken into account. The analysis of the anomaly detection and the symmetry 16 

on the sensitivity pattern of the cross-hole configurations allowed significantly reducing amount of 17 

data, in order to adjust acquisition time to the length of the dynamic process to be monitored, 18 

maintaining the maximum potential resolution of each configuration. The obtained results also 19 

highlighted the benefit of using configurations with complementary sensitivity pattern. 20 

 21 
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1. INTRODUCTION 1 

Cross-hole electrical resistivity tomography (CHERT) consists of acquiring electrical resistivity 2 

measurements between two or more boreholes and aims imaging the resistivity distribution between 3 

them. Since electrodes are down in boreholes, CHERT allows imaging deeper areas and helps to 4 

improve resolution at depth.  5 

 6 

Monitoring time-lapse evolution of fluids or gas plumes injected in boreholes (Barker and Moore, 7 

1998; Slater et al., 2000; Kiessling et al., 2010; Hagrey and Petersen, 2011; Carrigan et al., 2013) or 8 

urban tunnel drillings (Denis et al., 2002; Gibert et al., 2006; Chambers et al., 2007; Bellmunt et al., 9 

2012) using CHERT is becoming common because of the simple and quick data acquisition. However, 10 

when rapid migration processes are going to be monitored, the acquisition time becomes critical 11 

because it has to be adjusted to the length of the dynamic process. Significant resistivity changes 12 

during data acquisition can lead to low resolution images and low convergence of data (Wilkinson et 13 

al., 2010). The acquisition time is directly related to the amount of data and the multichannel 14 

acquisition efficiency (Bellmunt and Marcuello, 2011). As a general rule, increasing the amount of 15 

data will increase resolution, but the improvement begins to level off at large amount of data. The 16 

dataset that includes all the standard and non-standard (non-reciprocal) measurements, named 17 

comprehensive dataset (Stummer et al., 2004), will contain the maximum resolution. However, the 18 

huge amount of data makes it of unrealistic application. 19 

 20 

The recent researches in electrical resistivity tomography are focused on searching limited electrode 21 

combinations, comparable in quality to the comprehensive dataset, by developing optimization 22 

algorithms. In these algorithms, the cumulative sensitivity (Furman et al., 2004; Hennig and Weller, 23 

2005) or the model resolution (Stummer et al., 2004; Wilkinson et al., 2006; Loke et al., 2014a) 24 

improvement is evaluated while groups of combinations of the comprehensive dataset are sequentially 25 

added to a small base one. Nyquist et al. (2007) compared the optimized array of Stummer et al. 26 

(2004) and the standard dipole-dipole array and they conclude that the first one provides better 27 

resolution mainly at depth. But they noticed that the optimized dataset required three times the 28 
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standard dipole-dipole acquisition time. Wilkinson et al. (2012) constrained the optimization 1 

algorithms to choose what they call near-optimal configurations but well suited for multichannel 2 

acquisitions.  3 

 4 

At present, the optimization algorithms are not included in the commercial software for resistivity data 5 

inversion. Therefore, most researchers still use the traditional CHERT configurations. The extended 6 

use of these configurations has allowed researchers to establish their main characteristics (Yang and 7 

Ward, 1985; Bing and Greenhalgh, 1997, 2000; Wilkinson et al., 2008). As a general rule in electrical 8 

resistivity tomography, the smaller the distance between the active electrodes of each borehole, the 9 

larger the influence on data of the immediately surrounding boreholes, and the larger this distance, the 10 

larger the influence on data of the central area of the panel between the involved boreholes. However, 11 

larger distances are more affected by lateral effects, heterogeneities located outside the panel between 12 

the involved boreholes, which can produce shadow effects in the resultant inversion models (Nimmer 13 

et al., 2008). Tsourlos et al. (2011) detected this shadow effects on single borehole-to-surface ERT 14 

experiments and concluded they were consequence of the high symmetric sensitivity pattern of the in-15 

hole configurations (with all the electrodes in the same borehole). They proposed a modified inversion 16 

scheme based on a weighted factor, to avoid the shadow or symmetric effects of the in-hole 17 

configurations. But, they pointed out the difficulty of defining an objective threshold of asymmetry to 18 

use in an automatic way and of removing these artifacts completely. 19 

 20 

These inversion artifacts could be removed using the model stacking technique proposed by  21 

Leontarakis and Apostolopoulos (2012), which consists on stacking different configurations inversion 22 

models to remove the particular artifacts from each configuration. They proved the efficiency of this 23 

technique from laboratory studies. However, the acquisition of various configurations could involve 24 

too much time for monitoring studies. 25 

 26 

This work proposes an organized way to select the most adequate electrode combinations for rapid 27 

