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1. SUMMARY 

Prior to the introduction to the market of a pharmaceutical product, there is a whole process 

called drug discovery. This development includes four phases: i) R&D, ii) preclinical studies, iii) 

clinical studies in humans, iv) approval by competent organisms such as the European Medicines 

Agency (EMA) or the American Food and Drug Administration (FDA). During the R&D and pre-

clinical studies different parameters are evaluated such as the absorption, distribution, 

metabolization and excretion of the drugs, the potential benefits and the mechanism of action, the 

best form and quantity of dosage, the adverse effects (AEs), the interaction with other co-

administered substances, and the effectiveness of treatment. Due to ethically questionable 

experiments, the use of laboratory animals is currently reduced, therefore, predictive techniques 

as similar as possible to in vivo studies must be developed. A strategy to simulate the behaviour 

in animals and/or humans is to perform studies of solubility, protein interaction, etc. using media 

that resemble the best to fluids of living beings. Many studies reported in the scientific literature 

have been carried out using water as medium or simple buffers. Nowadays, mediums with 

compositions much more complex and much more similar to biological fluids such as blood or 

gastrointestinal fluids are being developed. In this work, a search about which biological media 

can be acquired from the different suppliers, their preparation and the possible interaction with 

the drugs will be carried out. 

 

Keywords: Pre-clinical studies, Drugs, Biorelevant media, ADMET properties. 
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2. RESUM 

Prèviament a la sortida al mercat dels fàrmacs existeix tot un procés anomenat drug 

discovery. Aquest desenvolupament inclou quatre fases: i) I+D, ii) estudis pre-clínics, iii) estudis 

clínics en humans, iv) aprovació per part dels organismes competents com ara l’Agència Europea 

del Medicament (EMA) o l’Agència Americana dels Aliments i dels Medicaments (FDA). Durant 

els estudis de I+D i pre-clínics s’avaluen diferents paràmetres com ara l’absorció, distribució, 

metabolització i excreció dels medicaments, els beneficis potencials i el mecanisme d’acció, la 

millor forma i quantitat de dosificació, els efectes adversos (AEs), l’interacció amb altres 

substàncies coadministrades i l’efectivitat del tractament. Degut a experiments èticament 

qüestionables, actualment es redueix l’ús d’animals de laboratori, per tant, s’han de desenvolupar 

tècniques predictives el més similars possibles als estudis in vivo. Una estratègia per simular el 

comportament en animals i/o humans és realitzar els estudis de solubilitat, interacció amb 

proteïnes, etc. fent servir medis que s’assemblin el màxim possible als fluids dels éssers vius. 

Molts estudis recollits a la bibliografia científica s’han portat a terme fent servir com a medi l’aigua 

o solucions tampó simples. Avui en dia, medis amb composicions molt més complexes i molt més 

similars als fluids biològics com ara la sang o els fluids gastrointestinals es troben en 

desenvolupament. En aquest treball es realitzarà una cerca sobre quins medis biològics es poden 

adquirir dels diferents proveïdors, la seva preparació i la possible interacció amb els fàrmacs. 

Paraules clau: Estudis pre-clínics, Medicaments, Fluids biològics simulats, propietats ADMET.  
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3. INTRODUCTION 

3.1. DRUG DEVELOPMENT 

Developing a novel drug is an interdisciplinary process involving a multitude of competences 

from biologists, chemists, computer scientists, medical staff, statisticians, and regulatory experts. 

Taking a compound from bench to bedside requires up to 12 years at an average estimated cost 

exceeding 883M €, mostly for candidates that fail along the way1. 

According to the American Food and Drug Administration (FDA)2, the drug development 

process consists of four steps: discovery, preclinical research, clinical studies (including post-

marketing safety monitoring) and regulatory approval (Figure 1). 

                                       Figure 1. Drug development process scheme 

3.1.1. Drug discovery 

Target identification and validation 

The first step in the development of a novel drug is to identify and validate a good target, 

which may be for example organs, proteins or genes. A good target needs to be efficacious, safe, 

meet clinical and commercial needs and be accessible by the drug molecule3. 
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Hit identification and validation 

Initial identification of compound candidates can come from different sources. Research can 

provide new knowledge into disease processes and discover new pathways for which drugs can 

be developed to intervene. Alternatively, companies conduct large scale trial and error-based 

programs to identify molecular compounds that may be of interest. This step identifies whether 

the molecule hits have the desired effect against the identified targets4. 

Lead identification and optimization 

After several hit compounds are established, the process continues with the optimization of 

their pharmacodynamic and pharmacokinetic behaviour to make a lead candidate. Once these 

are selected, their optimization is aimed to maintain the desired properties while improving on 

possible deficiencies of their structures, with a view to produce a preclinical drug candidate.  

This stage can be used to find out whether the drug metabolizes in the right area of the body, 

or whether there are any side effects that are cause for concern. For this process, the combination 

of specialists in computational chemistry, medical chemistry, drug metabolism, and other areas 

can provide unique insights4. 

Late lead identification and optimization 

Before progression to preclinical tests, further pharmacological safety of a lead compound is 

assessed. If this stage is overlooked, problems in efficacy, pharmacokinetics, and safety are more 

likely to occur later in drug development4. 

3.1.2. Preclinical research 

The process of developing a novel drug is time consuming and costly. To increase the 

chances of successfully completing a clinical trial leading to the approval of a new drug, the choice 

of appropriate preclinical models is essential1. 

Thousands of modifications of these lead compounds are synthesised and tested during 

preclinical activities. Once an optimised compound is identified, this investigational new drug 

(IND) becomes a candidate for clinical trials involving human subjects1. 

Nevertheless, merely a small fraction of INDs tested in clinical trials ends as a marketed 

product. Hence, there is a need for optimising current standard preclinical approaches to better 



Determination of parameters of pharmaceutical interest in biological media  9 

 

mimic the complexity of human disease mechanisms1 and understand the translation from 

preclinical to clinical results5. 

Preclinical studies must comply with the guidelines dictated by Good Laboratory Practice 

(GLP) to ensure reliable results and are required by authorities such as the European Medicines 

Agency (EMA) 6 or the FDA before filing for approval as IND. Insights into the compound’s dosing 

and toxicity levels are essential to determine whether it is justified and reasonably safe to proceed 

with clinical studies. In conclusion, identifying a safe, potent, and efficacious drug requires 

preclinical testing, which evaluates aspects of pharmacodynamics and pharmacokinetics1. 

Pharmacodynamics 

Pharmacodynamics is the study of the effects of drugs on the body, including the mechanisms 

of drug action and the relationship between the concentrations of a drug at the site of action and 

its response. The interaction of a drug with specific receptors initiates a cascade of molecular, 

biochemical and physiologic events that trigger a pharmacodynamic response. Factors that 

influence the circulating drug concentration over time in the body are expected to influence the 

onset, duration, and intensity of the pharmacodynamic effect7. 

During drug discovery and development, pharmacodynamic studies assess the potency and 

efficacy of drug candidates, including safety aspects and adverse effects (AEs). Therefore, 

pharmacodynamics establishes the therapeutic index of a drug, describing the ratio of the dose 

causing toxicity and the dose provoking a therapeutic effect1 7. 

Pharmacokinetics 

The essence of pharmacology is the relationship between the dose of a drug given to a patient 

and the resulting change in physiological state. Then, the concentration or dose of drug is the 

independent variable and the pharmacological effect returned by the therapeutic system is the 

dependent variable. The value of the dependent variable has meaning only if the value of the 

independent variable is correctly known8. 

Pharmacokinetics helps to determine the true value of the independent variable, seeking to 

answer where in the body does the drug go, how much of the drug reaches the target organ and 

how long does the drug stay in the body. Drugs can be effective only if enough amount is present 

at the target site, and they can be harmful if enough amount is present to produce toxic side 

effects8. 
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Therefore, as a prerequisite to pharmacodynamics, pharmacokinetics examines the journey 

of drugs into the body toward their intended therapeutic target organ. A useful acronym to describe 

pharmacokinetics is ADMET (absorption, distribution, metabolization, elimination and toxicology). 

This generally describes the process of drug absorption into the body, distribution throughout the 

body, metabolism by enzymes in the body, elimination from the body and drug toxicity resulting 

from this process. It is useful to consider each of these steps, as together they summarize 

pharmacokinetics8. 

Pharmacokinetics studies are performed both during the drug discovery process and the 

preclinical studies. To obtain relevant results from preclinical studies are required appropriate 

preclinical models that are as comparable to the target population as possible. Typically, this 

involves a series of experiments using in vitro or ex vivo, in vivo and, more recently, also in silico 

models. 

In vitro or ex vivo models 

In vitro and ex vivo studies are a relatively fast, simple, and cost-efficient way of preclinical 

testing. A clear frontier between their definitions has not been agreed among the scientific 

literature, but the main difference relies on how directly the sample comes from a living organism 

and how long it can be functionally maintained outside it. 

More accurately, in vitro studies include the experimentation on biorelevant simulated media, 

on single cell populations derived from an animal, but cultured and treated in artificial medium, 

and on cell components such as proteins or other biological macromolecules. The final 

requirements of in vitro testing system are self-sustainability and not limitation to time. 

Ex vivo studies, otherwise, utilise cell, tissue and organ cultures taken out and maintained 

and treated outside of the animal body for short period of times. In most of the cases ex vivo 

experiments also use artificial media9. Ex vivo studies permit tight control and monitoring of 

experimental settings and often provide mechanistic evidence for the investigational compound’s 

mode of action1. 

