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SUMMARY

Circulating levels of undercarboxylated and bioac-
tive osteocalcin double during aerobic exercise at
the time levels of insulin decrease. In contrast, circu-
lating levels of osteocalcin plummet early during
adulthood in mice, monkeys, and humans of both
genders. Exploring these observations revealed
that osteocalcin signaling in myofibers is necessary
for adaptation to exercise by favoring uptake and
catabolism of glucose and fatty acids, the main nutri-
ents of myofibers. Osteocalcin signaling in myofibers
also accounts for most of the exercise-induced
release of interleukin-6, a myokine that promotes
adaptation to exercise in part by driving the genera-
tion of bioactive osteocalcin. We further show
that exogenous osteocalcin is sufficient to enhance
the exercise capacity of young mice and to restore
to 15-month-old mice the exercise capacity of
3-month-old mice. This study uncovers a bone-to-
muscle feedforward endocrine axis that favors adap-
tation to exercise and can reverse the age-induced
decline in exercise capacity.

INTRODUCTION

The ability to perform exercise is an evolutionary conserved

function that has been essential for the survival of most verte-

brates and nowadays has significant health benefits (Neufer

et al., 2015; Zierath and Wallberg-Henriksson, 2015). During

exercise, muscle function needs to significantly increase; this re-
1078 Cell Metabolism 23, 1078–1092, June 14, 2016 ª 2016 Elsevier
quires that the uptake and catabolism of the two main nutrients

of myofibers, glucose and fatty acids (FAs), markedly rise (Haw-

ley et al., 2014). As an anabolic hormone, insulin promotes

glucose uptake in myofibers and stores it in the form of glycogen

post-prandially (Saltiel and Pessin, 2002). However, insulin does

not promote glucose catabolism, and its circulating levels

decline during exercise (Coderre et al., 1995; Lund et al.,

1995). This suggests that the rise in nutrient uptake and in their

catabolism inmuscle that occurs during exercisemay be favored

by other secreted molecules, myokines (Catoire and Kersten,

2015) or hormones, the circulating levels of which would in-

crease during exercise. Conceivably, myokines and hormones

may cooperate to favor adaptation to exercise.

The ability of bone to sense mechanical forces, the physical

proximity of the two tissues, and the fact that exercise capacity

and bone mass decline at the same time have long suggested

that a crosstalk between bone and muscle may exist (Novotny

et al., 2015). The recent identification of bone-derived hormones

and of their receptors allows us to test if bone regulates muscle

function at rest or during exercise and to elucidate the molecular

bases of this function. Another reason to ask this question arises

from a feature of the bone-derived hormone osteocalcin: this

hormone favors physiological functions that, like memory and

male fertility, greatly decline with age (Oury et al., 2011, 2013).

This observation raises the possibility that osteocalcin may regu-

late other physiological processes severely affected by aging,

such as muscle function during exercise (Partridge and Gems,

2002).

In testing this hypothesis, we observed that the circulating

levels of osteocalcin double during endurance exercise in young

adult wild-type (WT) mice, decrease sharply before or around

mid-life in all species tested, and do not increase during exercise

in older mice to the same extent as in young mice. Exploring

these observations revealed that osteocalcin signaling in
Inc.
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myofibers favors adaptation to exercise in part because it pro-

motes the uptake and catabolism of glucose and FAs. These

observations explain why exogenous osteocalcin restores the

exercise capacity of 15-month-old mice to that of 3-month-old

mice. In addition to its regulation of nutrient uptake and catabo-

lism, osteocalcin signaling in myofibers is also responsible for

most of the exercise-induced increase in the circulating levels

of interleukin-6 (IL-6), a myokine that promotes adaptation to

exercise in part by increasing the production of bioactive osteo-

calcin. Hence, a feedforward regulation linking together the

endocrine functions of bone and muscle appears to be neces-

sary and sufficient to favor adaptation to exercise.

RESULTS

Regulation of Osteocalcin by Exercise and Age
The growing number of functions ascribed to osteocalcin (Kar-

senty and Olson, 2016) raises the question of whether the circu-

lating levels of this hormone change in various physiological

situations. This analysis revealed that a single bout of endurance

aerobic-based exercise (40 min run on a treadmill at 30 cm/s,

80% VO2 max, thereafter referred to as exercise) increased

circulating osteocalcin levels of total, undercarboxylated, and

bioactive 2-fold in 3-month-old WT mice, while at same time

the circulating levels of insulin decreased. This increase in the

circulating levels of bioactive osteocalcin was due in part to an

increase in bone resorption, the arm of bone remodeling that is

responsible for osteocalcin decarboxylation and activation (Fer-

ron et al., 2010) (Figures 1A–1C). Circulating osteocalcin levels

also significantly increased in young women after a 45 min-

long exercise (Figure 1D).

In contrast, circulating osteocalcin levels greatly decreased in

all species tested in another physiological situation, aging.

Indeed, whether we measure total or undercarboxylated circu-

lating osteocalcin, these levels decreased by 70% in male and

female mice between 2 and 9 months of age. This was due to

a decline in Osteocalcin expression and in bone formation as

measured by serum PINP levels (Figures 1E–1H). This decrease

in circulating osteocalcin levels occurs at the time the ability of

mice to perform exercise declines, and circulating osteocalcin

levels do not increase to the same extent in 6- or 12-month-old

mice as in 3-month-old mice during exercise (Figures 1I and

1J). The same decrease in circulating osteocalcin levels was

seen in male and female rhesus monkeys between young (2–3
Figure 1. Regulation of Circulating Osteocalcin Levels by Exercise and
(A) Serum total osteocalcin (Ocn) and insulin (Ins) levels in 3-month-old mice at r

(B) Serum undercarboxylated Ocn (uncarb Ocn) levels in 3-month-old mice at re

(C) Serum CTX levels in 3-month-old mice at rest and after exercise.

(D) Serum OCN levels in women at rest and after exercise.

(E and F) Serum total and uncarb Ocn levels in female (E) and male (F) mice of v

(G) Serum PINP in mice of various ages.

(H) Osteocalcin (Ocn) expression in femur in mice of various ages.

(I) Performance during an endurance test (running on a treadmill at 30 cm/s until

(J) Serum uncarb Ocn levels in 3-, 6-, and 12-month-old female mice at rest and

(K) Serum total Ocn levels in 2- to 33-year-old female and male rhesus macaque

(L) Serum total OCN levels in women and men 11 to 78 years old.

(M–O) (M) Performance during an endurance test (running on a treadmill at 30 cm/s

with Ocn, and (O) 10-month-old WT mice receiving Ocn for 28 days.

(Exercise refers to 40 min running at 30 cm/s on a treadmill.) All data are presen
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years) and middle age (13–15 years) (Figure 1K). In humans,

circulating osteocalcin levels reach their lowest point before 30

years old in women and 50 years old in men (Figure 1L).

The increase of circulating osteocalcin levels during exercise,

and their decreasewith agewhen exercise capacity declines, led

us to test whether exogenous osteocalcin could increase the

exercise capacity of older WT mice. In a proof-of-principle

experiment, we first asked whether one intraperitoneal (i.p.) in-

jection of uncarboxylated mouse osteocalcin (osteocalcin)

(100 ng/g of body weight) immediately before exercise would

improve the exercise capacity of 3-month-old WT mice. This in-

jection raised circulating osteocalcin levels without affecting

those of insulin (Figures S1A and S1B, available online) and

increased the time and distance these mice run on the treadmill

at a constant speed (30 cm/s) before exhaustion by over 20%

(Figure 1M). In view of these results, 12- and 15-month-old WT

mice that have low circulating osteocalcin levels were injected

with osteocalcin (500 ng/g of body weight) prior to exercise.

This injection increased circulating osteocalcin levels more

than 4-fold and conferred to these older mice the ability to run

the same time and distance as 3-month-old untreated WT

mice (Figures S1C and 1N). Chronic delivery of osteocalcin

through mini-pumps (90 ng/hour) for 28 days also increased

circulating osteocalcin levels without affecting those of insulin

(Figures S1D and S1E), as well as the time and distance

10-month-oldWTmice run on a treadmill before exhaustion (Fig-

ure 1O). Thus, exogenous osteocalcin is sufficient to reverse the

age-induced decrease in exercise capacity in mice.

Osteocalcin Signaling in Myofibers Is Necessary for
Adaptation to Exercise
The observations presented above raised the question of

whether osteocalcin is necessary for adaptation to exercise.

Given the influence of testosterone on physical activity and the

low circulating testosterone levels in male Osteocalcin (Ocn)�/�

mice, this question was addressed in female mice.

When forced to run on a treadmill at a constant speed until

exhaustion, 3-, 6-, and 9-month-old Ocn�/� mice run 20% to

30% less time and distance than WT littermates (Figures 2A

and S2A). Since exercise capacity may vary even in genetically

identical animals, experiments testing exercise capacity were

conducted in several cohorts of control and mutant mice (n =

8–13 per group). This reflected the absence of a signaling event

from bone to muscle since the same decline in exercise capacity
Age
est or after exercise.

st (�1) and 0, 1, 2, and 4 hr after exercise.

arious ages.

exhausted) of 3-, 6-, and 12-month-old female WT mice.

after exercise.

monkeys.

until exhausted) of 3-month-old and (N) 12- and 15-month-oldWTmice treated

ted as mean ± SEM.



Figure 2. Osteocalcin Signaling in Myofibers Is Necessary for Adaptation to Exercise

(A–C) (A) Performance during an endurance test (running on a treadmill at 30 cm/s until exhausted) of 3-month-oldOcn�/� andWTmice, (B)Ocnf/f andOcnOsb
�/�

mice, and (C) Gprc6a�/� and WT mice.