CHERT monitoring (acquisition protocol) in order to reduce: 1) the amount of data and acquisition 28 
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time, but maintaining the maximum potential benefit of each configuration, and 2) the shadow effects 1 

inherent to configurations with highly symmetric sensitivity pattern. The abilities of the most common 2 

CHERT configurations are evaluated and compared, using 2D numerical models, to reduce the 3 

uncertain on the acquisition protocol using each configuration, or a mixed one. 4 

 5 

2. DATA ANALYSIS PROCEDURE 6 

Following, we present the proposed methodology to analyze the CHERT configurations ability to 7 

plume migration monitoring. Figure 1 can help to better understand the meaning of the next 8 

expressions, although it will be explained later. The procedure consists of three steps: 9 

 10 

The first step consists in calculating the relative apparent resistivity variation produced using each 11 

configuration by considering the addition of a resistivity anomaly in a homogeneous half-space. This 12 

resistivity variation is related to the anomaly detection capability and it is calculated by the following 13 

expression: 14 

 �� = ��� ��	 − ������ � ( 1 ) 

 15 

where AD: Anomaly Detection value (in absolute value); ���: resistivity value obtained using a 16 

homogeneous earth. �	: apparent resistivity value obtained including a resistivity anomaly in the 17 

homogeneous earth. Both resistivity values are calculated using the same electrode combination. 18 

Similar expressions to evaluate the anomaly effect can be found in Militzer et al. (1979). 19 

 20 

The second step consists in calculating the relative difference between two apparent resistivity values 21 

calculated for the same electrode combination but one value considering an anomaly located inside the 22 

panel between the two involved boreholes and the other one, with the same anomaly located outside 23 

the panel. The difference between the two responses is related to the symmetry on the sensitivity 24 

pattern. If no apparent resistivity differences between the two responses are detected, it will imply low 25 

capacity to resolve the plume migration direction (highly symmetrical sensitivity pattern). Therefore, 26 
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the model interpretation could be uncertain. In this work, this difference is calculated by the following 1 

expression: 2 

 
�� = ��� �2(�	�� − �	���)�	�� + �	��� � ( 2 ) 

 3 

where IOS: In-panel/Off-panel Sensitivity value (absolute value); ����: apparent resistivity value 4 

obtained using a resistivity anomaly inside the panel between two involved boreholes;	���  : apparent 5 

resistivity value obtained using the same resistivity anomaly as before but located outside the panel. 6 

 7 

The third step consists in selecting the top rated four-electrode combinations of each configuration 8 

using the first and second steps results. As a general rule, the proposed criterion is to choose only the 9 

electrode combinations with the highest AD and IOS, which will lead to reduce the amount of data and 10 

the symmetric artifacts. However, to make a proper election, acquisition time, desired resolution and 11 

signal-to-noise ratio have to be considered.  12 

 13 

3. APPLICATION 14 

In order to evaluate the CHERT configurations ability to plume migration monitoring (steps 1 and 2 of 15 

the data analysis procedure), a 2D numerical experiment was designed. Following, we describe the 16 

resistivity model and the CHERT configurations used. 17 

 18 

3.1. Dynamic resistivity model 19 

The dynamic model presented here (Figure 1) was designed to get knowledge about the AD, and 20 

specially the IOS, of the CHERT configurations during different stages of a plume migration process. 21 

It consists of three in-line boreholes, 10 m apart and 20 m in depth, located in a 100 ohm·m 22 

homogeneous half-space. 21 electrodes (1 m-spaced) were placed into each borehole. The plume was 23 

simulated using three square bodies of side length twice the electrode distance and centered at three 24 

different positions of constant depth: 1, 3 and 5 m from BH2, named stages A, B and C, respectively. 25 
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Two resistivity contrasts (Rc=ρplume/ρhalf space), emulating a saline (Rc=0.1) and a gas (Rc=10) 1 

plumes, were considered. 2 

 3 

Figure 1. Dynamic model and stages used to simulate different positions of a plume in a migration process. 4 

Small vertical black squares represent the electrode location into boreholes BH1, BH2 and BH3; black arrow and 5 

grey squares (named A, B and C) simulate the plume direction and position at stages A, B and C, respectively. 6 

Panel 1 (light grey colored) represents the cross-hole measurements acquired between BH1 and BH2, and 7 

panel 2 (dark grey colored), the cross-hole measurements acquired between BH2 and BH3. 8 

 9 

The two panels between the three involved boreholes in Figure 1 have been grey colored to 10 

differentiate between the cross-hole measurements acquired using BH1-BH2 electrodes (Panel 1) and 11 

the ones acquired using BH2-BH3 electrodes (Panel 2). The AD (step 1) was evaluated comparing two 12 

panel 1 responses, one with and one without the imbedded anomaly (plume), for each model stage. 13 