Nevertheless, most of the publications used in this work do not make a differentiation between 

these two models. Hence, this work comprehends in vitro and ex vivo models in the same in vitro 

category. 
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In vivo models 

 In vivo studies consider the complete organism utilising various animal models. Like studies 

in humans, animal testing is tightly regulated in most countries and permission from local ethical 

review boards is required. Naturally, controlling experimental settings is far more complicated for 

in vivo studies and, due to the complexity of the living organism, compounds may behave 

differently from what is expected based on results obtained in a test tube1. 

Typically, in vivo studies are performed in a rodent (e.g., mouse, guinea pig, hamster) and 

non-rodent model to comply with regulatory agencies (EMA or FDA) requirements. Mice, rats, 

and dogs are among the most frequently used animal models while testing in primates (e.g., 

monkeys, apes, etc.) is performed occasionally and typically for larger molecules1. 

In silico models 

Progress in bioinformatics over the past decades has made in silico studies attractive so that 

they often precede or complement in vitro and in vivo studies. In silico models are based on 

computer simulations and provide information on how an investigational compound might behave 

in subsequent experiments. Apart from technological requirements, these computer simulations 

demand expert knowledge in biochemistry and molecular biology1. 

Merely between one or two out of five INDs tested in clinical trials eventually gains approval 

for clinical use. Nevertheless, preclinical research is indispensable to protect human subjects in 

clinical trials and an adequate and careful choice of model systems is vital1. 

3.1.3. Clinical studies 

Clinical trials are conducted over different phases (Phase I-IV), starting from a small number 

of subjects and extending to large cohorts. Phase IV in clinical research is not included in this 

section, because it takes place after the regulatory review and approval, but in an independent 

one: post-marketing safety monitoring. 

Phase I 

The IND is administered to humans for the first time. In early studies, a small group of 

subjects, usually 10 to 15 individuals, receive a single, sub-therapeutic dose to obtain 

pharmacokinetic information without inducing pharmacological effects. The goal of these 
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exploratory studies is to investigate whether the drug candidate performs as expected based on 

preclinical studies. 

If successful, further studies typically involving 20 to 50 healthy volunteers determine the 

drug’s maximum tolerated dose (by increasing the treatment dose until dose-limiting toxicity is 

reached) and the drug’s most common and serious AEs, as well as other pharmacodynamic and 

pharmacokinetic properties1.  

Phase II 

Approximately 70% of drug candidates move to Phase II, in which therapeutic efficacy of the 

IND is assessed by a comparison of pre- and post- treatment status of patients and the response 

of patients receiving IND and a placebo drug. Based on the dose range determined in Phase I, 

dose response in several hundred patients and the drug’s biological activity are evaluated.  

Although researchers obtain indications about the drug’s benefit, Phase II studies are not 

comprehensive enough to provide enough evidence. Nevertheless, these trials commonly 

determine the optimum dose regimen to be used in Phase III1. 

Phase III 

About 33% of tested INDs transition into Phase III, having 100 to 500 patients and with the 

primary objective of confirming the therapeutic benefit of the IND as well as its safety and efficacy. 

Moreover, the use of different dosages and study populations and combination with other 

therapeutic agents are investigated to provide information regarding indications and contra-

indications as well as dose range and AEs. 

As Phase III studies include a larger cohort and have a longer duration than previous clinical 

studies, they can potentially reveal rare and long-term side effects. From 25% to 30% of INDs 

progress to the next phase. 

3.1.4. Regulatory approval 

If a drug developer has evidence from its early tests and preclinical and clinical research that 

a drug is safe and effective for its intended use, the company can file an application to market the 

drug. The EMA is responsible for the scientific evaluation of centralised marketing authorisation 

applications. Once granted by the European Commission, the centralised marketing authorisation 

is valid in all European Union Member States, Iceland, Norway and Liechtenstein10. 
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3.1.5. Post-marketing safety monitoring 

Even though clinical trials provide important information on a drug’s efficacy and safety, it is 

impossible to have complete information about the safety of a drug at the time of approval2. Phase 

IV clinical studies are long-term and typically conducted after regulatory agency approval. They 

often involve more than 10.000 individuals of the relevant patient population and aim at gathering 

additional information on safety, efficacy, and new indications. In some cases, this might result in 

withdrawal of the drug from the market or restriction to specific uses1. 

3.2. IN VITRO PHARMACOKINETIC STUDIES 

The common challenges of achieving optimal drug attributes include that early leads often 

have suboptimal physicochemical and pharmacokinetic properties. Understanding of drug 

properties such as pKa, solubility, lipophilicity, drug-protein and drug-drug interactions, and 

stability is essential for drug development and compound design5. 

3.2.1. pKa 

The pKa has a relevant importance because it describes the ionization of a drug in the studied 

medium. In fact, pKa values are different depending on the media where the drug is tested, and 

the ionization state not only has an impact on solubility but also affects permeability, distribution 

or other pharmacokinetics properties, binding to transporters or enzymes, complexation, and 

partition into organic solvents. Therefore, many properties need to be considered and balanced 

when it comes to the selection of an optimal pKa value for a drug candidate5. 

Most drugs have aqueous pKa in the range from 2 to 11 and, while it is possible to estimate 

pKa by computational methods, it is desirable to experimentally measure the value. Potentiometry 

and UV/Visible absorption spectrometry are the most widespread techniques for the pKa 

determination, due to their accuracy and reproducibility. Also, techniques based on separation 

methods such as HPLC and capillary electrophoresis have been developed in the past decade11. 

3.2.2. Solubility 

Solubility is one of the key attributes of a drug candidate, as it can significantly impact on in 

vitro profiling, in vivo exposure, and compound design. Low solubility is a major challenge for drug 

discovery, since up to 75% of drug candidates are classified as low soluble5. Solubility 

measurements are typically performed during the early stage of development. Aqueous solubility 
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of a given molecule depends on multiple factors, including solid-state properties (crystal packing, 

lattice energy), ionization (pH, pKa), and solute/solvate interactions5. 

When referring to intermolecular interactions in the solid state, compounds must overcome 

crystal packing to dissolve in the solvent. The most thermodynamically stable form has the lowest 

energy stage and the lowest solubility. The melting point and heat of fusion can be reasonable 

indicators for lattice energy at early development. Disruption of the tight crystal packing through 

the molecule design can increase the solubility at the drug discovery stage5. 

The solubility of an ionisable compound can be described by the Henderson-Hasselbalch 

equation (Equation 1), where the solubility is a function of the intrinsic solubility (S0), pH of the 

medium, and pKa of the molecule5. 

𝑙𝑜𝑔𝑆 = 𝑙𝑜𝑔𝑆0 + log(1 + 10𝑝𝐻−𝑝𝐾𝑎) 

It highlights the importance of selecting a compound with a higher intrinsic solubility. It also 

indicates the benefit of having a stronger pKa in chemical structure for solubilization purpose5. 

The shake-flask method is the reference solubility testing procedure, although there exist other 

methods such as the pH-metric one. The medium in which the drug is solved can be water, 

aqueous buffer, biorelevant media, etc. 

3.2.3. Lipophilicity 

Lipophilicity plays a significant role in drug discovery and compound design. The lipophilicity 

of a compound is described by a partition coefficient, logP (Equation 2), which is defined as the 

ratio of the concentration of the unionized compound at equilibrium between organic (most 

commonly octanolic) and aqueous phases.  

𝑙𝑜𝑔𝑃𝑜/𝑤 =  (
[𝑠𝑜𝑙𝑢𝑡𝑒]𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝑢𝑛𝑖𝑜𝑛𝑖𝑧𝑒𝑑

[𝑠𝑜𝑙𝑢𝑡𝑒]𝑤𝑎𝑡𝑒𝑟
𝑢𝑛𝑖𝑜𝑛𝑖𝑧𝑒𝑑

) 

For compounds with ionizable groups, the distribution of species is impacted by pH. This leads 

to the definition of the distribution coefficient, logD (Equation 3), of a compound, which considers 

the dissociation of weak acids and bases5. 

𝑙𝑜𝑔𝐷𝑜/𝑤 =  (
[𝑠𝑜𝑙𝑢𝑡𝑒]𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝑢𝑛𝑖𝑜𝑛𝑖𝑧𝑒𝑑 + [𝑠𝑜𝑙𝑢𝑡𝑒]𝑜𝑐𝑡𝑎𝑛𝑜𝑙
𝑖𝑜𝑛𝑖𝑧𝑒𝑑

[𝑠𝑜𝑙𝑢𝑡𝑒]𝑤𝑎𝑡𝑒𝑟
𝑢𝑛𝑖𝑜𝑛𝑖𝑧𝑒𝑑 + [𝑠𝑜𝑙𝑢𝑡𝑒]𝑤𝑎𝑡𝑒𝑟

𝑖𝑜𝑛𝑖𝑧𝑒𝑑
) 

Lipophilicity not only impacts solubility but also influences membrane permeability, potency, 

and selectivity. Membrane permeability is a key determinant in pharmacokinetic behaviour of 

Equation 2 

Equation 3 

Equation 1 
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drugs (ADMET) and especially of absorption, distribution and excretion. To reach the desired 

target, a drug must cross various cellular barriers and must have an optimal lipophilicity, because 

if the solute is too lipophilic it will remain trapped in the membrane. Besides, high lipophilicity often 

contributes to high metabolic turnover, low solubility, and poor oral absorption. Low lipophilicity 

can also negatively impact permeability and potency, resulting in low bioavailability and efficacy5. 

It is generally considered that compounds with a logP greater than 1 and lower than 4 (between 

0 and 3 for logD for ionizable drugs) are more likely to have optimal properties as oral drugs5.  