(D and E) (D) Gprc6a expression in various tissues and (E) in EDL and soleus muscles.

(F) In situ hybridization analysis of Gprc6a expression in soleus muscle.

(G) Gprc6a expression in WT and Ocn�/� gastrocnemius muscles.

(legend continued on next page)
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was observed in mice lacking Osteocalcin only in osteoblasts

and post-natally (Figure 2B). Accordingly, this decline in exercise

capacity was not observed in 2-month-old Ocn�/� mice, indi-

cating that the osteocalcin regulation of exercise capacity is

not of developmental origin (Figure S2B). The same decrease

in exercise capacity was observed in several cohorts of

3-month-old mice lacking Gprc6a, the osteocalcin receptor

(Oury et al., 2011) (Figure 2C).

Ocn�/� and Gprc6a�/� mice display metabolic and/or behav-

ioral abnormalities that make the interpretation of any phenotype

linked to exercise difficult. To exclude these confounding factors

and determine if osteocalcin promotes adaptation to exercise by

signaling in skeletal muscle, we studied Gprc6a expression in

this tissue. A qPCR survey showed thatGprc6a was more highly

expressed in skeletal muscles than in most tissues, and more so

in oxidative muscles (soleus) that are needed for a prolonged

effort than in glycolytic muscles (EDL), and an in situ hybridiza-

tion analysis demonstrated that Gprc6a is expressed in myofib-

ers (Figures 2D–2F). Moreover, Gprc6a expression was 3-fold

higher in Ocn�/� than in WT muscle, and osteocalcin did not in-

crease cAMP production in Gprc6a�/� myotubes as it did in WT

ones (Figures 2G and 2H). In view of these data suggesting that

Gprc6a mediates osteocalcin signal in myofibers, we deleted

Gprc6a from myofibers by crossing mice harboring a floxed

allele of Grpc6a with Mck-Cre deleter mice (Brüning et al.,

1998). Gprc6a expression was decreased over 50% in skeletal

muscles in Gprc6aMck
�/� mice (Figure S2C). Body composition,

glucose tolerance, and insulin sensitivity were similar in

Gprc6aMck
�/� and control mice (Figures S2D–S2F).

Starting at 3 months of age, all cohorts of Gprc6aMck
�/� mice

experienced a decrease in exercise capacity that was of equal

severity as the one noted in Ocn�/� mice (Figure 2I). This could

not be explained by a disruption of the intrinsic properties of

muscle since excitation-contraction coupling and resistance to

fatigue were not lower in Gprc6aMck
�/� than in control muscles.

Fiber type composition and size were also the same in muscles

of Gprc6aMck
�/� and control mice (Figures S2G–S2I). That a

similar decrease in exercise capacity was seen in compound

mutant mice lacking one allele of Osteocalcin and one allele of

Gprc6a in myofibers (Ocn+/�;Gprc6aMck
+/�) provides a genetic

support to the notion that osteocalcin is the ligand of Gprc6a in

myofibers that is responsible forGprc6a regulation of adaptation

to exercise (Figure 2J). Moreover, a single injection of osteocal-

cin increased the exercise capacity of Ocn�/� mice, but did not

do so in Gprc6aMck
�/� mice (Figures 2K and 2L). At the same

time, multiple evidences suggest that the ability of osteocalcin

to favor adaptation to exercise is not secondary to its signaling

in the heart: Gprc6a expression is 20-fold lower in the heart

than in skeletal muscle (Figure 2D), heart function is normal in

Ocn�/� and Gprc6aMck
�/� mice, and deleting Gprc6a only in

cardiomyocytes does not affect exercise capacity in mice (Fig-

ures S2J–S2L).
(H) cAMP accumulation in WT and Gprc6a�/� myotubes treated with vehicle or o

(I and J) (I) Performance during an endurance test (running on a treadmill at 30 c

Ocn+/�;Gprc6aMck
+/� and control mice.

(K and L) (K) Performance during an endurance test (running on a treadmill at 30 c

mice treated with Ocn.

All data are presented as mean ± SEM.
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Osteocalcin Signaling in Myofibers Promotes Uptake
and Catabolism of Glucose during Exercise
To determine how osteocalcin signaling in myofibers favors

adaptation to exercise, we used indirect calorimetry to measure

nutrient utilization and aerobic capacity in Gprc6aMck
�/� and

control mice running on a treadmill at an increasing speed (initial

speed 5 cm/s and increasing by 3 cm/s every minute until

exhaustion). In the conditions of this assay, the maximal oxygen

consumption was significantly decreased inGprc6aMck
�/�mice,

whereas their respiratory exchange ratio (RER) was not affected

(Figures 3A–3C). These results suggesting that osteocalcin

signaling in myofibers promotes aerobic capacity during exer-

cise prompted us to test if osteocalcin signaling in myofibers

affects mitochondrial number/respiration and/or uptake and uti-

lization of nutrients.

The number of mitochondria in muscles was the same in

3-month-old Ocn�/� mice that already have a poor exercise

capacity, and WT littermates. Expression of a transcriptional

determinant of mitochondrial biogenesis and muscle adapta-

tion to exercise, Pgc1a (Da Cruz et al., 2012; Handschin and

Spiegelman, 2008), and of its target genes was similar in mus-

cles of Ocn�/�, Gprc6aMck
�/�, and control mice after exercise.

The activities of the mitochondrial proteins COX and SDH

were the same in Gprc6aMck
�/� and control muscles after ex-

ercise, and there was no detectable difference in mitochon-

drial respiration between WT and Gprc6a�/� myofibers that

were cultured in the presence of glucose, pyruvate, and amino

acids (Figures S3A–S3G). Given their negative nature, these

results need to be interpreted cautiously, yet they indicate

that the ability of osteocalcin signaling in myofibers to favor

adaptation to exercise is not secondary to a measurable

effect on mitochondrial number or function. Hence, we

turned our attention to nutrient uptake and catabolism during

exercise.

The main nutrient used by muscle to generate energy at the

onset of exercise is glucose that is stored in myofibers in the

form of glycogen (Lehninger et al., 2000). Glycogen breakdown

measured by the difference between glycogen content at rest

and after exercise was lower in Gprc6aMck
�/� and Ocn�/� mus-

cle than in control ones (Figures 3D and S3H). In contrast, liver

glycogen breakdown was the same in Gprc6aMck
�/� and con-

trol mice (Figure S3I). Furthermore, osteocalcin enhanced

glucose uptake, as determined by the uptake of 3H-2-deoxy-

glucose (3H-2DG), in WT, but not in Gprc6a�/�, myotubes.

The same was true in WT isolated soleus treated with osteocal-

cin (Figures 3E, 3F, and S3J). In vivo, the uptake of 3H-2DG was

significantly increased in oxidative muscles in WT mice

receiving osteocalcin prior to exercise but was decreased in

those of Gprc6aMck
�/� mice after exercise (Figures 3G and

3H). Lastly, osteocalcin favored glycolysis, defined by the

extracellular acidification of the media (ECAR), in WT, but not

in Gprc6a�/�, myofibers (Figure 3I). Importantly, none of the
steocalcin (Ocn).

m/s until exhausted) of 3-month-old Gprc6af/f and Gprc6aMck
�/� mice and (J)

m/s until exhausted) of 6-month-old Ocn�/� or (L) 12-month-old Gprc6aMck
�/�



Figure 3. Osteocalcin Signaling in Myofibers Promotes Uptake and Utilization of Glucose during Exercise

(A–C) (A) VO2, (B) VO2 max, and (C) RER in 3-month-old Gprc6af/f and Gprc6aMck
�/� mice running on a treadmill at increasing speed until exhausted.

(D) Glycogen content and breakdown in 3-month-old Gprc6af/f and Gprc6aMck
�/� tibialis muscles at rest and after exercise.

(E and F) (E) Uptake of 3H-2-deoxyglucose (3H-2-DG) in WT and Gprc6a�/� myotubes and (F) WT EDL and soleus muscles treated with vehicle or

osteocalcin (Ocn).

(G and H) (G) Uptake of 3H-2-DG in glycolytic (Gly, white quadriceps) and oxidative (Ox, red quadriceps) muscles after exercise in 3-month-old Gprc6af/f and

Gprc6aMck
�/� mice and (H) 15-month-old WT mice treated with Ocn.

(I) Glycolysis, determined by the extracellular acidification of the media (ECAR), in WT and Gprc6a�/� myofibers treated with vehicle or Ocn.

(J) GLUT4 translocation in C2C12 myoblasts treated with Ocn, determined by optic microscopy.

(K) Western blot analyses of Akt phosphorylation (Ser473) in tibialis muscles of 3-month-old Gprc6af/f, Gprc6aMck
�/�, WT, and Ocn�/� mice after exercise.

(L–N) (L) Aspartate and (M and N) TCA cycle metabolite accumulation in quadriceps of 3-month-old Gprc6af/f and Gprc6aMck
�/� mice at rest and after exercise.

(O) 13C-labeled TCA metabolites and lactate in quadriceps muscles of 3-month-old Gprc6af/f and Gprc6aMck
�/� mice receiving a bolus of 13C-glucose prior to

exercise.

(P) Oxygen consumption rate (OCR) in myofibers cultured in Krebs-Ringer HEPES buffer with 25 mM glucose.

(Q) Blood glucose levels in 3-month-old Gprc6af/f and Gprc6aMck
�/� mice at rest and after running on a treadmill for 40 min or until exhaustion.