The IOS (step 2) was evaluated comparing panel 1 and panel 2 responses for each model stage. 14 

Comparisons were always carried out using the same electrode combination. Note that using the two 15 

panels in step 2, two opposite directions for the plume migration were considered: inward the panel 1 16 

(if boreholes BH1 and BH2 are used) and outward the panel 2 (if boreholes BH2 and BH3 are used). 17 

As commented before, configurations with no differences between panel 1 and panel 2 responses at 18 

each stage can lead to obtain resistivity images of uncertain interpretation. 19 

 20 
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3.2. CHERT configurations 1 

In this work, we use the term "dipole", instead of “bipole”, to designate the CHERT configurations 2 

because of their extensive use in the surface configurations notation, but we add the prefix CH (cross-3 

hole). This experiment was focused on the CH dipole-dipole (CH AM-BN and CH AB-MN) and the 4 

CH pole-tripole (CH AMN-B/A-BMN) arrays (Bing and Greenhalgh, 2000; Goes and Meekes, 2004). 5 

Capital letters designate the electrodes (A and B represent the current electrodes and, M and N, the 6 

potential ones) and their position into the boreholes (i.e. AM-BN means that the A and M electrodes 7 

are located in one borehole and the B and N, in the other one). Geometry and sensitivity patterns of the 8 

configurations used are summarized in Figure 2 and Figure 3, respectively. 9 

 10 

 11 

Figure 2. Electrode distribution schemes for the CH dipole-dipole arrays (CH AM-BN and CH AB-MN) and the 12 

CH pole-tripole array with the MN dipole in the two boreholes (CH AMN-B/A-BMN). Capital letters and 13 

red/blue points designate the electrode name and their position into the boreholes (A and B represent the current 14 

electrodes and, M and N, the potential ones); AM: vertical distance between the current and the potential 15 

electrodes; MN: vertical distance between the potential electrodes. 16 

 17 

 18 

 19 
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 1 

Figure 3. Sensitivity patterns for the CH dipole-dipole (CH AM-BN and CH AB-MN) and the CH pole-tripole 2 

(CH AMN-B). The letters A and B represent the current electrodes and, M and N, the potential ones. In each 3 

configuration, sensitivity was normalized by its maximum value.  4 

 5 

The configurations responses to the model presented in Figure 1 (stages A to C) were calculated using 6 

the commercial Earthimager 2D software (AGI, Advanced Geosciences, Inc.) with a lateral extended 7 

four-element mesh. The CH dipole-dipole AM-BN responses were calculated moving up and down the 8 

electrodes but maintaining the distance between the electrodes A and M always equal to the B and N 9 

electrodes distance, which resulted in a datasets of 5740 combinations, 2870 per panel (see Figure 1). 10 

The CH dipole-dipole AB-MN responses were calculated using all the possible distances between the 11 

electrodes but using the current electrodes (A and B) distance always equal to the potential electrodes 12 

(M and N) one, resulting in 5740 combinations (2870 per panel). The CH pole-tripole (AMN-B/A-13 

BMN) responses were calculated using all the possible distances between the current and potential 14 

dipoles but maintaining the electrodes A and B at the same depth and using five MN distances, which 15 

resulted in 3080 combinations (1540 per panel). As can be seen, the AM and MN distances used do 16 

not include all the possible four-electrode combinations for each configuration, however they are 17 

considered the most representative combinations for each configuration. 18 

 19 

4. RESULTS 20 

Following, we present the results obtained by applying the proposed methodology to the CH dipole-21 

dipole (AM-BN, AB-MN) and the CH pole-tripole arrays using the dynamic model presented in 22 

Figure 1 and considering two resistivity contrasts, Rc=0.1 and Rc=10. The magnitudes of AD and IOS 23 

for each configuration were calculated versus different AM and MN distances (Figure 2).  24 
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 1 

4.1. Resistivity contrast Rc=0.1 2 

The results of applying the presented methodology to three plume bodies of resistivity 10 ohm·m in a 3 

100 ohm·m half-space are presented below. 4 

 5 

4.1.1. Anomaly detection value, AD  6 

Figure 4 shows the AD results for each configuration versus different AM and MN distances. The 7 

maximum AD is obtained for the CH dipole-dipole AB-MN and CH pole-tripole arrays at all the three 8 

stages of the dynamic model. 9 

 10 

 11 

Figure 4. Anomaly detection value (AD) calculated for the CH dipole-dipole (AM-BN and AB-MN) and the CH 12 

pole-tripole arrays at the three stages (A, B and C) of the dynamic model using a resistivity contrast Rc=0.1. 13 

Maximum absolute relative resistivity variation (Y-axis) versus AM (X-axis) and MN (colored lines) distances. 14 