There are several analytical methods to determine the partition coefficient of a substance, for 

example the classic shake-flask method (measures the distribution of the solute after equilibrium), 

the potentiometric method (determines lipophilicity pH profiles directly from the pKa value and a 

single acid-base titration in a two-phase water-organic solvent system) and the chromatographic 

method (determines lipophilicity of a solute by correlating its retention time with similar 

compounds with known lipophilicity values), among others. 

For a better approximation to biological environment drug lipophilicity, measures in a 

liposome-water partition system can be done. The determination of partition coefficients using 

liposomes as a lipid phase requires the sample to be equilibrated with a suspension of liposomes, 

followed by a separation procedure (ultrafiltration, centrifugation, equilibrium dialysis, etc.)  before 

the sample is quantitated in the fraction free of the lipid component12.  

3.2.4. Drug-protein interactions 

The binding to plasma proteins has a significant impact on most ADMET properties, 

particularly on distribution and metabolism. Low binding may result in excessive metabolism or 

toxicity, and very high binding may result in insufficient tissue distribution and low efficacy13. 

Drugs in plasma may associate with single or multiple proteins at single or multiple sites, each 

with a different strength of association and association kinetics. This often results in a complex 

binding profile that cannot be quantified solely by the magnitude of the unbound fraction at 

equilibrium13. The distribution behaviour of drug compounds may be classified using generalized 

protein binding profiles comprised of the ligand structure, proteins involved, binding affinity, and 

the binding kinetics. The consequences of binding are restrictive or permissive, depending on 

whether binding limits distribution into the target tissue from the circulatory system13.  
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Traditionally, equilibrium values (e.g., percentage binding) for drug-protein binding have been 

measured, but such studies overlook the influence of kinetics. A rapid method of simultaneously 

determining kinetic rate constants and equilibrium constants from chromatographic profiles has 

been developed, based on the use of immobilized protein columns and HPLC. By measuring the 

chromatographic profiles (position and width) of a retained and an unretained compound, one can 

determine both the rate and equilibrium constants in an aqueous pH 7.4 environment at 37 °C14. 

3.2.5. Drug-drug interactions 

Drug-drug interactions (DDIs) are one of the commonest causes of medication error, 

particularly in the elderly due to poly-therapy, which increases the complexity of therapeutic 

management inducing adverse drug reactions or reducing the clinical efficacy15. DDIs can be 

classified into two main groups: pharmacokinetic (involves ADMET properties) and 

pharmacodynamic (involves direct effect at receptor function, interference with a biological or 

physiological control process and additive/opposed pharmacological effect)15. Focusing on 

pharmacokinetics DDIs: 

- Absorption interactions comprise formation of insoluble complexes (e.g. the 

decreased bioavailability of bisphosphonates when calcium is co-administered) and 

inhibition of transporters. 

- Distribution interactions embrace the competition for transport protein binding sites 

(e.g. phenytoin and valproate compete for the same protein binding sites). 

- Metabolic interactions include competition for the same enzymes and inhibition or 

induction of metabolic enzymes (e.g. the effect of carbamazepine, which increases 

the rate of warfarin and oral contraceptive metabolism). 

- Finally, interactions influencing elimination cover competition for active transport 

and interference with solubility (e.g. increased ion trapping of salicylate in alkaline 

urine due to the use of acetazolamide). 

There are different methods to evaluate DDIs, for example, the isothermal titration calorimetry 

(ITC) based on the direct measurement of heat either released or absorbed in molecular binding 

during gradual titration, or the fluorescence method, based on the variation of fluorescence 

parameters (including the wavelengths of maximal activation and emission, quantum yield, 

fluorescence lifetime, etc.) when a drug molecule binds to another one.  
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3.2.6. Stability 

The primary goals of physical and chemical stability assessment are to clear up the 

development risk with respect to temperature, pH, light, humidity, and oxygen; guide compound 

design; and define the storage condition and shelf life5. 

To improve chemical stability via compound design is necessary to understand the rate, 

mechanisms, and pathways of degradation. The major routes of degradation are through 

hydrolysis, oxidation (and autoxidation) and photochemical means. The reactions are typically 

acid or base catalysed; therefore, pH is one of the drug stability key factors5. In addition, the use 

of excipients such as cosolvents, complexing agents and surfactants, or the optimization of 

concentration range and storage conditions (e.g. solutions, suspensions, oil/lipid or solid 

formulations) can maximize chemical stability.  

3.2.7. Testing media 

An important application of pharmacokinetics testing is to predict in vivo performance of drug 

dosage forms. However, purified water or the simple aqueous buffer solutions typically used for 

quality control testing do not represent all aspects of physiological conditions in the human body 

and usually offer, at best, empirical a posteriori correlation with in vivo data. Prediction of 

pharmacokinetic effects on drugs generally requires adequate simulation of the conditions in the 

targeted organs and those which the drug goes through. 

For example, in Vertzoni et al. work16, solubilities of the studied compounds are much higher 

in the colonic aspirates than would be predicted from plain TRIS-maleate buffers at the equivalent 

pH values. This observation suggests that bile acids, phosphatidylcholine, palmitic acid and, 

perhaps, peptides/proteins that are present in the ascending colon have significant solubilization 

effects. Consequently, these components are included in the corresponding simulated biological 

media to improve concordance with in vivo conditions. 

Also, Kokubo et al.17 proposed that the in vivo bone bioactivity of a material can be predicted 

from the apatite formation on its surface only in a simulated body fluid with ion concentrations 

nearly equal to those of human blood plasma. Since then, in vivo bone bioactivity of various types 

of materials are evaluated by apatite formation in biorelevant media. 
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4. OBJECTIVES 

The aim of this project is a bibliographic research concerning the biorelevant media 

commercially and non-commercially available, their components, preparation and their possible 

interaction with drugs. 

Additionally, the composition and physicochemical properties comparison between the 

commercially available products, the in-situ preparation biorelevant medias and the human 

biological ones has been set as an objective, to ensure the correct performance of the in vitro 

studies prior to the clinical phase of the drug development. 

5. METHODS 

The research has been done using scientific data bases as Scopus and Science Direct, 

ResearchGate, SciFinder, PubChem and PubMed, etc.  

Science Direct has been of great help, and most of the searches using keywords as Drug 

Development, Simulated Biological Fluids, Human Intestinal Composition or Biorelevant Media   

have conducted to get pleasant results.  

Research Gate has been also useful; although there were not as many published papers as 

in other data bases, information about Drug Discovery and Preclinical Studies keywords was 

provided. PubChem has been used principally to define chemical molecules that appear in this 

work, such as lecithin, TRIS base or taurocholic acid.  

For short and concise definitions, searchers as Google or Ecosia have been used, focusing 

the selection of the results in expert web sites (for example, EMA’s, FDA’s, Encyclopaedia 

Britannica’s, WebMD’s or ChEBI’s (Chemical Entities of Biological Interest) web sites). 

For the bibliography citation the program Mendeley has been used. 
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6. RESULTS AND DISCUSSION   

As introduced, the media typically used for quality control dissolution testing (such as buffer 

solutions, organic and aqueous solvents) do not represent all aspects of the physiological 

conditions of the most used routes of administration and do not allow correlation with in vivo data. 

The use of simulated biological fluids (also known as biorelevant media) can give a better 

understanding of the release mechanisms and possible in vivo behaviour of a product and 

enhance the predictive capability of the dissolution testing18. 

The most used routes of administration of drug substances are parental and oral route. 

- Parenteral drug administration means any non-oral means of administration but is 

generally interpreted as relating to injecting directly into the body, bypassing the 

skin and mucous membranes. The common parenteral routes are intramuscular, 

intravenous, and subcutaneous and are normally associated with short-term 

effects. To evaluate the in vitro drug release from these dosage form, the dissolution 

medium should have ion concentrations almost equal to those of the human 

plasma19. 

- The oral route is the most common and convenient administration method for the 

systemic delivery of drugs. It affords high patient-acceptability, compliance, and 

ease of administration. Moreover, the cost of oral therapy is generally much lower 

than that of parenteral therapy. Nevertheless, the oral route is not without 

disadvantages, particularly with respect to labile drugs such as peptide- and 

oligonucleotide-based pharmaceuticals. Drug absorption may be affected by 

several physiological factors including volume and composition of gastrointestinal 

fluids, the pH and buffer capacity of these fluids, digestive enzymes, contraction 

patterns, and bacterial flora in the gut. In addition, the extent of drug absorption and 

bioavailability may be further affected by gastrointestinal transit, the presence of 

cellular transporters, and metabolic enzymes. Several of those factors are affected 

by intake of food18. 

Once both routes of administration are presented, a description of four human biological fluids 

that have a remarkable impact on them is done. These are the human plasma in relation with the 

parenteral route and the gastric, intestinal and colonic fluids for the oral route. 
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6.1. SIMULATED HUMAN PLASMA (SHP) 

Plasma is the liquid portion of blood and the largest component of it, making up about 55% of 

its overall content20. Plasma serves as a transport medium for delivering nutrients to the cells of 

the various organs of the body and for transporting waste products derived from cellular 

metabolism to the kidneys, liver, and lungs for excretion. It is also a transport system for blood 

cells, and it plays a critical role in maintaining normal blood pressure. Plasma helps to distribute 

heat throughout the body and to maintain homeostasis, or biological stability, including acid-base 

balance in the blood and body21. 

Figure 2. Blood cells and plasma representation. 