(Exercise refers to 40 min running at 30 cm/s on a treadmill.) All data are presented as mean ± SEM.
other proposed ligands of Gprc6a favored glucose uptake or

glycolysis in WT myotubes and myofibers (Figures S3K

and S3L).

To promote glucose uptake in muscle osteocalcin does not

affect the expression of Glut1 and Glut4 (Figure S3M), but rather

favors the translocation of GLUT4 to the plasma membrane of

C2C12 myoblasts that express Gprc6a-myc and HA-Glut4-Gfp

(Figure 3J). Signaling through GPCRs can promote Akt phos-
phorylation, an event that is observed in muscles after exercise

and that allows the translocation of GLUT4 to the plasma mem-

brane (Deshmukh et al., 2006; Lopez-Ilasaca et al., 1997). We

found that Akt phosphorylation was decreased in muscles of

Gprc6Mck
�/� and Ocn�/� compared to those of control mice

after exercise; conversely, acute or chronic administration of

osteocalcin induced Akt phosphorylation in WT myotubes and

muscle (Figures 3K and S3N–S3P).
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To assess the influence of osteocalcin signaling in myofibers

on the activity of the TCA cycle, we performed a metabolomics

study. This analysis showed that the accumulation of aspartate,

a reliable indicator of the cellular levels of the TCA cycle interme-

diate oxaloacetate, and of fumarate and malate, the two TCA

cycle intermediates that increase the most during exercise

(Gibala et al., 1998; Sahlin et al., 1990), did not rise to the

same extent in muscles of Gprc6aMck
�/� as in those of control

mice after exercise (Figures 3L–3N). Moreover, the contribution

of 13C-glucose to the labeling of each TCA cycle intermediate

measured and of lactate was decreased in muscle of

Gprc6Mck
�/� mice injected with 13C-glucose prior to exercise

(Figure 3O). This latter result suggests that the lower content of

TCA cycle intermediates inGprc6aMck
�/� muscles after exercise

reflects in part a decrease in the entry of carbon originating from

glucose into the TCA cycle. This decreased uptake and catabo-

lism of glucose in muscle of Gprc6Mck
�/� mice explains why the

oxygen consumption rate (OCR) was 2-fold lower in Gprc6a�/�

than in WT myofibers when the only nutrient of these myofibers

was glucose (Figure 3P). The ability of osteocalcin signaling in

myofibers to favor glucose uptake also provides an explanation

for the increase in blood glucose levels observed in

Gprc6aMck
�/� mice running until exhaustion (Figure 3Q).

Osteocalcin Signaling in Myofibers Favors FA Utilization
during Exercise
Since FA uptake and oxidation in muscle progressively increase

during exercise (Hawley et al., 2014; Koves et al., 2005), we

tested if osteocalcin signaling in myofibers also affects these

processes during exercise.

We first measured muscle and plasma levels of acylcarnitines,

a reliable indicator of FA utilization in cells (Overmyer et al.,

2015). We found that the accumulation of long- and medium-

chain acylcarnitines seen in muscles of control mice after exer-

cise did not occur nearly to the same extent in muscles of

Gprc6aMck
�/� mice (Figure 4A). There was instead a significant

rise in acylcarnitine accumulation in the plasma of Gprc6aMck
�/�

mice (Figure 4B). Moreover, the levels of free L-carnitine that

significantly declined in muscles of control mice after exercise

did not do so to the same extent in those of Gprc6aMck
�/�

mice (Figure S4A). These results, which suggest that osteocalcin

signaling in myofibers is needed for efficient FA catabolism dur-

ing exercise, explain in part why osteocalcin did not increase
14C-oleate oxidation in Gprc6a�/� myotubes as it did in WT

ones, andwhy theOCRofGprc6a�/�myofibers was significantly

lower than that of WT ones when oleate was the only substrate of

these myofibers (Figures 4C, 4D, and S4B). Plasma non-esteri-

fied fatty acid (NEFA) levels were significantly higher in

Gprc6aMck
�/� than in control mice after exercise, while glycerol

levels were unchanged. These results are consistent with the

notion that FA uptake and catabolism in muscle are decreased

in mice lacking osteocalcin signaling in myofibers (Figures 4E

and S4C).

How does osteocalcin favor FA catabolism in myofibers?

Once phosphorylated at Thr172, the cellular energy sensor

AMPK promotes FA utilization in muscle by increasing the activ-

ity of CPT1B, a transporter of long-chain FAs into the mitochon-

dria (O’Neill et al., 2014). AMPK phosphorylation at Thr172 was

reduced in muscles of Gprc6aMck
�/� compared to those of con-
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trol mice after exercise, and conversely, exogenous osteocalcin

increased AMPK phosphorylation in muscles of WT mice during

exercise (Figures 4F and 4G). Likewise, phosphorylation of ACC

(Ser79) was decreased and the accumulation of malonyl-CoA

was increased in Gprc6aMck
�/� muscles after exercise (Figures

S4D and S4E). Osteocalcin promotes FA oxidation in muscle in

an AMPK-dependent manner, since it induces FA oxidation in

WT, but not Ampka2�/�, myotubes (Figure 4H). In contrast,

osteocalcin favored glucose uptake in an AMPK-independent

manner (Figure 4I). Hormone sensitive lipase (HSL) favors hydro-

lysis of intracellular triglycerides into free FAs in muscle when

phosphorylated at Ser563 (Watt and Spriet, 2010). HSL phos-

phorylation was reduced in muscles of Gprc6aMck
�/� and

Ocn�/� compared to those of control mice, whereas Hsl expres-

sion was unchanged. Conversely, HSL phosphorylation was

increased in muscles of WT mice receiving osteocalcin prior to

exercise (Figures 4J, 4K, and S4F).

Furthermore, the expression of Cd36 and Fatp1, which facili-

tate the uptake of long-chain FAs into cells, and of Cpt1b, which

promotes their transport across the mitochondrial membrane

(Stahl et al., 2001), was decreased inGprc6a�/�myotubes, while

osteocalcin increased the expression of Fatp1, Cpt1b, and, to a

lesser extent,Cd36 in WTmyotubes (Figures S5A and S5B). This

explains why the expression of Fatp1, Cpt1b, and Cd36 did not

increase in muscles of Ocn�/�, Gprc6aMck
�/�, and Ocn+/�;

Gprc6aMck
+/� as they did in those of control mice after exercise

and why Fatp1 expression increased in muscles of WT mice

receiving osteocalcin prior to exercise (Figures 5A–5C).

Two observations identify CREB as one mediator of osteocal-

cin signaling in myofibers. First, CREB phosphorylation was

weaker in muscles of Gprc6aMck
�/� than in those of control

mice after exercise, and stronger in myotubes of WT mice

treated with osteocalcin. Second, the exercise capacity of

Gprc6aMck
+/�;CrebMck

+/� mice is as decreased as that of

Gprc6aMck
�/� mice (Figures 5D–5F). Accordingly, CREB medi-

ates osteocalcin regulation of glucose uptake in myotubes and

glycolysis in myofibers (Figures 5G and 5H). However, the fact

that osteocalcin induces FA oxidation equally well in control

and Creb�/� myotubes indicates that osteocalcin uses other

transcriptional mediators to favor FA oxidation (Figure 5I).

Taken together, these results indicate that osteocalcin

signaling in myofibers favors uptake and catabolism of both

glucose and FAs in a balanced manner during exercise. These

findings imply that osteocalcin signaling should be necessary

to generate the ATP required for optimum muscle performance

during exercise. In agreement with this hypothesis, ATP levels

were significantly lower in muscles of Gprc6aMck
�/� mice than

in those of control ones after exercise (Figure 5J). This low ATP

content, along with the decreased phosphorylation of AMPK,

suggests that osteocalcin signaling in myofibers regulates

AMPK phosphorylation in part in an AMP-independent manner

(Jensen et al., 2007).

Osteocalcin IsNecessary for the Increase in Interleukin-6

Expression in Muscle Occurring during Exercise
To determine if osteocalcin signaling in myofibers favors adapta-

tion to exercise through additional mechanisms, we performed a

transcriptomic analysis in muscles of control and Gprc6aMck
�/�

mice after exercise.



Figure 4. Osteocalcin Signaling in Myofibers Favors FA Utilization during Exercise

(A and B) (A) Acylcarnitine levels in quadriceps muscles and (B) plasma of 3-month-old Gprc6af/f and Gprc6aMck
�/� mice at rest and after exercise.

(C) 14C-oleate oxidation in WT and Gprc6a�/� myotubes treated with osteocalcin (Ocn).

(D) Oxygen consumption rate (OCR) in myofibers cultured in Krebs-Ringer HEPES buffer with 3 mM oleic acid.

(E) Plasma NEFA levels in 3-month-old Gprc6af/f and Gprc6aMck
�/� mice at rest and after exercise.

(F and G) (F) Western blot analysis after exercise of AMPK phosphorylation (Thr172) in tibialis muscles of 3-month-oldGprc6af/f and Gprc6aMck
�/� mice or (G) of

15-month-old WT mice injected with Ocn.

(H) 14C-oleate oxidation in WT and Ampka2�/� myotubes treated with Ocn.

(I) Uptake of 3H-2-deoxyglucose (3H-2-DG) in WT and Ampka2�/� myotubes treated with vehicle or Ocn.

(J and K) (J) Western blot analysis after exercise of HSL phosphorylation (Ser563) in tibialis muscles of 3-month-old Gprc6af/f, Gprc6aMck
�/�, WT, and Ocn�/�

mice, and (K) 15-month-old WT mice injected with Ocn.