Dashed line indicates a 10% of resistivity change as guidance only.  15 
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The AD presents a quite similar behavior for all the three configurations used (Figure 4). As expected, 1 

the higher AD is obtained at stage A (Figure 1), because of the plume is closer to the boreholes. When 2 

the plume moves from stage A to stage C, the AD decreases and larger AM distances are needed to 3 

detect the plume. Once the maximum value is reached, the AD decreases and tends to level off. This 4 

decrease is rapidly accentuated when the AM distance becomes higher than the boreholes distance. 5 

However, each configuration presents a slightly different AD pattern (Figure 4): 6 

 7 

For the CH AM-BN array, the maximums AD obtained (equation 1) at stages A, B and C are 28%, 8% 8 

and 6%, respectively. In this case, a secondary AD peak is exhibit for AM distances similar to the 9 

boreholes distance (10 m) as the MN distance increases. This secondary peak becomes higher than the 10 

primary one at the stage B of the dynamic model. 11 

 12 

For the CH pole-tripole array (AMN-B/A-BMN), the maximums AD obtained at stages A, B and C 13 

are 82%, 17% and 7%, respectively. Once the maximum values are reached, this configuration 14 

presents a flat area of maximum AD before starting to decrease. The AD decreases as the MN distance 15 

increases. 16 

 17 

The CH AB-MN array exhibits extremely high values (higher than 100%) for all the three model 18 

stages for AM values similar to the boreholes distance. For AM distances lower than six, out of the 19 

interval of extremely high values, maximums AD at stages A, B and C are of about 80%, 25% and 20 

20%, respectively. As the MN distance increases, the AD decreases. 21 

 22 

4.1.2. In-panel/off-panel sensitivity value, IOS 23 

Figure 5 shows the IOS results for each configuration versus different AM and MN distances. The 24 

maximum IOS using Rc=0.1 is obtained for the CH dipole-dipole AB-MN and the CH pole-tripole 25 

arrays at all the stages of the dynamic model. 26 

 27 
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The IOS and the AD present a similar behavior: the highest values are obtained at stage A, and as the 1 

plume moves from stage A to C, the IOS decreases. Once the maximum IOS is reached, it rapidly 2 

decreases. However, the maximum IOS is always obtained using AM=10-12 for all the studied 3 

configurations and stages of the model. 4 

 5 

For the CH AM-BN array, the maximums IOS obtained at the stages A, B and C are 20%, 8% and 6%, 6 

respectively. As the MN values increase, the IOS increases. 7 

 8 

For the CH pole-tripole array, the maximum IOS obtained at the stages A, B and C are 70%, 10% and 9 

9%, respectively. In this case, as the MN values increase, the IOS decreases. 10 

 11 

The CH AB-MN array presents the highest IOS, but extremely high values are detected for AM 12 

distances similar to the boreholes distance. As the MN values increase, the IOS decreases. 13 

 14 
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 1 

Figure 5. In-panel/off-panel sensitivity value (IOS) calculated using the CH dipole-dipole (AM-BN and AB-2 

MN) and the CH pole-tripole arrays for all the three stages (A, B and C) of the dynamic model and a resistivity 3 

contrast, Rc=0.1. Maximum absolute relative apparent resistivity difference (Y-axis) versus AM (X-axis) and 4 

MN (colored lines) distances. Dashed line indicates a 10% of resistivity difference as guidance only. 5 

 6 

4.2. Resistivity contrast Rc=10 7 

The procedure application results, obtained using plume bodies of 1000 ohm·m in a 100 ohm m 8 

half-space, are presented below. 9 

 10 

4.2.1. Anomaly detection value, AD  11 

Figure 6 shows the main results obtained for the AD using Rc=10. The curves obtained using Rc=0.1 12 

and Rc=10 (Figure 4 and 6) show that the AD follows a similar behavior in front of different resistivity 13 

contrasts but with slightly different values. In general, the AD obtained using Rc=10 is slightly lower 14 
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than the one reached using Rc=0.1. Therefore, the results obtained using Rc=10 will be explained 1 

mainly focused on the differences observed from the previous resistivity contrast. 2 

 3 

For the CH AM-BN array, the maximums AD obtained at stages A, B and C are 16%, 9% and 8%, 4 

respectively. In this case, as the MN distances increase, the secondary AD peak becomes higher than 5 

the primary one at all the stages of the dynamic model. 6 

 7 

For the CH pole-tripole array, the maximum AD obtained at stages A, B and C are 82%, 14% and 7%, 8 

respectively. In this case, the maximum AD tends to level off but much slowly than it does using 9 

Rc=0.1 (compare Figure 4 and 6). 10 

 11 

The CH AB-MN array exhibits the same extremely high values as the ones obtained using Rc=0.1. 12 

However, for small AM distances, the AD increases faster than using a conductive anomaly (compare 13 