(Image withdrawal from University of Rochester Medical Center Webpage20) 

Plasma is derived when all the blood cells - red blood cells (erythrocytes), white blood cells 

(leukocytes), and platelets (thrombocytes) - are separated from whole blood (Figure 2). When 

isolated on its own, blood plasma is a light-yellow liquid20, which is 90 to 92 percent water. 

Nevertheless, it contains critical solutes necessary for sustaining health and life21. 

The electrolytes and acid-base system found in the plasma are finely regulated. Small 

molecules are primarily responsible for the concentration of dissolved particles in the plasma. 

However, it is the concentration of much larger proteins (especially albumin) on either side of 

semipermeable membranes that creates crucial pressure gradients necessary to maintain the 

correct amount of water within the intravascular compartment and, therefore, to regulate the 

volume of circulating blood21. 
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6.1.1. Biological composition 

Important constituents of human plasma include electrolytes such as sodium, potassium, 

chloride, bicarbonate, magnesium, and calcium. In addition, there are trace amounts of other 

substances, including amino acids, vitamins, organic acids, pigments, enzymes, hormones and 

nitrogenous wastes (e.g., urea and creatinine)21. 

Serum albumin, a protein synthesized by the liver, constitutes approximately 60% of all 

plasma proteins. It is very important in maintaining osmotic pressure in the blood vessels; it is 

also an important carrier protein for a number of substances, including hormones. Other proteins 

called alpha and beta globulins transport lipids (lipoproteins) such as cholesterol as well as steroid 

hormones, sugar and iron21. At last, glycoproteins contain chains of sugars linked to them, which 

increase their stability, determine their shape in space, facilitate their interaction with other 

proteins and also the differentiation and development of cells22. 

On Table 1, the concentration of most relevant components is shown, aiming to help creating 

an idea about the diversity of this medium. On the Comparison section, Table 3 focuses on the 

concentration of the mineral salts and buffer solution in human plasma17, with the resulting pH. 

Table 1. Composition of human plasma23. 

Composition Concentration [g L-1] 

Water 900 

Mineral salts 9 

Albumin proteins 40 

Globulin proteins 32 

Fibrinogen proteins 3 

Lipids 6 

Glucose 1 

Urea and uric acid 2 

6.1.2. Laboratory preparation 

An acellular SHP that has inorganic ion concentrations like those of human extracellular fluid 

has been effectively simulated by T. Kokubo et al.17 following a simple procedure: 

1. Wash all the bottles and wares with 1M-HCl solution, neutral detergent, and ion-

exchanged and distilled water, and then dry them. 
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2. Put 700 mL of ion-exchanged and distilled water into 1L polyethylene bottle and cover 

the bottle with a watch glass. 

3. Stir the water in the bottle with a magnetic stirrer and adjust the temperature of the 

solution in the bottle at 36.5ºC with a water bath. Then, dissolve only the reagents of 

1st to 8th order into the solution one by one in the order given in Table 2 (one after the 

former reagent was completely dissolved). Addition of the 9th reagent should be little 

by little in order to avoid local increase in pH of the solution. 

4. Controlling the temperature at 36.5ºC, adjust pH of the solution at pH 7.40 by stirring 

the solution and titrating 1M-HCl solution (when the pH electrode is removed from the 

solution, add the water used for washing the electrode to the solution). 

5. Transfer the pH-adjusted solution from the polyethylene bottle to a volumetric glass 

flask. Add the water used for washing the bottle to the solution in the flask. 

6. Adjust the total volume of the solution to one litter by adding ion-exchanged and distilled 

water and shaking the flask at 20 ºC. 

7. Transfer the solution from the flask to a polyethylene or polystyrene bottle and store it 

in a refrigerator at 5 to 10ºC. The SHP shall be used within 30 days after preparation. 

 

 

 

 

 

 

 

 

 

 

- Note 1: Since SHP is supersaturated with respect to apatite, an inappropriate 

preparation method can lead to its precipitation in the solution. Always make sure that 

the preparing solution is kept colourless and transparent and that there is no deposit on 

Table 2. Regents for preparing SHP (pH 7.40, 1L) 

Order Reagent Amount Purity [%] 

1 NaCl 8.035 g 99.5 

2 NaHCO3 0.355 g 99.5 

3 KCl 0.225 g 99.5 

4 K2HPO4 · 3H2O 0.231 g 99.0 

5 MgCl2 · 6H2O 0.311 g 98.0 

6 1M-HCl 39 mL - 

7 CaCl2 0.292 g 95.0 

8 Na2SO4 0.072 g 99.0 

9 TRIS 6.118 g 99.0 

10 1M-HCl 0 to 0.5 mL - 
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the surface of the bottle. If any precipitation occurs, stop preparing SHP, abandon the 

solution, restart from washing the apparatus and prepare SHP again. 

- Note 2: Stability of the solution must be examined. After 2-3 days, check whether the 

solution has any precipitation or not. If any precipitation is found, do not use the solution. 

Bottles in which precipitation occur must not be used for any further SHP, because 

some calcium phosphates would be adhered on their walls inside. 

As result of the previous preparation, the final ion concentration and pH of the SHP is 

presented on Table 3. 

6.1.3. Product suppliers 

The commercial chemical brands Merck (Sigma-Aldrich), Biomol, R&D Chemicals, AG 

Scientific, mpbio,Thomas, Biorelevant and RICCA do not provide any SHP at date of december 

2018. 

6.1.4. Comparison 

As not a single SHP has been found commercially available, the comparison aims to 

determine if the simulated plasma preparation is analogous to human plasma and, therefore, 

useful for in vitro studies. 

Table 3. Composition and pH of human plasma and SHP.  

Ion Human plasma [mM] SHP [mM] 

Na+ 142.0 142.0 

K+ 5.0 5.0 

Mg2+ 1.5 1.5 

Ca2+ 2.5 2.5 

Cl- 103.0 147.8 

HCO3- 27.0 4.2 

HPO4
2- 1.0 1.0 

SO4
2- 0.5 0.5 

TRIS N.A. 50.5 

pH 7.2 – 7.4 7.4 

N.A.: Not Availiable 
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It can be seen from Table 3 that SHP is richer in Cl- ion and poorer in HCO3- ion than human 

blood plasma. In 2003, Oyane et al. tried to correct this difference by preparing a revised SHP in 

which the concentrations of Cl- and HCO3- ions were, decreased and increased respectively, to 

the levels of human blood plasma. However, calcium carbonate has a strong tendency to 

precipitate from this SHP, as it is supersaturated with respect not only to apatite, but also to 

calcite. In 2004, Takadama et al. proposed a newly improved SHP in which they decreased only 

the Cl- ion concentration. This improved SHP was compared with the corrected SHP in its stability 

and the reproducibility and there was not any significant difference between them17. 

Concerning to the other molecules reported in the human plasma sush as proteins, lipids, 

glucose or urea, the search through the literature base data using keywords such as Simulated 

human plasma and SHP preparation among others, did not provide any paper describing a SHP 

which include them, maybe because of the difficulty in maintaining the stability after preparation. 

Also, it may be due to the fact that most of the studies found focus on the relation of the SHP with 

the bone bioactivity, normally through the formation of hydroxyapatite, and so they are not of 

principal interest. 

6.2. SIMULATED GASTRIC FLUID (SGF) 

The stomach is a muscular J-shaped pouchlike hollow organ that hangs inferior to the 

diaphragm in the upper left portion of the abdominal cavity and has a capacity of about 1 L or 

more (Figure 3). 

 

 

 

 

 

 

 

 

Figure 3. Stomach and its environment representation. 
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The stomach receives food from the oesophagus, secretes acid and enzymes, mixes the food 

with gastric juice, initiates protein digestion and carries on limited absorption. The stomach 

muscles contract periodically, churning food to enhance digestion. Finally, the pyloric sphincter 

(a muscular valve) opens to allow food to pass from the stomach to the small intestine24. 

6.2.1. Biological composition 

To determine whether the prepared SGF is similar or not to the human gastric fluid (HGF), a 

wide study of its real composition and physicochemical properties has been done. Starting with 

the gastric fluid components, the amount of bile salts is very variable, because reflux from the 

duodenum into the stomach occurs sporadically25. Nevetheless, Rhodes et al.26 found a pleasant 

bile salts average concentration in 10 healthy volunteers in the fasted state. Bile salts are natural 

surfactants that lower the surface tension of the intestinal fluids significantly and aggregate in 

aqueous solutions to form micelles37.  

The stomach secretes two enzymes important for nutrient digestion; pepsin and human 

gastric lipases (HGL). Pepsin is an endopeptidase that breaks down proteins into smaller peptides 

and amino acids (a protease), which can be readily absorbed by the small intestine. It is most 

active in environments between 37 °C and 42 °C, exhibits maximal activity at pH 2.0 and is 

inactive at pH 6.5 and above. Basal pepsin output is about 0.8 mg mL-1. Therefore, assuming a 

resting volume of about 25 mL, ingestion of a glass of water (about 200 to 250 mL) brings the 

pepsin concentration down to about 0.08 mg mL-1. 

HGL is present in the fasted stomach, and its basal level is about 0.1 mg mL-1. The lipolysis 

of lipids begins in the stomach catalysed by HGL, which is active and stable at acidic pH, so it 

has great importance in drug dissolution when ingesting a drug in a lipid-based drug delivery 

system. Finally, a large variation in protein content exists when comparison is done among 

different studies, and the major ions are sodium, calcium, potassium, and chloride25. 