(Exercise refers to 40 min running at 30 cm/s on a treadmill.) All data are presented as mean ± SEM.
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Figure 5. Osteocalcin Signaling in Myofibers Favors Expression of FA Transporters during Exercise

(A) Cd36, Fatp1, and Cpt1b expression at rest and after exercise in gastrocnemius muscles of 3-month-old WT and Ocn�/� mice.

(B and C) (B) Cd36, Fatp1, and Cpt1b expression at rest and after exercise in gastrocnemius muscles of 3-month-old Gprc6af/f, Gprc6aMck
�/�, and Ocn+/�;

Gprc6aMck
+/� mice and (C) in gastrocnemius muscles of 15-month-old WT mice injected with vehicle or osteocalcin (Ocn).

(D and E) (D) Western blot analysis after exercise of CREB phosphorylation (Ser133) in tibialis muscles of 3-month-oldGprc6af/f andGprc6aMck
�/�mice and (E) in

WT myotubes treated with vehicle or Ocn.

(F) Performance during an endurance test (running on a treadmill at 30 cm/s until exhausted) of 3-month-old Gprc6aMck
+/�;CrebMck

+/�, CrebMck
+/�, and

control mice.

(G) Uptake of 3H-2-deoxyglucose (3H-2-DG) in Crebf/f and Creb�/� myotubes treated with vehicle or Ocn.

(H) Glycolysis, determined by the extracellular acidification of the media (ECAR), in Crebf/f and CrebMck
�/� myofibers treated with vehicle or Ocn.

(I) 14C-oleate oxidation in Crebf/f and Creb�/� myotubes treated with Ocn.

(J) ATP accumulation in quadriceps muscles of 3-month-old Gprc6af/f and Gprc6aMck
�/� mice after exercise.

(Exercise refers to 40 min running at 30 cm/s on a treadmill.) All data are presented as mean ± SEM.
The gene whose expression was the most decreased (80%)

in Gprc6aMck
�/� muscle after exercise was the one encoding

IL-6, a myokine whose circulating levels markedly rise during

exercise through previously unknown mechanisms (Whitham

et al., 2012) (Figure 6A). A more modest decrease of the

expression of the soluble IL-6 receptor was also observed,
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whereas no other myokines known to influence exercise (Bos-

tröm et al., 2012; Egan and Zierath, 2013; Heinemeier et al.,

2007) were affected by the absence of osteocalcin signaling

in myofibers during exercise (Figure S6A). We verified that

Il6 and Il6ra expression was significantly lower in muscles of

Gprc6aMck
�/� and Ocn�/� than in those of control mice after



Figure 6. Osteocalcin Is Necessary for the Increase in Interleukin-6 Expression in Muscle during Exercise

(A) RNA-seq analyses in gastrocnemius muscles of 3-month-old Gprc6af/f and Gprc6aMck
�/� mice after exercise.

(B and C) (B) Expression after exercise of Il6 and Il6ra in gastrocnemius muscles of 3-month-old Gprc6af/f and Gprc6aMck
�/� and (C) WT and Ocn�/� mice.

(legend continued on next page)

Cell Metabolism 23, 1078–1092, June 14, 2016 1087



Figure 7. IL-6 Favors the Production of

Active Osteocalcin during Exercise

(A) Ocn, Rankl, and Opg expression in osteoblasts

treated with IL-6 and soluble IL-6Ra.

(B) SerumCTX levels in 2-month-oldWT and Il6�/�

mice after exercise.

(C) Serum undercarboxylated osteocalcin (uncarb

Ocn) levels in 2-month-old WT and Il6�/� mice at

rest and after exercise.

(D) Schematic representation of how osteo-

calcin signaling in myofibers and muscle-

derived IL-6 cooperate to favor adaptation to

exercise.

(Exercise refers to 40 min running at 30 cm/s

on a treadmill.) All data are presented as

mean ± SEM.
exercise (Figures 6B and 6C). We also observed that the rise

in circulating IL-6 levels induced by exercise in control mice

was blunted in Gprc6aMck
�/� and Ocn�/� mice. Of note, IL-6

circulating levels also rise in young woman during exercise

(Figures 6D–6F). Moreover, the decrease in circulating osteo-

calcin levels observed in 15-month-old WT mice provides an

explanation for the modest increase in circulating IL-6

levels observed during exercise; indeed, exogenous osteocal-

cin partially restored circulating IL-6 levels in these mice

during exercise (Figure 6G). These observations identify

osteocalcin as a major regulator of Il6 expression in

muscle and suggest that the majority of the increase in IL-6

circulating levels observed during exercise originates from

muscle.

The results presented above raise the important question

of whether or not osteocalcin signaling in myofibers during

exercise requires the presence of IL-6 in muscle or blood.

In vivo, injection of a neutralizing antibody against IL-6

prior to exercise did not prevent the increase in exercise ca-

pacity induced by exogenous osteocalcin in WT mice, and

exogenous IL-6 (3 ng/g of body weight) did not improve the
(D–F) (D) Circulating IL-6 at rest and after exercise in 3-month-old Gprc6af/f and Gprc6aMck
�/� mice, (E) WT

treadmill [6.5 km/hr]).

(G) Circulating IL-6 at rest and after exercise in 3- and 15-month-old mice and 15-month-old mice treated w

(H) Performance during an endurance test (running on a treadmill at 30 cm/s until exhausted) of 15-month-old

against IL-6 or a control IgG (control group includes mice treated with vehicle alone, vehicle and IL-6 antibo

(I) Performance during an endurance test (running on a treadmill at 30 cm/s until exhausted) of 6-month-old

(J–L) (J) Uptake of 3H-2-deoxyglucose (3H-2-DG); (K) glycolysis, determined by the extracellular acidification o

WT and Il6�/� myotubes treated with vehicle or osteocalcin.

(Exercise refers to 40 min running at 30 cm/s on a treadmill; nd, non-detected.) All data are presented as m
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exercise capacity of WT or Ocn�/�

mice (Figures 6H, 6I, and S6B).

Ex vivo, osteocalcin increased glucose

uptake (3H-2-DG uptake), glycolysis

(ECAR), and FA oxidation (14C-oleate

oxidation) equally well in WT and Il6�/�

myotubes (Figures 6J–6L). Taken to-

gether, these results show that osteo-

calcin signals in muscle regardless of

the presence or absence of IL-6 in the

general circulation or in myofibers.

However, IL-6 favors adaptation to ex-
ercise through previously described mechanisms and a novel

one presented below.

IL-6 Favors the Production of Bioactive Osteocalcin
during Exercise
Indeed, since IL-6 has been shown to signal in bone cells

(Tamura et al., 1993), we asked whether one mechanism

whereby IL-6 favors adaptation to exercise may be by favoring

the production of osteocalcin by osteoblasts and/or its activation

by bone resorption (Ferron et al., 2010). In cell culture, IL-6

decreased the expression of Osteocalcin (Ocn) in osteoblasts

but, more importantly, increased the expression ofRankl, a cyto-

kine that favors osteoclast differentiation, and decreased that of

Osteoprotegerin (Opg), a decoy receptor for Rankl and an inhib-

itor of bone resorption (Teitelbaum and Ross, 2003) (Figure 7A).

These results provide one explanation for why bone resorption

and circulating levels of bioactive osteocalcin significantly in-

crease during exercise in WT mice that have high circulating

levels of IL-6 at that time, but do not do so in Il6�/� mice (Figures

1A–1C, 7B, and 7C). This set of experiments reveals the exis-

tence of a feedforward regulatory loop linking the production of
and Ocn�/� mice, and (F) women (45 min run on a

ith vehicle or osteocalcin (Ocn).

mice treated with vehicle or Ocn and an antibody

dy, and vehicle and IgG).

WT and Ocn�/� mice treated with IL-6.

f the media (ECAR); and (L) 14C-Oleate oxidation in

ean ± SEM.



osteocalcin in bone and the synthesis of IL-6 in muscle that ap-

pears to be necessary for the increase in muscle function during

exercise.

DISCUSSION

This study reveals that osteocalcin signaling in myofibers is

necessary to increase adaptation to exercise in part because it

promotes the uptake and catabolism of glucose and FAs in my-

ofibers, and in part because it increases the secretion by muscle

during exercise of IL-6, a myokine that favors the production of

bioactive osteocalcin (Figure 7D). This study also shows that os-

teocalcin is sufficient to reverse the decline in muscle function

occurring during aging.

Osteocalcin Signaling in Myofibers Is Necessary for
Adaptation to Exercise
During exercise, the uptake and catabolism of glucose and FAs

in myofibers increase. The fact that insulin exerts mostly

anabolic functions in muscle and that its circulating levels

decrease during exercise (Saltiel and Kahn, 2001) implies that

muscle function and thereby adaptation to exercise are regu-

lated by other secreted factors that would stimulate glucose up-

take into muscle, glycogen breakdown, and/or FA uptake and

catabolism. Conceivably, the circulating levels of these factors

would rise during exercise. It is precisely because its circulating

levels double during exercise that we tested if osteocalcin is

implicated in the regulation of adaptation to exercise. Analyzing

mutant mouse strains lacking Osteocalcin and/or its receptor

Gprc6a in a cell-specific manner showed that osteocalcin

signaling in myofibers through Gprc6a is needed for muscle

function during exercise. The fact that exogenous osteocalcin

could not correct the poor exercise capacity of Gprc6aMck
�/�

mice and that Ocn+/�;Gprc6aMck
+/� mice display the same

decrease in exercise capacity as Ocn�/� or Gprc6aMck
�/� mice

identifies osteocalcin as the main ligand of Gprc6a responsible

for its regulation of muscle function and adaptation to exercise.