Figure 4 and 6). 14 

 15 
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 1 

Figure 6. Anomaly detection value (AD) calculated for the CH dipole-dipole (AM-BN and AB-MN) and the 2 

CH pole-tripole arrays at the three stages (A, B and C) of the dynamic model using a resistivity contrast, Rc=10. 3 

Maximum absolute relative apparent resistivity variation (Y-axis) versus AM (X-axis) and MN (colored lines) 4 

distances using panel 1. Dashed line indicates a 10% of resistivity change as guidance only.  5 

 6 

4.2.2. In-panel/off-panel sensitivity value, IOS 7 

Figure 7 shows the main results for the IOS using Rc=10. As the AD does, the IOS follows a similar 8 

behavior for different resistivity contrasts. Therefore, the results obtained using Rc=10 will be 9 

explained based on the differences observed from the previous resistivity contrast results.  10 

 11 

For the CH AM-BN array, the maximums IOS obtained at the stages A, B and C are 27%, 11% and 12 

9%, respectively, which are slightly higher than the ones reached using Rc=0.1 (compare Figure 5 and 13 

Figure 7). As the MN value increases, the maximum IOS increases. 14 

 15 
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For the CH pole-tripole array, the maximum IOS obtained at the stages A, B and C are 56%, 12% and 1 

7%, respectively. In this case, the values obtained using Rc=10 are only higher than the ones reached 2 

using Rc=0.1 at the stage B of the dynamic model (compare Figure 5 and Figure 7). As the MN value 3 

increases, the IOS decreases. 4 

 5 

The CH AB-MN array presents the highest IOS, but extremely high values at AM distances similar to 6 

the boreholes distance. As the MN value increases, the IOS decreases. 7 

 8 

 9 

Figure 7. In-panel/off-panel sensitivity value (IOS) calculated using the CH dipole-dipole (AM-BN and AB-10 

MN) and the CH pole-tripole arrays for all the three stages (A, B and C) of the dynamic model and a resistivity 11 

contrast, Rc=10. Maximum relative apparent resistivity variation (Y-axis) versus AM (X-axis) and MN (colored 12 

lines) distances using panel 1 and panel 2 responses. Dashed line indicates a 10% of resistivity difference as 13 

guidance only.  14 

 15 
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4.3  Organized selection of the combinations 1 

Once the configurations with the best capabilities have been detected, the selection of the most 2 

suitable combinations can be made in an organized way from the analysis data results. Taking into 3 

account the similar AD and IOS behavior observed using each configuration for different resistivity 4 

contrasts (Figures 4 to 7), the organized selection of the combinations is carried out in the same way 5 

regardless of the resistivity contrast to be resolved. The analysis results present the CH dipole-dipole 6 

AB-MN and the CH pole-tripole arrays as the best choices to migration monitoring using CHERT. In 7 

order to reduce amount of data for rapid migration monitoring, where the acquisition time is a critical 8 

aspect, the CH dipole-dipole AM-BN array, which shows the lowest AD and IOS, will not be taken 9 

into account. 10 

 11 

Figures 4 to 7 show that the AD and the IOS patterns are repeated using different MN distances for 12 

each configuration. Therefore, the amount of data can be reduced by choosing only one MN distance 13 

per configuration. As a general rule, the electrode combinations that correspond to MN values with the 14 

highest AD and IOS will offer the maximum potential resolution for monitoring. The number of AM 15 

distances has to be chosen in order to cover the central region of the panel (stage C) and to obtain the 16 

maximum benefit of the IOS. 17 

 18 

Configurations with different (or complementary) sensitivity patterns contribute differently to the 19 

model resolution (Bing and Greenhalgh, 1997). Therefore, a mixed organized dataset will be the best 20 

choice. The final organized dataset was made by combining the CH pole-tripole array, taking only the 21 

combinations with MN=1 and AM=1-14 (350 combinations per panel), and the CH dipole-dipole AB-22 

MN one with MN=3 and AM=0±5 (168 data per panel). The reason for this choice, using the CH 23 

dipole-dipole AB-MN array, will be treated in the discussion section. This mixed organized dataset 24 

resulted in 518 combinations per panel (Figure 1). 25 

 26 

 27 

 28 
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5. DATA INVERSION 1 

We carried out the inversion of the mixed organized dataset using the dynamic model presented in 2 

Figure 1 and two resistivity contrasts, Rc=0.1 and Rc=10. In order to establish the maximum potential 3 

model resolution that can be achieved using the top rated configurations, we made the inversion of the 4 

CH pole-tripole dataset with 1540 data per panel and the CH dipole-dipole AB-MN one with 1750 5 

data per panel, either individually or in a mixed one (3290 data per panel). The CH AM-BN inversion 6 

models are also presented for comparison. The inversion models are presented in Figure 8 (Rc=0.1) 7 

and Figure 9 (Rc=10). Each inversion model included panel 1 and panel 2 responses. 8 