Regarding now the physicochemical properties, the average pH of the stomach in the fasted 

state is reported to lie in the range 1.5 to 1.927. The surface tension of gastric aspirates was 

measured in five healthy subjects by Pedersen et al.27 The osmolarity of gastric juice in 36 gastric 

aspirates was reported by Lindahl et al. and Pedersen et al. reported values slightly above. All 

the named parameters values can be easily inquired in the Table 6 on the Comparison section. 
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6.2.2. Laboratory preparation 

The SGF is a synthetic form of the gastric fluid in the stomach. Drugs made for dissolution 

and disintegration in the small intestine must not disintegrate or dissolve in the SGF. On the other 

hand, drugs designed to act in the stomach should dissolve in this synthetic solution. Both fasted 

state simulated gastric fluid (FaSSGF) and fed state simulated gastric fluid (FeSSGF) laboratory 

preparation data is presented. 

FaSSGF 

Before discussing about the solution preparation, it must be considered the volume needed 

to simulate the conditions in the stomach. In the fasted state, resting volumes have been 

estimated to be about 25 mL. However, when a tablet or capsule is administered, some fluid is 

usually co-administered. In pharmacokinetic studies, this volume is often in the 200 to 250 mL 

range. Assuming secretions at a rate of just under 1 mL min-1, about 50 mL secretions are 

expected within 1 h, the longest period during which a fast disintegrating immediate release 

dosage form is expected to be totally emptied from the fasted stomach. Thus, a realistic volume 

to simulate the total fluid available in stomach would fall in the range of 250 to 300 mL27. 

Vertzoni et al. developed a SGF that more adequately reflects the physiological conditions of 

the fasted state. This medium contains pepsin and low amounts of sodium taurocholate (Note 3) 

and lecithin (Note 4). The use of sodium lauryl sulphate (SLS), the most used artificial surfactant 

in dissolution testing, is inconvenient because it hydrolyses in solutions having pH lower than 4, 

leading to inconsistent medium composition. Also, it interacts with gelatine at pH values lower 

than 5 making its use with gelatine capsule products problematic27. 

- Note 3: Sodium taurocholate (NaTC) is the sodium salt of taurocholic acid, a bile acid 

composed of cholic acid and taurine.28 It is the chief ingredient of the bile of carnivorous 

animals. It is also often used to solubilize lipids and membrane proteins, as well as 

functioning as an activator during studies involving different types of lipases29. 

- Note 4: Lecithin is a generic term to designate any group of yellow-brownish fatty 

substances (mixtures of glycerophospholipids) occurring in animal and plant tissues, 

which are amphiphilic. It has low solubility in water but is an excellent emulsifier because 

its phospholipids can form either liposomes, bilayer sheets, micelles, or lamellar 

structures, depending on hydration and temperature. It is available from sources such 

as soybeans, eggs, milk, rapeseed, cottonseed and sunflower30. 
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Unfortunately, Vertzoni et al. do not describe the preparation of the simulated media and only 

indicates the final concentrations and physicochemical properties of the 500 mL solution. 

Nevertheless, the standard procedure could be followed, dissolving the reagents in 475 mL of 

deionized water into a 500 mL volumetric flask, adjusting the pH using concentrated HCl and 

finally adjusting the volume to the mark. 

FeSSGF 

A major issue when trying to simulate the intragastric environment in the fed state is the 

composition change with time as digestion proceeds and emptying occurs. Media that simulates 

the initial composition after food intake include full-fat milk (3.5%), which simulates a light meal, 

and Ensure Plus, which has physicochemical properties similar to those of a standard meal18. 

One way of modelling composition changes is to develop “snapshot” media, each 

corresponding to a certain time after ingestion of the meal. The composition of each snapshot 

medium is calculated to reflect the properties of the gastric aspirates during the first 75 min (early), 

from 75 to 165 min (middle), and 165 min (late) after meal ingestion (Table 4)18. 

Table 4. Reagents compositions of FeSSGF snapshots. 

Composition Early [mM] Middle [mM] Late [mM] 

NaCl 148 237.2 122.6 

Acetic acid - 17.12 - 

Sodium acetate - 29.75 - 

Orthophosphoric acid - - 5.5 

Sodium dihydrogen phosphate - - 32 

Milk/Buffer 1:0 1:1 1:3 

HCl To pH adjust To pH adjust To pH adjust 

Physicochemical properties    

Buffer capacity [mmol L-1 ∆pH-1] 21.33 25 25 

Osmolality [mOsm kg-1] 559 400 300 

pH 6.4 5 3 

6.2.3. Product suppliers 

Researching on SGF suppliers none for the fed state has been found, but one for the fasted 

state is available: Biorelevant (Table 5 ).  
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Table 5. General product data (SGF) 

Product Supplier Powder weight Solution volume Price Product Code 

FaSSGF Biorelevant 5.8 g 93 L 99.99 € FFF01 

It is important to emphasize the preparation method in Biorelevant’s solution because the 

solid powder contains phospholipids and surfactants but, as indicated in their web page31, needs 

to be dissolved in purified water, the addition of sodium chloride and the adjustment to the 

indicated pH with hydrochloric acid 1M. This same web side calculates the amounts of each 

component (FaSSGF and buffer solution) needed for a desired volume of solution. Furthermore, 

all the information about the procedure can be required to the brand and is sent to the purchaser 

by e-mail. Table 6 contains the concentration of Biorelevant’s FaSSGF after preparation. 

6.2.4. Comparison 

To  facilitate  the  comparison  between  the  HGF,  the  laboratory preparation by Vertzoni et 

al. and the Biorelevant’s product, the sodium concentration in the Vertzoni et al. solution (Table 

6) has been deducted from the NaCl and NaTC ones, and the chloride concentration has been 

set as “to pH adjust”, due to its dependence on the HCl used to simulate the biological pH. 

Table 6. Composition and physicochemical properties of HGF and FaSSGFs. 

Components HGF [mM] Vertzoni et al. [mM] Biorelevant [mM] 

Bile salts 0.08 0.08 0.08 

Phospholipids N.A. 0.02 0.02 

Pepsin 0.8 mg mL-1 0.1 mg mL-1 - 

Human Gastric Lipase 0.1 mg mL-1 - - 

Protein Content 4.9 ± 1 g L-1 - - 

Sodium 70 34.28 34 

Chloride 100 To pH adjust 59 

Calcium 0.6 - - 

Potassium 15 - - 

Physicochemical properties 

Surface Tension [mN m-1] 36–51 42.6 N.A. 

Osmolality [mOsm kg-1] 191 ± 36 120.7 ± 2.5 N.A. 

Buffer capacity [mmol L-1 ∆pH-1] 14.3 ± 9.3 N.A. N.A. 

pH 1.5–1.9 1.6 1.6 
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Regarding the composition of the mediums, phospholipids (lecithin) are used (in combination 

with NaTC and pepsin) to achive a surface tension lowering effect, avoiding the use of the artificial 

surfactant SLS. NaTC is included in both preparations following the physiological bile salts data. 

As can be observed, the presence of pepsin is the main difference between the laboratory 

preparation proposed and the Biorelevant’s media. The addition of pepsin was neither done in 

the prevoius United States Pharmacopeia’s (USP) SGFs, but Vertzoni et al. considered that it 

may improve dissolution characteristics. 

According to Vertzoni et al.27, HGL basal concentration is about 0.1 mg mL-1 and, taking into 

account the dilution effect and the fact that gastric lipase is active at pH values between 3 and 6, 

the presence of this enzyme is unlikely to be important to drug dissolution in the fasting state. 

Therefore, this enzyme is not included in the laboratory and suppliers preparations. Similary, the 

protein content is not reproduced, maybe due to the variability of HGF availiable data.  

Concerning electrolytes, the sodium concentration in both simulations is half the concentration 

measured in HGF. Chloride depends on the pH adjustment in the Vertzoni et al. preparation but, 

due to its similarity with Biorelevant’s simulated fluid, an aproximation to this last SGF can be 

done. Anyway, both SGF contain a lower concentration than HGF. In none of the reviewed 

papers25,27,32 there is an explanation for this fact, although in Jantratid et al.33 study, the amount 

of NaCl needed to adjust the medium to the physiologic osmolality is calculated on the basis of 

the freezing-point depression and refined experimentally. Finally, calcium and potassium are not 

included in the simulations reagents lists because of their minor presence and effect.  

In the case of the physicochemical properties, Biorelevant’s FaSSGF only provides the pH 

value, which in fact is comprised for the 1.5 to 1.9 interval value measured in HGF. Finally, in the 

Vertzoni et al. solution, the pH and the surface tension values coincide with the HGF ones and 

the buffer capacity of the FaSSGF is not mentioned in this study. 
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6.3. SIMULATED INTESTINAL FLUID (SIF) 

The intestines are a long, continuous tube running from the stomach to the anus and include 

the small intestine, large intestine, and rectum. Most absorption of nutrients and water happen in 

the intestines. The SIF refers to the human small intestine fluids; the human large intestine fluids 

are described by the simulated colonic fluid, which will be studied further in this work. 

Figure 4. Small intestine division and near organs representation. 

The small intestine is about 20 feet long and about an inch in diameter and is divided into the 

duodenum, jejunum, and ileum (Figure 4)34. The muscles of the small intestine mix food with 

digestive juices from the pancreas, liver and intestine to complete the breakdown of proteins, 

carbohydrates, and fats. Bacteria in the small intestine make some of the enzymes needed to 

digest carbohydrates. The walls of the small intestine absorb water and the digested nutrients into 

the bloodstream. Later, the small intestine pushes the mixture forward for further digestion using 

a movement called peristalsis35. 