Cell-specific and inducible deletion of Ocn established that this

function of osteocalcin reflects an influence of bone on muscle

that is not of developmental origin. This function of osteocalcin

is also not secondary to its signaling in the heart. Hence, by

signaling through Gprc6a in myofibers, osteocalcin is a systemic

regulator of the adaptation to exercise in adult mice.

Osteocalcin Favors Uptake and Catabolism of Nutrients
in Muscle during Exercise
While osteocalcin does not affect in any appreciable manner

muscle contractility or mitochondrial biogenesis, it favors the up-

take and utilization of nutrients in myofibers during exercise in

several ways. First, osteocalcin signaling in myofibers favors

the breakdown of glycogen, a major source of glucose for

contracting muscles during exercise. Second, it promotes the

translocation of the glucose transporter GLUT4 to the plasma

membrane and thereby enhances glucose uptake and glycol-

ysis. None of the other proposed ligands of Gprc6a increased

glucose uptake and glycolysis in myofibers. Third, osteocalcin

signaling in myofibers increases FA uptake and catabolism.

Through these combined functions, osteocalcin signaling in my-

ofibers provides the carbon atoms necessary to promote the
activity of the TCA cycle and thereby produce the ATP that is

needed to increase muscle function. That osteocalcin signaling

in myofibers is important mainly during exercise is consistent

with the notion that the endocrine regulation of nutrient uptake

and utilization in muscle differs at rest and during exercise

(Egan and Zierath, 2013). These findings do not exclude in any

way the likely possibility that other molecules may contribute

to the regulation of adaptation to exercise. The fact that osteo-

calcin signaling in myofibers increases uptake and catabolism

of both glucose and FAs provides an explanation for why RER,

which reflects the respective utilization of both nutrients, is not

affected in Gprc6Mck
�/� mice during exercise.

A Crosstalk between Bone and Muscle Determines
Adaptation to Exercise
Our study also identified IL-6, a myokine whose circulating levels

rise during exercise and that enhances exercise capacity (Peder-

sen and Febbraio, 2012), as an osteocalcin target gene in mus-

cle. In turn, IL-6 favors adaptation to exercise in part by signaling

in bone to increase osteoclast differentiation and the generation

of bioactive osteocalcin. Thus, a feedforward loop between bone

and muscle promotes adaptation to exercise through at least

three synergistic mechanisms: first, osteocalcin enhances

the uptake and catabolism of glucose and FAs in myofibers.

Second, the rise in IL-6 secretion from muscle during exercise,

triggered by osteocalcin, allows for the generation of glucose

and FAs (Febbraio et al., 2004; van Hall et al., 2003). Third,

IL-6, through its regulation of bone resorption, increases the pro-

duction of bioactive osteocalcin (Figure 7D). This model does not

exclude the likely possibility that osteocalcin and IL-6 favor

adaptation to exercise through additional mechanisms.

Osteocalcin Signaling in Muscle Can Reverse the
Age-Related Decline in Muscle Function
The fact that osteocalcin is necessary for adaptation to exercise,

together with the precipitous decline of its circulating levels

before midlife in all species tested, raised the question of

whether osteocalcin could also be sufficient to reverse the

decline in muscle function that is caused by aging. Whether

administered acutely or chronically, exogenous osteocalcin

increased the exercise capacity of 3-month-old WT mice and

restored the exercise capacity of 9-, 12-, and even 15-month-

old mice to that of 3-month-old ones. This ability of osteocalcin

to reverse the age-related decline in exercise capacity inmice re-

quires that this hormone signal in myofibers. These results iden-

tify osteocalcin signaling in myofibers as a novel and powerful

means to fight the age-related decline in muscle function. Given

the growing number of molecules proposed to affect muscle

functions (Baskin et al., 2015), it will be important to determine

if osteocalcin synergizes with some of them to favor adaptation

to exercise.

EXPERIMENTAL PROCEDURES

Animal and Human Studies

Ocn�/� mice were maintained on a 129-Sv genetic background; OcnOsb
�/�,

Gprc6aMck
�/�, Gprc6aMyh6

�/�, CrebMck
�/�, Ocn+/�;Gprc6aMck

+/�, and

Gprc6aMck
+/�;CrebMck

+/� mice (all procedures involving mice were approved

by CUMC IACUC and conform to the relevant regulatory standards) on a

129-Sv/C57/BL6mixedgenetic background; and Il6�/� (JacksonLaboratories)
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mice on a C57/BL6 genetic background. Littermates were used as controls

in all experiments. Mice genotypes were determined by PCR. Generations of

Ocn and Gprc6a conditional alleles have been described (Oury et al., 2011,

2013). For exercise studies, all mice were trained to run on a treadmill for

3 days (10min/day, increasing speed from 10 to 17 cm/s, and an electric shock

at 1 mA to trigger running). Exercise tests were performed on mice fed ad

libitum at 2–6 p.m. The day of the test, mice were acclimated to the treadmill

for 5 min, followed by 10 min running at a constant speed (17 cm/s), followed

by a gradual speed increase up to 30 cm/s. Then mice run either until exhaus-

tion to determine endurance capacity, or for 40 min. A gradual speed increase

test was performed to determine the maximal VO2 during exercise: mice were

acclimated to the treadmill for 5 min, followed by 1 min running at 5 cm/s, fol-

lowed by a gradual speed increase (3 cm/s every minute) until exhaustion,

defined as the number of times a mouse fell off onto the electric grid during

1 min out of 15. For all biochemical and metabolic analyses, blood/tissues

were collected and processed either at rest or at the end of a 40 min run

(30 cm/s). i.p. injections of exogenous osteocalcin or IL-6 (Sigma) were per-

formed immediately before exercise. To neutralize IL-6, 500 mg of a neutralizing

antibody (R&D, #MAB206) (Pedersen et al., 2016) was administered i.p. 1 hr

before exercise. Osteocalcin was synthetized as previously described (Oury

et al., 2013).

Rhesus monkeys (Macaca mulatta) were housed as described in Supple-

mental Information at the NIH Animal Center. All procedures and animal care

were conducted in accordance with the NIH Guide for the Care and Use of

Laboratory Animals. Human healthy volunteers were used to assay osteocal-

cin (Elecsys, Roche Diagnosis) across lifespan (see Supplemental Informa-

tion). Human studies were approved by local ethic comittee of Lyon University,

France.

Energy Metabolism Studies

Glucose and insulin tolerance tests were performed as described (Lee et al.,

2007). Ex vivo glucose uptake in EDL and soleus muscles was measured as

described (Brüning et al., 1998) with minor modifications (see Supplemental

Information). For in vivo glucose uptake, a bolus of 2-deoxy-d-[3H]glucose

(3H-2-DG) (10 mCi) was administered before running (40 min at 30 cm/s).
3H-2-DG and 3H-2-DG-6-P content in muscle was determined by liquid scin-

tillation counter and normalized to muscle weight (see Supplemental Informa-

tion). Glucose uptake and FA oxidation in myotubes were assayed as

described (Sebastián et al., 2007). GLUT4 translocation was determined by

optic microscopy as described (Zeigerer et al., 2002) (see Supplemental Infor-

mation). OCR and extracellular acidification of the media (ECAR) in myofibers

were measured using an XF24 Seahorse analyzer (Seahorse Biosciences) (see

Supplemental Information). To analyze mitochondrial function, myofibers were

treated sequentially with oligomycin (10 mg/mL), FCCP (200 mM), and rotenone

(0.2 mM). OCR was recorded following administration of each of them.

Metabolite profiling was done at the Einstein Stable Isotope and Metabolo-

mics Core Facility. Metabolites from freeze-clamped skeletal muscles were

extracted, derivatized, and run for GC-TOFMS analysis (Qiu et al., 2014).

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis

was used to quantify glycolytic and TCA cycle metabolites (Serasinghe

et al., 2015). The Biocrates AbsoluteIDQ p180 kit (Wang-Sattler et al., 2012)

was used to quantify acylcarnitines by LC-MS/MS in plasma and muscle

(see Supplemental Information). 13C-glucose tracer analyses were done at

CASE Mouse Metabolic Phenotyping Center (see Supplemental Information).

ATP was measured using commercial kit (Abcam). Ex vivo analyses of muscle

contractility and resistance to fatigue were performed as detailed in Supple-

mental Information.

Biochemistry and Molecular Biology

Serum osteocalcin, PINP, CTX, IL-6, and insulin levels were measured using

ELISA assays. Blood glucose level was measured using an Accu-Check gluc-

ometer. Cyclic AMP accumulation was measured using a commercial kit

(R&D). For gene expression, 1 mg of total RNA was reverse transcribed into

cDNA. qPCR analyses were performed using a SYBER green master mix

(Applied Biosciences) and a CFX-Connect real-time PCR (Bio-Rad). Relative

expression levels of each gene were normalized to the one of Hprt or Gapdh.

The genome-wide differential expression of Gprc6aMck
�/� versus Gprc6af/f in

muscle was measured by RNA sequencing (RNA-seq) (see Supplemental
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Information). For western blot analyses, protein extracts were separated in

8% acrylamide/Bis-acrylamide (Bio-Rad) gels and transferred to nitrocellulose

membranes that were blotted using specific antibodies. For in situ hybridiza-

tion, muscles were frozen in liquid N2-cooled methylbutane. Samples were

sectioned at 10 mm using a cryostat. In situ hybridization was performed

with a DIG-labeled riboprobe. Mitochondria histomorphometry and enzyme

histochemistry were performed following standard protocols (see Supple-

mental Information).