 9 

The inversion of the datasets was carried out using the commercial Res2dinvx64 software (Geotomo 10 

software) with the robust inversion method. To simulate the effect of experimental errors, we added 11 

noise using the following expression (Bellmunt and Marcuello, 2011): 12 

 13 

∆R= Rδ + χ 14 

 15 

where R is the error-free model response, and δ and χ are random numbers. δ follows a normal 16 

distribution with zero mean and standard deviation σ , and χ a uniform distribution in the interval [-ε , 17 

+ε ]. These two random numbers (δ, χ) simulate the relative accuracy (δ) and the instrumental 18 

resolution (χ). A values of 0.015 for σ and 10-4 V/A for ε were considered. 19 

 20 

As can be seen in Figure 8 (Rc=0.1), the CH dipole-dipole (AM-BN and AB-MN) and the CH pole-21 

tripole inversion models are not able to fully resolve the dynamic experiment presented here. Although 22 

the plume body is located inside the panel 1, the CH AM-BN and the CH pole-tripole inversion 23 

models show an artifact on panel 2 in a “symmetric” location (Nimmer et al., 2008; Tsourlos et al., 24 

2011). The CH AB-MN inversion models present much more artifacts than the previous ones, but they 25 

are mainly distributed along boreholes. The inversion models obtained joining them in a mixed dataset 26 

reach the maximum resolution and are able to recover all the stages of the dynamic model. The 27 
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inversion models obtained using the organized dataset are able to track the plume as well as the 1 

complete mixed one. 2 

 3 

The inversion models obtained using a resistivity contrast, Rc=10, show less artifacts than the obtained 4 

using Rc=0.1, but the plume resistivity value is worst recovered (Figure 9). In this case, individual and 5 

mixed inversions using the CH pole-tripole and the CH dipole-dipole AB-MN datasets are able to 6 

resolve the dynamic model, but the maximum resolution is achieved using the mixed one. The 7 

organized dataset is able to resolve all the stages of the dynamic model, but the anomaly resistivity 8 

value at the stage C is worst recovered than using the complete mixed one.  9 

 10 
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 1 

Figure 8. Inversion models obtained using (from top to bottom): the CH dipole-dipole AM-BN (5740 data), the 2 

CH pole-tripole (3080 data), the CH dipole-dipole AB-MN (3500 data), the complete mixed (CH pole-tripole 3 

and CH dipole-dipole AB-MN with 6580 data) and the organized (1036 data) datasets at the three stages (A, B 4 

and C) of the dynamic model. Resistivity contrast Rc=0.1. Root mean square (rms) =1.2%. Small vertical black 5 

squares represent the electrode location into boreholes (BH1, BH2 and BH3). Each inversion included panel 1 6 

and panel 2 responses. 7 

 8 
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 1 

 2 

Figure 9. Inversion models obtained using (from top to bottom): the CH dipole-dipole AM-BN (5740 data), the 3 

CH pole-tripole (3080 data), the CH dipole-dipole AB-MN (3500 data), the complete mixed (CH pole-tripole 4 

and CH dipole-dipole AB-MN with 6580 data) and the organized (1036 data) datasets at the three stages (A, B 5 

and C) of the dynamic model using a resistivity contrast Rc=10. Root mean square (rms)=1.2%. Small vertical 6 

black squares represent the electrode location into boreholes (BH1 and BH2). Each inversion included panel 1 7 

and panel 2 responses. 8 

 9 

 10 

 11 

 12 
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6. DISCUSSION 1 

In this section we will discuss firstly the behavior observed for the AD using the CH dipole-dipole 2 

arrays and secondly the symmetric artifacts that affects the inversion models using Rc=0.1. 3 

 4 

The AD graphs in Figures 4 and 7 show that the CH AM-BN array exhibits a secondary AD peak and 5 

the CH AB-MN array shows extremely high AD for all the three model stages. These maximums are 6 

related to an electric potential drop for those AM and MN distances. Usually, the geometric factor is 7 

used as a representative of the inverse of the electric potential for a homogeneous half-space (using a 1 8 

ohm·m resistivity and an intensity of 1 A). High geometric factor values represent low potential 9 

readings, and inversely.  10 

 11 

The Figure 10 shows the general behavior of the geometric factor for the CH dipole-dipole arrays. As 12 

can be seen in Figure 10A, as the MN distance increases, the geometric factor value for the 13 

CH AM-BN array becomes more upright at lower AM distances, and finally there is a sign change. 14 