6.3.1. Biological composition 

The first step in simulating human intestinal fluids (HIF) is to summarize all relevant available 

data from the literature. Regarding the components, the three main bile salts species (about 70% 

to 75%) in the fasted-state HIF are NaTC, glycocholate, and glycochenodeoxycholate37. Next to 

the bile salts, the most important natural surfactants are the phospholipids, which are secreted 

with the bile into the duodenum36. The predominant phospholipids found in the human gut are 

phosphatidylcholine and especially its hydrolysis product lysophosphatidylcholine. In addition, 

 



Determination of parameters of pharmaceutical interest in biological media  31 

 

Persson et al.37 reported other components that can also be found in fasted HIF, such as 

cholesterol and free fatty acids. Furthermore, comparing literature data on pancreatin levels, three 

sources reported lipase levels in the fed state33. Pancreatin is a mixture of several digestive 

enzymes produced by the exocrine cells of the pancreas and is composed of amylase, lipase and 

protease38. 

Finally, Lindahl et al.32 evaluated the composition of fasted-state human jejunal fluid in 24 

volunteers (12 males and 12 females) and found high concentrations of sodium and chloride and 

lower amounts of potassium and calcium36. 

 About the physicochemical properties, the pH value in the duodenum was determined to be 

6.5. Consequently, it is slightly lower than the pH value for the jejunum, where the pH was 6.8. 

An important consideration is the possibility of a change of the pH in the small intestine during the 

dissolution of a drug because of the low buffer capacity of HIF reported by Bergström et al.39. This 

could potentially have a dramatic effect on the solubility of acidic and basic compounds.  

The surface tension of a medium has a key influence on the wetting behaviour of poorly 

soluble drugs and thus on their dissolution rate. This is influenced by the qualitative and 

quantitative composition of all amphiphilic structures in the medium and reflects the sum 

composition of different kinds of various bile salts, phospholipids, and their hydrolysis products 

(e.g., free fatty acids) and cholesterol36. The values of the reported parameters in this section and 

other properties, as osmolarity and ionic strenght, can be inquired in the Table 9 on the 

Comparison section. 

6.3.2. Laboratory preparation 

Again, before discussing about the solution preparation, is necessary to determine the volume 

needed to simulate the conditions in the small intestine. According to literature, to simulate fasted 

conditions in the small intestine, a volume of up to 200 mL would be appropriate. Volumes of up 

to one litter would be recommended for the fed-state small intestine36. In the proceeding pages, 

novel fasted and fed states SIFs preparations are presented, completed with a summary table to 

quickly examine reagents and physicochemical properties. 

FaSSIF-V2 

To update the simulation of fasted state conditions in HIF, only minor changes to previous 

used FaSSIF are necessary (Table 9, on Comparison section). The amount of lecithin is 
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decreased from 0.75 mM to 0.2 mM, the osmolality is somewhat lower in accordance with in vivo 

data and the pH of 6.5 is maintained, with substitution of phosphate buffer for maleate buffer33. 

To prepare 1 L of FaSSIF-V2, the same procedure than described later for the fed state can be 

followed, excluding steps 5 and 6, where glyceryl monooleate and sodium oleate are added. 

FeSSIF-V2 

The composition of the intestinal fluids changes over time in the fed state. Therefore, three 

“snapshot” media were developed to reflect conditions in the upper small intestine during the 

digestion process. Their compositions are indicated in Table 7.  

NaTC was used to represent the bile salts due to its comparatively low pKa value and hence 

good solubility at all pH values under consideration. To prepare 1L of medium this procedure was 

followed33: 

1. Prepare 900 mL blank buffer using amounts of NaCl, maleic acid and NaOH calculated 

for 1 L of medium. Adjust the pH to the target pH. 

2. Transfer 500 mL of this “blank” buffer into a 1 L round-bottom flask. 

3. Dissolve NaTC in the blank buffer by continuous stirring, and add a freshly prepared 

solution of lecithin in dichloromethane (100 mg mL-1). This produces an emulsion, 

resulting in a turbid product. 

4. Drive off the dichloromethane, initially using a rotary evaporator and vacuum at 

approximately 40 °C for 15 min at 650 mbar. Decrease the pressure stepwise to the 

final pressure of 100 mbar, which is maintained for 15 min. This procedure results in a 

clear to slightly hazy, micellar solution, having no perceptible odour of dichloromethane. 

5. Then, add a freshly prepared solution of glyceryl monooleate in dichloromethane (50 

mg mL-1) and perform a second evaporation step. 

6. Next, add appropriate amounts of sodium oleate slowly into the micellar solution under 

continuous stirring.  

7. Finally, adjust the volume to 1 L after the final pH adjustment using the “blank” buffer 

and deionized water. 

Optionally, pancreatin can be incorporated into the fed state media right before the final pH 

adjustment. In this case, CaCl2 (5 mM) is added to the micellar solution just before the pancreatin 

to facilitate lipolysis. The amount of pancreatin added is based on the lipase activity needed for 

digestion of lipid in the medium and in the dosage form to be tested (100 lipase USP units mL-1). 
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A concentrated suspension of pancreatin is prepared by mixing pancreatin powder in deionized 

water to obtain a lipase activity of 10.000 U mL-1. The suspension is then centrifuged at 5 °C for 

15 min at 4.000 rpm, 20 mL of the supernatant are added, and the final volume of the medium is 

adjusted to 1 L33. 

Table 7. Composition and physicochemical properties of FeSSIF snapshots and FeSSIF-V2.  

Composition 
Early 

  FeSSIF [mM] 
Middle 
FeSSIF [mM] 

Late 
FeSSIF [mM] 

FeSSIF-V2 [mM] 

Bile salts (NaTC) 10 7.5 4.5 10 

Phospholipids (lecithin) 3 2 0.5 2 

Glyceryl monooleate 6.5 5 1 5 

Sodium oleate 40 30 0.8 0.8 

Maleic acid 28.6 44 58.09 55.02 

Sodium hydroxide 52.5 65.3 72 81.65 

Sodium chloride 145.2 122.8 51 125.5 

Physicochemical properties     

Osmolarity [mOsm kg-1] 400 ± 10 390 ± 10 240 ± 10 390 ± 10 

Buffer Capacity [mmol L-1 ∆pH-1] 25 25 15 25 

pH 6.5 5.8 5.4 5.8 

Addition of pancreatin (and CaCl2) is optional (see text). 

6.3.3. Product suppliers 

On the next Table 8 some data of different suppliers SIFs is shown. The same Product Code 

can be noticed for both Biorelevant FaSSIF and FeSSIF (also for the previous studied Biorelevant 

FaSSGF), because the three of them are prepared from the same product but dissolved in a 

different buffer solution. 

Table 8. General product data (SIF) 

Product Supplier Powder weight Solution volume Price Product Code 

FaSSIF Biorelevant 5.8 g 2.5 L 99.99 € FFF01 

FaSSIF-V2 Biorelevant 4.6 g 2.5 L 99.99 € V2FAS01 

FeSSIF Biorelevant 5.8 g 0.5 L 99.99 € FFF01 

FeSSIF-V2 Biorelevant 5.0 g 0.5 L 99.99 € V2FES01 

SIF-Test Solution RICCA - 1 L 92.39 € R7109000-1A 
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RICCA’s product consist on an aqueous solutions containing 0.68% (w/w) potassium 

dihydrogen phosphate, 0.06% (w/w) sodium hyroxide, and pancreatin at 1% (w/w). Regarding the 

studied literature33,36,40 about the HIF biological composition, the presence of pancreatin is 

mentioned only for the fed state. Similary, pancreatin is only used for laboratory preparation on 

fed states33. As RICCA’s medium does not differ between fasted and fed state, the use of 

pancreatin, the main enzyme responsible for lipid digestion, to assess the dissolution of lipid-

based drugs is comprensible. Nevertheless, as only the fasted state for HIF ans SIFs is compared, 

RICCA’s product will not be further studied.  

Biorelevant’s products data has been acquired from the Composition section of the web site31. 

Due to its improvement with respect to the previous versions, FaSSIF-V2 and FeSSIF-V2 have 

been selected for the present study. 

It is needed to highlight that these two Biorelevant’s products, FaSSIF-V2 and FeSSIF-V2, 

when prepared present the same composition than the ones with the same name described in 

the laboratory preparation earlier in this chapter, respectively. This could mean that both are 

based on the same literatutre reports, or that Biorelevant’s products are based in Jantratid et al. 

studies33. One way or another, the values of FaSSIF-V2 have been merged in one column to 

avoid repetitions in the following Comparison section, and the composition of FeSSIF-V2 can be 

extracted from the prevoius Table 7.  

6.3.4. Comparison 

The first difference to be noticed in Table 9 is that fasted-HIF is divided in two columns 

(duodenum and jejunum) but FaSSIF-V2 is not. Therefore, as the simulated fluid tries to be 

representative of both small intestine parts, if values in duodenum and jejunum are different these 

are treated as an interval. For example, bile salts concentration in fasted HIF is from 3 to 3.3 mM. 

Regarding the components of the mediums, for FaSSIF-V2 the phospholipids (lecithin) and 

bile salts (NaTC) concentrations are really suitable for the simulation of fasted HIF. These two 

components have a larger concentration and effect on the physicochemical properties than others 

like cholesterol and free fatty acids, so the last ones are not included. The same reasoning is 

done on calcium and potassium that are excluded from de recipe.  

Sodium and chloride concentrations are (like in the studied FaSSGF) lower than the 

physiological ones. This could be due to the conversion of different salts to the chloride salt 
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investigated by Li et al.41, which slowed dissolution due to a common ion effect observed at higher 

chloride ion concentrations. 