Cell Culture

Culture of skeletal muscle myoblasts was performed as described (Gharaibeh

et al., 2008), using 15- to 20-day-old mice. Myoblasts were differentiated into

myotubes for 3–4 days in a medium containing 5% horse serum. For in vitro

gene inactivation of Gprc6a and Il6, myoblasts from either WT or mutant litter-

mate mice were isolated and differentiated into myotubes. For in vitro gene

inactivation of Creb and Ampka2, floxed myoblasts were isolated from mice,

then divided into two groups and infected with either empty or Cre-expressing

adenovirus for 2 days (University of Iowa). Muscle fibers from flexor digitorum

brevis muscle were isolated from 2- to 3-month-old WT or mutant mice.

Muscles were dissociated with DMEM 2% collagenase for 2 hr at 37�C in

5% CO2 incubator. Muscle fibers were disaggregated from the tissue using

a wide bore pipet and plated on matrigel-coated plates at approximately

50% confluence (see Supplemental Information). Myofibers were used after

overnight incubation. Osteoblast culture was performed as described (Ducy

and Karsenty, 1995).

Statistics

All data are presented as mean ± SEM. Statistical analyses were performed

using unpaired, two-tailed Student’s t test for comparison between two groups

and ANOVA test for experiments involvingmore than two groups. For all exper-

iments, *p % 0.05, **p % 0.005.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cmet.2016.05.004.
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Supplemental Figure Legends 

Figure S1. Related to Figure 1. Regulation of circulating osteocalcin levels 

by exercise and age.  

A. Serum undercarboxylated osteocalcin (uncarb Ocn) levels in 3 month-old WT 

mice injected with vehicle or Ocn immediately before running. 

B. Serum insulin (Ins) levels in 3 month-old WT mice injected with vehicle or Ocn 

immediately before running. 

C. Serum uncarb Ocn levels in 12 and 15 month-old WT mice injected with 

vehicle or Ocn immediately before running. 

D. Serum total Ocn and E. Ins levels in 10 month-old WT mice treated with Ocn 

for 28 days. 

Figure S2. Related to Figure 2. Osteocalcin signaling in myofibers is 

necessary for adaptation to exercise. 

A. Performance during an endurance test (running on a treadmill at 30cm/s until 

exhausted) of 6 and 9 month-old Ocn-/- and WT mice and B. 2 month-old Ocn-/- 

and WT mice. 

C. PCR analyses of Gprc6a deletion in various tissues in Gprc6aMck-/- mice and 

qPCR analyses of Gprc6a expression in gastrocnemius muscle of Gprc6aMck-/- 

and control mice. 

D. Body composition in 3 month-old Gprc6aMck-/- and Gprc6af/f mice. 

E. GTT in 3 month-old Gprc6aMck-/- and Gprc6af/f mice. 



F. ITT in 3 month-old Gprc6aMck-/- and Gprc6af/f mice. 

G. Muscle contraction and resistance to fatigue in isolated soleus and EDL 

muscles of Gprc6aMck-/- and Gprc6af/f mice. 

H. ATPase staining in gastrocnemius/soleus muscle of 3 month-old Gprc6aMck-/- 

and Gprc6af/f mice. 

I. Myosin heavy chain (MHC) slow staining in gastrocnemius/soleus muscle of 3 

month-old Gprc6aMck-/- and Gprc6af/f mice. 

J. Heart function of 3 month-old Ocn-/- and WT mice and K. Gprc6aMck-/- and 

Gprc6af/f mice measured by echocardiograpy. 

L. Performance during an endurance test (running on a treadmill at 30cm/s until 

exhausted) of 3 month-old Gprc6af/f and Gprc6aMyh6-/- mice. 

Figure S3. Related to Figure 3. Osteocalcin signaling in myofibers 

promotes uptake and utilization of glucose during exercise. 

A. Mitochondria number in EDL and soleus of 3 month-old WT and Ocn-/- mice 

measured by electronic microscopy. 

B. Pgc1α expression in Ocn-/- and WT mice and C. Gprc6af/f and Gprc6aMck-/- 

mice after exercise. 

D. Pgam1, Mdh, Oxct, Mcad and Pdc-E2 expression in Ocn-/- and WT and E. 

Gprc6af/f and Gprc6aMck-/- mice after exercise. 

F. SDH and COX activities in gastrocnemius/soleus muscles of Gprc6af/f and 

Gprc6aMck-/- mice after exercise. 



G. Mitochondrial respiration measured in Gprc6a-/- and WT myofibers after the 

addition of (1) oligomycing, (2) FCCP and (3) rotenone. 

H. Glycogen content and breakdown in 3 month-old WT and Ocn-/- tibialis 

muscles at rest and after exercise. 

I. Glycogen content and breakdown in 3 month-old Gprc6af/f and Gprc6aMck-/- 

liver at rest and after exercise. 

J. Uptake of 3H-2-deoxyglucose (3H-2-DG) in WT myotubes treated with vehicle 

or osteocalcin (Ocn).  

K. Uptake of 3H-2-deoxyglucose (3H-2-DG) in WT and Gprc6a-/- myotubes 

treated with vehicle, testosterone, L-arginine, L-ornithine or Ocn. 

L. Glycolysis determined by the extracellular acidification of the media (ECAR), in 

WT and Gprc6a-/- myofibers treated with vehicle testosterone, L-arginine, L-

ornithine or Ocn. 

M. Glut1 and Glut4 expression in Gprc6af/f and Gprc6aMck-/- in gastrocnemius 

muscle at rest and after exercise. 

N. Western blot analyses of Akt phosphorylation (Ser473) in WT myotubes 

treated with Ocn.  

O. Western blot analyses after exercise of Akt phosphorylation (Ser473) in tibialis 

muscles of 3 month-old WT mice injected with Ocn and P. in tibialis muscles of 

15 month-old WT mice injected with Ocn. 

(Exercise refers to 40 min running at 30cm/s on a treadmill). 



Figure S4. Related to Figure 4. Osteocalcin signaling in myofibers favors 

FAs utilization during exercise. 

A. Free carnitine levels in quadriceps muscles of 3 month-old Gprc6af/f and 

Gprc6aMck-/- mice at rest and after exercise. 

B. 14C-Oleate oxidation in WT myotubes treated with vehicle, osteocalcin (Ocn) 

or AICAR as a positive control. 

C. Plasma NEFAs levels in Gprc6af/f and Gprc6aMck-/- mice at rest and after 

exercise. 

D. Western blot analyses after exercise of ACC phosphorylation (Ser79) in tibialis 

muscles of 3 month-old Gprc6af/f and Gprc6aMck-/- mice. 

E. Malonyl-CoA levels in quadriceps muscles of 3 month-old Gprc6af/f and 

Gprc6aMck-/- mice after exercise. 

F. Expression of Hsl in gastrocnemius muscles of 3 month-old Gprc6af/f and 

Gprc6aMck-/- mice after exercise.  

(Exercise refers to 40 min running at 30cm/s on a treadmill). 

Figure S5. Related to Figure 5. Osteocalcin signaling in myofibers favors 

expression of FAs transporters during exercise. 

A. Cd36, Fatp1 and Cpt1b expression in WT and Gprc6a-/- myotubes and B. WT 

myotubes treated with vehicle or Ocn. 

Figure S6. Related to Figure 6. Osteocalcin is necessary for the increase in 

Interleukin-6 expression in muscle during exercise.  



A. Expression of myokines in gastrocnemius muscles of 3 month-old Gprc6af/f 

and Gprc6aMck-/- mice after exercise.  

B. Plasma IL-6 levels in 3 month-old Ocn-/- mice injected with vehicle or IL-6 

immediately before running.  



Supplemental Experimental Procedures 

Monkeys and human studies 

Healthy volunteers were used to assay osteocalcin (Elecsys, Roche Diagnosis) 

across lifespan. For children aged 10-18, age, body mass index (kg/m2) and 

Tanner's stages were recorded. Children with past or present therapy with growth 

hormone, corticosteroids (more than 3 months), or any chronic diseases were 

excluded. Adult individuals were selected using the following criteria: normal 

body mass index, no history of smoking, fracture, diabetes, chronic diseases and 

anti-osteoporotic agent usage. Young adult women were non menopausal and 

not pregnant. Studies were approved by local ethic comity of Lyon University, 

France. Comparison between groups was performed using Mann-Whitney non-

parametric tests and trend was assessed using logistic regression.  

Rhesus monkeys (Macaca mulatta) were housed at the NIH Animal Center, 

Poolesville, MD. Monkeys were housed individually in standard non-human 

primate caging on a 12h light/12h dark cycle, room temperature 78 ± 2 degrees 

humidity at 60 ± 20%. All monkeys had extensive visual, auditory, and olfactory 

but limited tactile contact with monkeys housed in the same room.  Monkeys 

received 2 meals per day ad libitum.  Water was always available ad libitum. 

Monkeys were anesthetized with either Ketamine, 7-10 mg/kg, IM or Telazol, 3-5 

mg/kg, IM. Blood samples were obtained by venipuncture of the femoral vein 

using a vacutainer and vacuum tubes. Serum was collected and stored at -80 

degrees C until assayed. 