The Figure 10B shows that the CH AB-MN geometric factor values rise highly when the AM distance 15 

increases. But in this case, the lower the MN distances, the higher the geometric factor values (or the 16 

lower the potential difference). In both cases, the rapid geometric factor increase means that there is a 17 

sharply drop in the electric potential at those AM and MN distances. In such a situation, measurements 18 

become highly sensitive, i.e. low resistivity variations, due to errors in the model responses calculation 19 

or in the measured data, can be in high resistivity changes. This explains why as the MN distance 20 

increases, the secondary AD peak becomes higher in the CH AM-BN array, and the existence of 21 

extremely high AD and IOS values in the CH AB-MN array.  22 

 23 

Therefore, in order to maintain a trade-off between the AD and the electric potential level using the 24 

CH AB-MN array in the final organized dataset, the CH AB-MN measurements with MN=1-2 and 25 

AM>±5 were avoided. Note that the AM distance can be positive or negative using the CH AB-MN 26 

array (Figure 2). 27 

 28 
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Wilkinson et al. (2008) observed that the higher variations in apparent resistivity due to inaccurate 1 

electrode location (geometric factor errors) were obtained in such potential drop situations, and they 2 

developed the concept of geometric sensitivity to remove this unstable data. From the apparent 3 

resistivity expression	(�	 = !") we extend this unstable behavior, or error amplification, in potential 4 

drop situations to measured data. Therefore, to prevent undesired errors due to inaccurate electrode 5 

location (k) and data (R) errors, the AM and MN distances where the geometric factor increases, or 6 

decreases, in a sharply way would be avoided. 7 

 8 

 9 

Figure 10. Geometric factor behavior obtained using the CH dipole-dipole arrays: A) CH AM-BN and 10 

B) CH AB-MN, with different AM and MN distances. 11 

 12 

The CH AM-BN and CH pole-tripole inversion models show “symmetric” artifacts, using Rc=0.1, at 13 

the stages B and C of the dynamic model (Figure 8). The symmetric artifacts are related to the high 14 

symmetry on the sensitivity pattern (Tsourlos et al., 2011) along with to an insufficient angular 15 

coverage. The CH pole-tripole and the CH AM-BN arrays show IOS<10%, which means they have 16 

highly symmetric sensitivity patterns. The higher the symmetry on the sensitivity pattern, the higher 17 

the uncertain on the migration interpretation, and higher angular coverage needed to resolve the true 18 

anomaly location. Increasing amount of data by adding extra angular measurements (combinations 19 

with different AM or MN distances in each borehole) makes the artifact slightly lower, but they do not 20 

remove it at all, either using individual or mixed datasets. 21 

 22 



23 

 

The inversion results highlight the benefit of using the CH AB-MN to resolve the dynamic model 1 

presented here. Loke et al. (2014a) observed that the resolution of their optimized configurations 2 

decreased if the configurations with both current (or both potential) electrodes in the same borehole 3 

were excluded. As can be seen in this work, and in Loke et al. (2014b), the singularity acquisition 4 

problems using this configuration can be removed. 5 

 6 

7. CONCLUSIONS 7 

The analysis of the AD and IOS allows finding a trade-off between the required resolution and the 8 

available acquisition time (amount of data) for real-time monitoring. Understanding how each 9 

configuration works becomes a key aspect to be successful in monitoring short and quick dynamic 10 

processes, where the amount of data needs to be greatly reduced to adequate to the experiment length. 11 

The AD and IOS analysis has been applied to a specific dynamic model (using specific body lengths, 12 

resistivity contrasts and aspect ratio) and configurations, but it can be applied to different resistivity 13 

models and electrode combinations in a straightforward way. 14 

 15 

The results highlight the benefit of joining various configurations because of their different sensitivity 16 

patterns: a lower angular coverage and a lower amount of data are needed to resolve a migration 17 

experiment. Considering most of the CHERT configurations have a quite similar sensitivity pattern, 18 

the CH AB-MN becomes necessary to resolve the dynamic model presented here and to remove the 19 

symmetric artifacts. As can be seen in this work, the singularity acquisition problems can be avoided 20 

to use this configuration in monitoring. 21 

 22 

The similar IOS patterns observed for all the three configurations highlight the need for using AM 23 

lengths similar to the boreholes distance in cross-hole monitoring experiments. 24 

 25 

The addition of more than one MN distance in the same dataset helps to improve resolution. However, 26 

before increasing amount of data by adding various MN distances, consider joining configurations 27 

with complementary sensitivity patterns. This provides better spatial resolution without greatly 28 



24 

 

increasing the amount of data. In this work, a mixed organized dataset, which can be acquired in less 1 

than 10 minutes (1036 data) in a ten-simultaneous channels resistivity-meter, has been able to resolve 2 

the dynamic model presented here without the presence of symmetric artifacts. This allows acquiring 3 

multi-panel or 3D data in a time-effective way. 4 

 5 
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FIGURE CAPTIONS 8 

Figure 1. Dynamic model and stages used to simulate different positions of a plume in a migration process. 9 