Table 9. Composition and physicochemical properties of HIF and FaSSIF-V2. 

Components 
Fasted-HIF [mM] 

FaSSIF-V2 [mM] 
Duodenum Jejunum 

Bile salts 3.3 3 3 

Phospholipids 0.26 0.19 0.2 

Cholesterol 0.08 - 

Free fatty acids 0.1 - 

Sodium 142 ± 13 106 

Chloride 126 ± 19 69 

Calcium 5.4 ± 2.1 - 

Potassium 0.5 ± 0.3 - 

Maleic acid N.A. 19 

Physicochemical properties 

Surface tension [mN m-1] 33.8 54.3 

Ionic strength [mM] 0.139 N.A. 

Osmolarity [mOsm Kg-1] 197 264 180 ± 10 

Buffer Capacity [mmol L-1 ∆pH-1] 5.6 to 8.5 4 10 

pH 6.5 6.8 6.5 

Finally, to maintain the desired pH, maleic acid is used in FaSSIF-V2. With a pKa2 of 6.27 (the 

first pKa is at 1.92 and therefore irrelevant for buffering at intestinal pH values), appropriate buffer 

capacities can be achieved over the required pH range of 5.4 to 6.5 covering both fasted and fed 

state media without exceeding the physiologically relevant osmolarity33. 

Concerning the physicochemical properties, the ionic strenght of FaSSIF-V2 is not availiable. 

The surface tension is higher in the simulated media than in fasted HIF, probably because the 

human fluid contents more molecules with capacity to act as surfactants than the ones studied or 

presented in the studies.   

The osmolarity in duodenum and jejunum differs considerately, but the one in FaSSIF-V2 is 

very similar to the duodenum one. The buffer capacitty in the simulated media is higher than in 

the human fluids, but this difference is short enough to not interfere in pharmacokietic testings. 

The pH, otherwise, does not present rellevant differences.  
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6.4. SIMULATED COLONIC FLUID (SCOF) 

The colon, also called large intestine, is about 5 feet long and about 3 inches in diameter. The 

ileum (last part of the small intestine) connects to the cecum (first part of the colon) in the lower 

right abdomen. The rest of the colon is divided into four parts: the ascending, transverse, 

descending and sigmoid colon (Figure 5)42. 

                        Figure 5. Colon representation and division 

The colon removes water, salt, and some nutrients forming stool. Billions of bacteria coat the 

colon and its contents, living in a healthy balance with the body42. Colon-specific drug delivery 

usually focuses on the treatment of its local disorders, but it can also be used as an absorption 

site for the delivery of drugs to the systemic circulation. Although absorption from the colon is 

generally much lower than from the small intestine, systemic drug delivery via the colon has some 

advantages such as prolonged residence time, avoidance of hepatic first-pass effect, relatively 

low enzyme secretion, and low activity of proteolytic enzymes18. 

6.3.1. Biological composition 

About 1 or 1.5 L of a nearly isotonic fluid enters the colon daily. Most of the fluid is absorbed, 

so the volume excreted in feces is only about 50 to 200 mL18. Total bile acid concentration in the 

fasted state is significantly lower than in the fed state. The same relation is followed by 

concentration values of phosphatidylcholine, cholesterol and long chain fatty acids (palmitic acid, 

linoleic acid and oleic acid) in the fasted and in the fed state43. 
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Relevant carbohydrate and protein levels were determined in the HCoF, for both fasted and 

fed states. All seven short-chain fatty acids (SCFAs) were quantified but acetate dominated. Mean 

total levels in the fed state are not significantly different from total SCFA levels in the fasted state43. 

With regard to electrolytes, SCFAs stimulate absorption of sodium and water, whereas chloride 

is absorbed in exchange for bicarbonate (secreted to neutralize the organic acids produced)18.  

Concerning the physicochemical properties, average pH values are 7.8 and 6.0 in the fasted 

and in the fed state, respectively. The mean surface tension value is significantly lower in the fed 

state than that in the fasted state. In the fed state, osmolality is higher than that in the fasted state.  

When measured with HCl, mean buffer capacity increase from the fasted state to the fed state 

and, when measured with NaOH, the mean values for both are much lower43.  

The average values for physicochemical characteristics and composition of fluids of 

ascending colon of healthy adults are summarised in Table 11 for the fasted state and in Table 

12 for the fed state. 

6.4.2. Laboratory preparation 

Recently, Vertzoni et al.16 have developed media simulating the physicochemical 

characteristics of the ascending colon in the fasted and fed states. 

FaSSCoF 

To prepare 1L of medium the following procedure is used16:  

1. Prepare a TRIS/maleate buffer solution by dissolving 5.5 g of TRIS and 8.8 g of maleic 

acid in water. Adjust the pH to 7.8 with about 240 mL of 0.5 M sodium hydroxide, and 

adjust the final volume to 1 L with water. 

2. Transfer about 450 mL of this solution to a 1 L round-bottom flask, and add 0.113 g of 

bile salt extract.  

3. Prepare two separate solutions by dissolving 0.222 g of phosphatidylcholine and 0.026 

g of palmitic acid separately in 3 mL of dichloromethane each.  

4. Transfer these two solutions (3 mL each) into the round-bottom flask. Evaporate the 

dichloromethane under vacuum at 40 °C until obtaining a clear solution having no 

perceptible odor of dichloromethane.  
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5. Adjust the volume of the solution to 1 L with TRIS/maleate buffer, add 3 g of bovine 

serum albumin and dissolve it by gentle agitation with a magnetic stirrer. The final 

solution is lightly turbid.  

The resulting composition and physicochemical properties of this medium are listed in the 

Table 11 of the Comparison section. 

FeSSCoF 

To prepare 1L of medium the following procedure was used16:  

1. Prepare a TRIS/maleate buffer solution by dissolving 3.7 g of TRIS and 3.5 g of maleic 

acid in water. Adjust the pH to 6.0 with about 33 mL of 0.5 M sodium hydroxide, and 

adjust the final volume to 1 L with water.  

2. Transfer about 450 mL of this solution to a 1 L round-bottom flask, and add 0.451 g of 

bile salt extract.  

3. Prepare two separate solutions by dissolving 0.370 g of phosphatidylcholine and 0.051 

g of palmitic acid separately in 3 mL of dichloromethane each.  

4. Transfer these two solutions (3 mL each) into the round-bottom flask. Evaporate the 

dichloromethane under vacuum at 40 °C until obtaining a clear solution having no 

perceptible odor of dichloromethane.  

5. Adjust the volume of the solution to 1 L with TRIS/maleate buffer, add 2 g of sodium 

chloride, 14 g of glucose, and 3 g of bovine serum albumin and dissolve them by gentle 

agitation with a magnetic stirrer. The final solution is lightly turbid.  

The resulting composition and physicochemical properties of this medium are listed in the 

Table 12 of the Comparison section. 

6.4.3. Product suppliers 

When researching on SCoF suppliers, only Biorelevant commercially prepares it. This brand 

provides both fast state and fed state SCoF. On the next Table 10 some basic information about 

these products is shown. Composition values are described on the Comparison section, in Table 

11 for the fasted state and on Table 12 for the fed one. 
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Table 10. General product data (SCoF) 

Product Supplier Powder weight Solution volume Price Product Code 

FaSSCoF Biorelevant 3.4 g 10 L 179.99 € COFAS01 

FeSSCoF Biorelevant 7.4 g 10 L 179.99 € COFES01 

The preparation of the Biorelevant’s products requires, on one side the brand’s powder and, 

on the other, the buffer components such as sodium hydroxide pellets, maleic acid, TRIS base 

and purified water. 

6.4.4. Comparison 

Concerning the SCoFs, both fasted (Table 11) and fed (Table 12) states for lab-prepared and 

supplied are included for comparison.  

Table 11. Composition and physicochemical properties of fasted HCoF and FaSSCoFs. 

Components Fasted HCoF 
Vertzoni et al. 
FaSSCoF 

Biorelevant’s 
FaSSCoF 

Bile acids [µM] 115 150 150 

Phospholipids [µM] 362 300 300 

Cholesterol [µM] 594 - - 

Long chain fatty acids [µM] 120 100 100 

Total carbohydrates [mg mL-1] 8.1 - - 

Proteins [mg mL-1] 9.7 3 - 

Sodium hydroxide [mM] N.A. 120 120 

Maleate [mM] N.A. 76 76 

TRIS [mM] N.A. 45 45 

Physicochemical properties 

Surface tension [mN m-1] 42.7 51.4 N.A. 

Osmolarity [mOsm Kg-1] 81 196 N.A. 

Buffer Capacity [mmol L-1 ∆pH-1] 21.4 / 10.3 26 / 16 N.A. 

pH 7.8 7.8 7.8 

As it can be observed, bile acids ans phospholipids concentrations are similar to those in 

fasted HCoF, as well as long chain fatty acids (yet Vertzoni et al.16 use palmitic acid and 

Biorelevant uses oleate). Glucose is not included because it would have raised even more the 

osmolarity in FaSSGF, but it is added to the FeSSCoF to HCoF levels. Cholesterol is not included 
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in either FaSSCoF or FeSSCoF, based on earlier observations that bile salts and phospholipids 

promote cholesterol crystallization16.  

Surface tension values for the laboratory medias are comparable to those for the respectives 

HCoFs, and pH values in all SCoFs agree with the biological ones. Since the required pH and 

buffer capacity levels can not be achieved by using biorelevant buffer species (e.g. short chain 

fatty acids), TRIS/maleate buffer systems are used in FaSSCoF and FeSSCoF in both Vertzoni 

et al. and Biorelevant medias, and the pHs are adjusted with NaOH and HCl in the last one.  