Ex vivo glucose uptake 



Ex vivo glucose uptake in EDL and soleus muscle was measured previously 

described (Bruning et al., 1998), with two main modifications: first, 3H-2-

deoxyglucose (3H-2DG, 1.5 µCi/ml) but not 14C-mannitol, was used. Second, 

EDL and soleus muscles were processed as follows to separate 3H-2DG and 3H-

2DG-6-phosphate. EDL and soleus muscles were homogenized in 500 µl water 

and boiled for 10 min immediately after. After that, homogenates were spin at 

max speed for 10 min. 50 µl of the supernatant were added to 450 µl of water 

and counted in 5 ml of scintillation liquid. 400 µl were passed through an anion 

exchange column (AG 1-X8 resin, Bio-Rad) to remove 3H-2DG-6-phosphate. 

Column was washed with 2 ml of water and 500 µl of the eluted volume were 

counted in 5 ml of scintillation liquid. The difference between the total and eluted 

3H radioactivity represents 3H-2DG-6-phosphate accumulated in the tissue.  

In vivo glucose uptake 

For in vivo glucose uptake, a modification of a previously described method 

(Howlett et al., 2013) was used with some modifications. An initial pilot 

experiment with a group of WT resting and WT exercising mice was performed to 

validate the method. Briefly, mice were injected prior to exercise with 10 µCi of 

3H-2-deoxyglucose (3H-2DG) in 100 µl of 0.9% NaCl. Next, mice were placed on 

a treadmill and were forced to run for 40 min at a constant speed (30cm/s). After 

exercise, blood glucose and quadriceps muscles were collected to determine 3H 

radioactivity. 3H radioactivity in blood was similar in all mice, indicating similar 

systemic delivery of the tracer. To determine 3H-2DG-6-phosphate accumulation 

in the tissue, muscles were processed as follows: white and red quadriceps 



muscles were homogenized in 1 ml of water and boiled for 10 min immediately 

after. After that, homogenates were spin at max speed for 10 min. 50 µl of the 

supernatant were added to 450 µl of water and counted in 5 ml of scintillation 

liquid. 900 µl were passed through an anion exchange column (AG 1-X8 resin, 

Bio-Rad) to remove 3H-2DG-6-phosphate. Column was washed with 6 ml of 

water and 500 µl of the eluted volume were counted in 5 ml of scintillation liquid. 

The difference between the total and eluted 3H radioactivity represents 3H-2DG-

6-phosphate accumulated in the tissue.  

Transfection of C2C12 myoblasts for analyses of GLUT4 translocation 

The day before transfection, C2C12 myoblasts were plated in 6-well plates 

(100,000 cells/well). Cells were co-transfected with HA-glut4-gfp and Gprc6a-

myc plasmids using Lipofectaine 2000® (Invitrogen) at a ratio 1:4 (µg DNA:µl 

Lipofectamine 2000®) in combination with 2 µl of CombiMagTM (OZBiosciences) 

magnetic nanoparticles in Opti-MEMTM (Invitrogen) media. Cells were incubated 

with the mix for 30 min on a magnetic plate at room temperature. 8 h after 

transfection, cells were cultured in complete growth media (DMEM high glucose, 

10% FBS, 1% penicillin/streptomycin). 24 h after transfection cells were used for 

the analyses of GLUT4 translocation as previously described (Zeigerer et al., 

2002). 

Energy metabolism in myofibers 

For energy metabolism studies myofibers were isolated from flexor digitorum 

brevis muscle and used in all experiments after an overnight incubation in 



matrigel-coated plates with DMEM high glucose containing 

penicillin/streptomycin, gentamycin, pyruvate and 2% FBS. For mitochondrial 

function studies, the Seahorse XF Cell Mito Stress Test Kit was used following 

manufacturer’s protocol. To determine glucose or FAs utilization, myofibers were 

incubated in a non-CO2 incubator for 4 h in KHRB containing exclusively glucose 

(25 mM) or oleic acid (3 mM) following by the measurement of oxygen 

consumption rates (OCR). To determine glycolysis, myofibers were cultured in 

DMEM high glucose containing penicillin/streptomycin, gentamycin, pyruvate but 

no FBS, for 4 hours. After that, myofibers were treated with vehicle, osteocalcin 

or other Gprc6a ligands for 1 hour. After treatment, myofibers were incubated 

with Seahorse XF Assay Medium containing 1 mM glutamine and vehicle, 

osteocalcin or other Gprc6a ligands for 1 hour in a non-CO2 incubator and then 

ECAR was measured before and after the addition of glucose. 

Metabolite Profiling 

Liquid Chromatography/Mass Spectrometry (LC/MS). Plasma samples were 

processed using module 1, and tissue samples using module 1 and module 3, at 

the Einstein Stable Isotope and Metabolomics Core Facility (see 

http://www.einstein.yu.edu/research/shared-facilities/stable-isotope-

metabolomics-core/services/).  

Module 1 employs a targeted metabolomics approach using the Absolute IDQ 

p180 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) that has proved 

useful in predicting disorders in fuel homeostasis (Krug et al., 2012; Wang-Sattler 

et al., 2012). The kit allows simultaneous quantification of 40 acylcarnitines, 90 



glycerophospholipids (lysophosphatidylcholine and phosphatidylcholine) and 15 

sphingolipids   by Flow Injection analysis-Mass Spectrometry (FIA-MS/MS) and 

21 amino acids and 20 amino acid metabolites/biogenic amines by LC/MS. The 

settings follow the manufacturer’s instruction for UPLC-MS/MS using the Aquity 

UPLC and the Xevo TQ MS (Waters, Pittsburgh, PA, USA).   

Module 3 employs LC/MS/MS  (Waters Xevo TQ). Analysis was used for 

quantitation of glycolytic, pentose and TCA cycle metabolites as per (Serasinghe 

et al., 2015). For glycolytic, pentose, and TCA metabolites, chromatographic 

analysis prior to targeted, multiple reaction monitoring (MRM) mass 

spectrometric analyses, was performed using an Aquity UPLC using a Waters 

BEH amide 1.7 µm column 2.1 x 100 mm, and an acidic mobile phase containing 

an acetonitrile/water gradient, as per (Serasinghe et al., 2015). Samples were 

bracketed in between calibration standards and linear regression was performed 

for quantitation. 

LC/MS sample preparation. For plasma samples using module 1, 10 µl was 

spotted per well and processed as per kit instructions. For the skeletal muscle 

samples, the same extract was used for both modules 1 and 3. Approximately 50 

mg of tissue was used per assays. The tissue samples were homogenized with 7 

times volume of methanol (with 5mmol ammonium acetate) for the sample 

weight. 2 µg of internal standard (U13C-succinate) was added to each sample 

prior to homogenization, after which samples frozen in liquid nitrogen were 

thawed on ice, sonicated and again freeze thawed. The supernatant was used 

for analysis. 



Gas Chromatograph-Time of Flight Mass Spectrometry (GC-TOF MS) sample 

preparation. The samples were homogenized using10 fold volume to the weight 

of skeletal muscle tissue, with methanol containing (3 internal standards, 25µM of 

U13C-citrate, 15µM of U13C succinate and 150µM of heptadecanoic acid). After 

addition of methanol to muscle sample, the sample was homogenized, then an 

equal volume water was added, homogenized again, frozen in liquid nitrogen, 

thawed on ice, sonicated and again freeze thawed, The supernatant was used 

for analysis. After lyophilization, the samples were methoximized with 50 µl of 

methoxyamine hydrochloride (MOA, 15 mg/mL in pyridine) at 30 0C for 90 min. 

The silylation step was done with 50 µl of N,O-Bis(trimethylsilyl) 

trifluoroacetamide (BSTFA, containing 1% TMCS) at 70 0C for 60 min, as per 

(Qiu et al., 2014).  

GC-TOF MS Analysis. The samples were analyzed using a Water GC-TOFMS 

Premier (Waters, USA) in electron impact ionization (EI) mode. The samples 

were injected at 2700C with a split ratio of 10. Metabolites separation was 

performed on a 30-meter DB-5MS column coupled with 10-meter guard column 

(Agilent, USA). The initial oven temperature was set to 60 0C and kept for 1 min, 

then rise to 320 0C at a rate of 10 0C/min and kept for 3 min. Helium was used as 

carrier gas at a consistent flow rate of 1ml/min. The transfer line and the source 

temperature were set at 250 0C and 2200C, separately.  

Data Analysis. A pooled quality control (QC) sample, comprised of equal 

amounts from all samples, was injected every 10 samples, regardless of MS 

method, and the multiple QC injections were used to calculate the coefficient of 



variation (CV = standard deviation/mean) for each metabolite. Metabolites having 

CVs greater than 30% were not considered accurate enough for consideration, 

and also 75% of all measured sample concentrations for the metabolite should 

be above the limit of detection (LOD). To select candidate biomarkers, principal 

component analysis (PCA) and Partial Least Squares Discriminant Analysis 

(PLS-DA) were used. 

13C-glucose tracer studies 

The contribution of glucose oxidative metabolism was assessed using mass 

spectrometry and 13C stable isotope tracer technology. The fractional 

contributions to the CAC, amino acids and lactate were assayed in muscle 

homogenates using methods as previously described (Kombu et al., 2011; Zhang 

et al., 2015). This approach enables isotopically labeled metabolites to be 

measured with a high degree of sensitivity, following a bolus of 13C6 glucose 

tracer.  