Small vertical black squares represent the electrode location into boreholes BH1, BH2 and BH3; black arrow and 10 

grey squares (named A, B and C) simulate the plume direction and position at stages A, B and C, respectively. 11 

Panel 1 (light grey colored) represents the cross-hole measurements acquired between BH1 and BH2, and panel 12 

2 (dark grey colored), the cross-hole measurements acquired between BH2 and BH3. 13 

 14 

Figure 2. Electrode distribution schemes for the CH dipole-dipole arrays (CH AM-BN and CH AB-MN) and the 15 

CH pole-tripole array with the MN dipole in the two boreholes (CH AMN-B/A-BMN). Capital letters and 16 

red/blue points designate the electrode name and their position into the boreholes (A and B represent the current 17 

electrodes and, M and N, the potential ones); AM: vertical distance between the current and the potential 18 

electrodes; MN: vertical distance between the potential electrodes. 19 

 20 

Figure 3. Sensitivity patterns for the CH dipole-dipole (CH AM-BN and CH AB-MN) and the CH pole-tripole 21 

(CH AMN-B). The letters A and B represent the current electrodes and, M and N, the potential ones. In each 22 

configuration, sensitivity was normalized by its maximum value.  23 

 24 

Figure 4. Anomaly detection value (AD) calculated for the CH dipole-dipole (AM-BN and AB-MN) and the CH 25 

pole-tripole arrays at the three stages (A, B and C) of the dynamic model using a resistivity contrast Rc=0.1. 26 

Maximum absolute relative resistivity variation (Y-axis) versus AM (X-axis) and MN (colored lines) distances. 27 

Dashed line indicates a 10% of resistivity change as guidance only.  28 

 29 
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Figure 5. In-panel/off-panel sensitivity value (IOS) calculated using the CH dipole-dipole (AM-BN and AB-1 

MN) and the CH pole-tripole arrays for all the three stages (A, B and C) of the dynamic model and a resistivity 2 

contrast, Rc=0.1. Maximum absolute relative apparent resistivity difference (Y-axis) versus AM (X-axis) and 3 

MN (colored lines) distances. Dashed line indicates a 10% of resistivity difference as guidance only. 4 

 5 

Figure 6. Anomaly detection value (AD) calculated for the CH dipole-dipole (AM-BN and AB-MN) and the CH 6 

pole-tripole arrays at the three stages (A, B and C) of the dynamic model using a resistivity contrast, Rc=10. 7 

Maximum absolute relative apparent resistivity variation (Y-axis) versus AM (X-axis) and MN (colored lines) 8 

distances using panel 1. Dashed line indicates a 10% of resistivity change as guidance only.  9 

 10 

Figure 7. In-panel/off-panel sensitivity value (IOS) calculated using the CH dipole-dipole (AM-BN and AB-11 

MN) and the CH pole-tripole arrays for all the three stages (A, B and C) of the dynamic model and a resistivity 12 

contrast, Rc=10. Maximum relative apparent resistivity variation (Y-axis) versus AM (X-axis) and MN (colored 13 

lines) distances using panel 1 and panel 2 responses. Dashed line indicates a 10% of resistivity difference as 14 

guidance only.  15 

 16 

Figure 8. Inversion models obtained using (from top to bottom): the CH dipole-dipole AM-BN (5740 data), the 17 

CH pole-tripole (3080 data), the CH dipole-dipole AB-MN (3500 data), the complete mixed (CH pole-tripole 18 

and CH dipole-dipole AB-MN with 6580 data) and the organized (1036 data) datasets at the three stages (A, B 19 

and C) of the dynamic model. Resistivity contrast Rc=0.1. Root mean square (rms) =1.2%. Small vertical black 20 

squares represent the electrode location into boreholes (BH1, BH2 and BH3). Each inversion included panel 1 21 

and panel 2 responses. 22 

 23 

Figure 9. Inversion models obtained using (from top to bottom): the CH dipole-dipole AM-BN (5740 data), the 24 

CH pole-tripole (3080 data), the CH dipole-dipole AB-MN (3500 data), the complete mixed (CH pole-tripole 25 

and CH dipole-dipole AB-MN with 6580 data) and the organized (1036 data) datasets at the three stages (A, B 26 

and C) of the dynamic model using a resistivity contrast Rc=10. Root mean square (rms)=1.2%. Small vertical 27 

black squares represent the electrode location into boreholes (BH1 and BH2). Each inversion included panel 1 28 

and panel 2 responses. 29 
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Figure 10. Geometric factor behavior obtained using the CH dipole-dipole arrays: A) CH AM-BN and B) CH 1 

AB-MN, with different AM and MN distances. 2 
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