Table 12. Composition and physicochemical properties of fed HCoF and FeSSCoF. 

Components Fed HCoF 
Vertzoni et al. 
FeSSCoF 

Biorelevant’s 
FeSSCoF 

Bile acids [µM] 587 600 600 

Phospholipids [µM] 539 500 500 

Cholesterol [µM] 1502 - - 

Long chain fatty acids [µM] 225 200 200 

Total carbohydrates [mg mL-1] 14 14 - 

Proteins [mg mL-1] 6.9 3 - 

Sodium hydroxide [mM] N.A. 16.5 34 

Sodium chloride [mM] N.A. 34 - 

Maleate [mM] N.A. 30 30 

TRIS [mM] N.A. 31 31 

Physicochemical properties 

Surface tension [mN m-1] 39.2 50.4 N.A. 

Osmolarity [mOsm Kg-1] 227 207 N.A. 

Buffer Capacity [mmol L-1 ∆pH-1] 37.7 / 16.4 15 / 14 N.A. 

pH 6.0 6.0 6.0 

Total protein content in HCoF corresponds to the sum of peptides and proteins. Based on this 

analysis43, a single protein (bovine serum albumin) at a concentration lower than the measured 

total protein content is incorporated in Vertzoni et al. FaSSCoF and FeSSCoF16. Finally, in both 

FaSSIFs a large amount of NaCl is added even exceeding the fasted HCoF osmolarity. In 

contrast, NaCl is added in Vertzoni et al. as to adjust it to the fed HCoF osmolarity. 
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6.5. DRUG PROPERTIES IN BIORELEVANT MEDIA 

The Biopharmaceutics Classification System (BCS) is a scientific framework for classifying 

drug substances based on their aqueous solubility and intestinal permeability. According to the 

BCS, a drug substance is considered highly soluble when the highest dose strength is soluble in 

250 ml water over a pH range 1 to 7.5. At the same time, a drug is considered highly permeable 

when the extent of absorption in humans is determined to be 90% of an administered dose, based 

on the mass balance or in comparison to an intravenous dose.  

The BCS defines four major classes (Table 13). Class I drugs have the optimal properties for 

oral administration, most of the actual drugs are classified as Class II or Class III tough. According 

to Box et al.44 studies, molecules in Class I and Class III tend to have solubilities higher than logS0 

of - 4, and molecules in Class I and Class II tend to have logP higher than 1.2. 

Table 13. Biopharmaceutics classification system 

Solubility 
Permeability 

High Low 

High Class I Class III 

Low Class II Class IV 

The BCS is based on aqueous solubility, but different and more accurated results and 

classification would be reached if solubility testing was done in biorelevant media. There has been 

an increasing interest in studying the properties of drugs in biorelevant media, and up to now the 

solubility has been the most considered one. Comparison studies between solubility values and 

drug behaviour in water and biorelevant media had been conducted, and they often show an 

increase of drug solubility in biorelevant media45,46,47. The different behaviour could be due to 

interactions of the drug with the components of the biorelevant media. 

For example, in Table 14 a description of earlier studied FaSSIF and FeSSIF is shown. These 

fluids consist of bile salts, phospholipids, inorganic salts and buffers. Therefore, one or more of 

these components may be responsible for the drug ADMET properties variation. As commented 

earlier in this work, bile salts are natural surfactants that aggregate in aqueous solutions to form 

micelles. In the presence of phospholipids and their hydrolysis products as well as glycerol, free 

fatty acids, and cholesterol, they can form mixed micelles. These are more stable and have a 
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higher solubilization capacity than micelles that contain only bile salts. Poorly water-soluble 

compounds are often well solubilized in mixed micelles, the prevalent micellar species in HIF36. 

Table 14. Description of FaSSIF-V2 and FeSSIF-V2 

Components FaSSIF-V2 [mM] FeSSIF-V2 [mM] 

Bile salts 3 10 

Phospholipids 0.2 2 

Sodium 106 81.65 

Chloride 69 125.5 

Maleic acid 19 55.02 

Glyceryl monooleate - 5 

Sodium oleate - 0.8 

pH 6.5 5.8 

The critical micelle concentrations (CMCs) of bile salts are from 3.0 to 12.0 mM in aqueous 

medium. The CMC is defined as the concentration of the surfactant at which the surfactant starts 

to aggregate forming micelles, therefore, the presence of bile salts micelles can be expected in 

low quantities on FaSSIF and in higher amounts in FeSSIF (Table 14). Furthermore, in Zhou et 

al.48 studies, the CMC value of phosphatidylcholin-sodium deoxycholate mixed micelles is 

approximately 0.31 mM, much less than the CMC of mono-component sodium deoxycholate 

solution (3 mM). 

 This results, considering that the PL and BS used are similar than the ones in SIFs but at 

different concentrations, lead to the conclusion that mixed micelles form at earlier concentrations 

than BS micelles. Taking into account the concentration of phospholipids in both media, the SIFs 

micelles can be assumed to exist in phospholipid-bile salts-mixed micelles (PL-BS-MMs) form. 

Moreover, the presence of fatty material (glyceryl monooleate and sodium oleate) in FeSSIF 

significantly decreases the surface tension, indicating a higher interaction with the surfactants49. 

In conclusion, the hydrophobic core of micelles can accommodate high concentration of 

hydrophobic drugs and, therefore, modify ADMET-related parameters. This solubilizing effect of 

PL-BS-MMs as additive components of biorelevent media can be expressed by the solubility ratio 

(SR: Sbiorelevan mediat / Sblank buffer)45.  

Further works on ADMET properties in biorelevant media must be carried out. For example, 

not many studies concern the variation of pKa values between water and biorelevant media.  
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However, pKa determination in biorelevant media is of outmost importance because its value is 

used for the evaluation of other ADMET properties such as solubility or lipophilicity. Nowadays, 

the pKa value used is the one determined in water but, as stated before, the ionization in different 

media can significantly differ.





Determination of parameters of pharmaceutical interest in biological media  45 

 

7. CONCLUSIONS 

To improve the prediction of in vivo performance of pharmaceutical dosage forms, in vitro 

testing must simulate the best the biological environment. In this sense, the use of biorelevant 

media for in vitro testing in drug discovery and preclinical research is more adequate than more 

simple media like aqueous buffer solutions. 

In this work, the most important simulated biological fluids have been described, initially with 

a research on the composition of the respective human biological fluids and their properties, 

succeeded by the preparation of biorelevant media in the laboratory from their reagents or form 

the commercially available products. Concerning these simulated biological fluids:  

- An effective laboratory preparation of SHF has been described and compared to the 

human fluid. None supplier has been found.  

- Two resembling FaSSGFs have been reported, one requiring a complete preparation and 

the other prepared from a commercial product. A laboratory preparation for three FeSSGF 

snapshots media has been also described. 

- Two FaSSIF preparations have been reported, from the reagents and from a commercial 

product. Four lab-prepared FeSSIFs (1 global and 3 snapshots) have been detailed. 

- Four SCoFs have been reported, two for the fasted state and two for the fed state. For 

the two different states, also two possible preparations, one complete and the prepared 

from a commercial product, have been recounted.  

In addition, the fasted states SGFs, SIF and SCoFs and the fed states SCoFs have been 

stated as highly equivalent to the respective human fluids, and the differences between them 

have been highlighted and reasoned.   

Finally, the influence of the medium to the ADMET drug properties has been discussed. The 

comparison is focused on the difference when performing the studies in traditional medium and 

in biorelevant media such as FaSSIF and FeSSIF. It has been shown that these properties are 

often influenced by the medium due to the interaction of its components with the drugs. In 

concrete, the formation of phospholipid-bile salts-mixed micelles in biorelevant media and the 

partition of the drug between the lipophilic interior of the mixed micelles and the external aqueous 

solution are related to the ADMET properties variations. 
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9. ACRONYMS 
EMA - European Medicines Agency 

FDA - American Food and Drug Administration 

ADMET - Absorption, Distribution, Metabolism, Excretion and Toxicity 

IND - Investigational New Drug 

GLP - Good Laboratory Practice 

AEs - Adverse Effects 

HPLC - High Performance Liquid Chromatography 

UV - Ultraviolet 

DDIs - Drug-Drug Interactions 

ITC - Isothermal Titration Calorimetry 

TRIS - Tris(hydroxymethyl)aminomethane 

SHP - Simulated Human Plasma 

SGF - Simulated Gastric Fluid 

HGF - Human Gastric Fluid 

HGL - Human Gastric Lipases 

FaSSGF - Fasted State Simulated Gastric Fluid  

FeSSGF - Fed State Simulated Gastric Fluid 

SLS - Sodium Lauryl Sulphate 

NaTC - Sodium Taurocholate 

USP - United States Pharmacopeia 

SIF - Simulated Intestinal Fluid 

HIF - Human Intestinal Fluid 

FaSSIF – Fasted State Simulated Intestinal Fluid 

FeSSIF – Fed State Simulated Intestinal Fluid 

SCoF - Simulated Colonic Fluid 

SCAFs - Short Chain Fatty Acids 

FaSSCoF – Fasted State Simulated Colonic Fluid 

FeSSCoF – Fed State Simulated Colonic Fluid 

BCS - Biopharmaceutics Classification System 

CMC - Critical Micelle Concentration 

PL-BS-MMs – Phospholipids-Bile Salts-Mixed Micelle 