GC-MS assays. Following homogenization and centrifugation, the supernatant 

fractions were decanted and reserved for measurements of concentrations and 

[13C]label of acetyl-CoA enrichment. The tissue pellets were further extracted 

using a mixture of acetonitrile and 2-propanol (3:1), centrifuged and then 

analyzed for CAC, amino acids and related intermediates. Extracts were then 

dried by nitrogen gas for 1-2 hours and chemically derivatized using MTBSTFA + 

1% TBDMCS reagent (N-methyl-N-(tert-butyldimethylsilyl)  trifluoroacetamide + 

1% tert-butyldimetheylchlorosilane, Regis Technologies, Inc. Morton Grove, IL, 

USA) at reacted at 70 °C for 30 min. The derivatized products were measured 



under Agilent 6890 Gas-Chromatography and Agilent 5973 Mass Spectrometry 

(GC-MS). A DB-17 MS capillary column (30m × 0.25mm × 0.25 µm) was used in 

all analysis. The starting oven temperature was set to 80 °C, the pressure was 

14.82 psi, and the flow velocity was 45cm/sec. Temperature was then increased 

to linearly to 220 °C and held for 1 min.   The mass spectrometer was in electron-

impact (EI), sim mode. CAC and related intermediates, succinate (m/z= 289), 

fumarate (m/z =287), malate (m/z =419), citrate (m/z=459) were measured.  

Other intermediates and amino acids, including 3-hydroxyglutarate (m/z= 433), 

aspartate (m/z =418), glutamate (m/z =432), glutamine (m/z =431) and GABA 

(m/z =274) were also measured.  

  The plasma glucose enrichment was measured using a GC-MS method. Briefly, 

the plasma glucoses were dried and incubated with 100 µl of pyridine:acetic 

anhydride (2:3)  at 75 °C for 30 min. An Agilent 6890 GC system were used to 

determine the selective ion (Ammonia chemical ionization; CI) m/z 408-414.  

LC-MS assays. Acetyl-CoA and succinyl-CoA in muscle was measured by LC-

MS methods. Briefly, the supernatant fraction was loaded onto a Supelco solid-

phase extraction cartridge ([2-(pyridyl)-ethyl functionalized silica gel] 

preconditioned with 3 ml of methanol and then added 3 ml of buffer A (1:1 

methanol-H2O with 2% acetic acid). The cartridge was then washed with 3 ml of 

buffer A to elute impurities, followed sequentially by 3 ml of buffer B (1:1 

methanol-H2O with 50 mM ammonium formate), 3 ml of buffer C (3:1 methanol-

H2O with 50 mM ammonium formate), and 3 ml of methanol to elute the acyl-

CoAs. The eluent was evaporated under nitrogen.  



The LC was coupled with an API4000 Qtrap Mass Spectormeter (Applied 

Biosystems, Foster City, CA) operated under positive ionization. Acetyl-CoA was 

m easured at the 14.2 min elution time and the ions 810/303 – 812/305 were 

monitored.  

Calculations  

Fractional contributions of [13C6]glucose to oxidaitve metabolism.The fractional 

isotopic enrichments (via 13C label incorporation) for each of the intermediates 

were defined as molar percent enrichment (MPE), after background correction.  

The MPEs (unit: percent) is calculated as  

MPE (M+n) = 100 × 
∑
=

n

i
i

i

A

A

0

 

Where MPE(M+n) is the n th  13C labeled mass isotopomer enrichment of the 

metabolite. A is the abundance (arbitrary unit) measured by GC-MS. The variable 

i varied from zero to n, while n is no more than 6. A(0) is the abundance non-

labeled metabolite, and A(i) is the abundance for mass isotopomer labeled with i 

13C, regardless of position.   

The M+2 (M2) MPE of each of the intermediates reflected the contribution of 

[13C6]glucose to that intermediate pool. For the measurements of the contribution 

of [13C6]glucose to oxidative metabolism, the assumption was that the first turn of 

the CAC produces mostly M+2 [13C]labeled intermediates from [1,2-13C]acetyl-

CoA via  pyruvate dehydrogenase complex (PDH). Thus, the first turn of the CAC 

(as measured by M+2 for each intermediates) reflected oxidative metabolism.   



Concentrations of intermediates in tissue. The concentrations of the endogenous 

tissue metabolites were determined by standard curves for each metabolite and 

the known amount internal standard added to the sample. For the absolute 

concentrations of fumarate, malate and succinate, internal standards of [13C4] 

succinate, or (RS)-3-hydroxy-[2H4]glutarate were used; glutamine and glutamate 

concentrations were calculated using [2H5]glutamate or [2H5] glutamine; the 

acetyl-CoA and succinyl-CoA concentrations were assayed using an internal 

standard of [2H9]pentanoyl-CoA. 

Muscle contractility 

Contractile measurements were performed on fast twitch muscle EDL and slow 

twitch muscle Soleus. Both muscles were dissected from hind limbs and placed 

in chilled Krebs solution (in mM: 119 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 KH2PO4, 1.2 

MgSO4, 20 NaHCO3, bubbled with 95% O2-5% CO2 (pH 7.4). The tendons of 

the muscles were tied to a force transducer (400A, Aurora Scientific) and an 

adjustable hook using nylon sutures. The muscles were immersed in a 

stimulation chamber containing the Krebs solution continuously bubbled (O2 95/ 

Co2 5%) (at 28°C). The muscle was stimulated to contract using an electrical field 

between two platinum electrodes (Aurora Scientific 1200A - in vitro System). 

The muscle length (Lo) was first adjusted to yield the maximum force. The force–

frequency relationships were determined by triggering contraction using 

incremental stimulation frequencies (0.5 ms pulses at 10–120 Hz for 350 ms at 

supra- threshold current). Between stimulations the muscle was allowed to rest 

for ~1 min. Fatigability of the muscles was assessed by measuring the loss of 



force in response to repeated stimuli (30 Hz, 300 ms duration) at 1Hz over 10 

min. After the measurements of contractile properties were completed, muscles 

were measured at Lo, dried to remove the buffer, and weighed. The muscle 

cross-sectional area was determined by dividing muscle weight by its length and 

tissue density (1.056 g/cm3). Force production was then normalized to the 

muscle cross-sectional area to determine the specific force.  

Muscle Histomorphometry  

For mitochondria histomorphometry, EDL and soleus muscles were fixed in 4% 

PFA/2% glutaraldehyde/0.1M sodium cacodylate pH 7.3, post-fixed in 1% 

osmium tetraoxide and embedded in epoxy resin (Epon). Ultrathin sections (80 

nm) were stained with aqueous uranyl acetate and lead citrate and examined 

with a JEOL 2000FX transmission electron microscope. For the determination of 

the cross-section area of muscle fibers, gastrocnemius muscle was fixed in 10% 

neutral formalin, embedded in paraffin and sectioned at 5µm. Sections were 

stained with hematoxylin and eosin and analyzed using the ImageJ software. For 

determination of muscle fiber type composition, gastrocnemius muscle was 

frozen in liquid N2-cooled methylbutane. Samples were sectioned at 10µm. SDH, 

ATPase and COX activity assays were performed as described (Quiat et al., 

2011). Images were analyzed using the ImageJ software.  

RNASeq 

RNA was extracted from each group using RNAqueous®-Micro Total RNA 

Isolation Kit (ThermoSci, #AM1931) and the quality of purified RNA samples was 

determined using a Bioanalyzer 2100 (Agilent) with an RNA Pico kit. Extracted 



RNA samples were amplified by Ovation® RNA-Seq System V2 (NuGEN) Kit. 

Amplified cDNA was labeled with Encore biotin module Kit (NuGEN) for RNASeq 

applications Illumina Truseq RNA Sample Prep v2 using the LT protocol. RNA 

was sequenced at 30M paired 100 bp reads reads per sample on an Illumina 

2500 HISeq instrument.   

Bases were called with Illumina’s Real Time Analysis (RTA 1.9) (Illumina, 

2015b). Adaptors were trimmed and reads were converted from BCL to Fasta 

format with bcl2fastq 1.8.4 (Illumina, 2015a). Reads were mapped to the mm9 

mouse genome with  Bowtie2 (Langmead and Salzberg, 2012) 2.0.0-beta7 and 

TopHat2 (Kim et al., 2013) 2.0.4. Reads were counted with HTSeq-0.6.1p2 

(Anders et al., 2015). These data were deposited in the Gene Expression 

Omnibus (GEO) (Barrett et al., 2013), Accession number, GSE75919.  

Experiments were normalized with TMM (Robinson and Oshlack, 2010). 

Differential expression was estimated using Limma-Voom with weights (Law et 

al., 2014; Liu et al., 2015). All of the Benjamini-Hochberg (Benjamini and 

Hochberg, 1995) False discovery rates (fdr) were > 0.90. However, spot checking 

key genes by PCR, shows that an uncorrected p≤0.02 is a reliable significance 

cutoff for this RNASeq experiment. 242 genes were statistically significantly 

differentially expressed by this cutoff. 

To visualize the effect of osteocalcin signaling in myofibers on gene expression 

independently of the magnitude of expression of each gene, raw counts for a 

gene were divided by the total number of counts for that gene across samples, 

and then log2 transformed. In addition, clustering of all genes which were 



differentially expressed with p≤0.02 and range(log2(normalized-counts))  ≥ 1 (46 

genes) was performed (Figure 5A). Clustering was performed with Cluster 3.0 

(de Hoon et al., 2004; Eisen et al., 1998). The expression of each gene, and then 

samples, were mean centered. Both genes and samples were clustered using 

average-linkage clustering (Everitt et al., 2011). The heatmaps were displayed 

with JavaTreeView (Saldanha, 2004). 

Statistics 

All data are presented as mean ± standard error of mean. Statistical analyses 

were performed using unpaired, two-tailed Student’s t test for comparison 

between two groups and ANOVA test for experiments involving more than two 

groups. For all experiments, * denotes P ≤ 0.05, ** P ≤ 0.005. 
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