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Abstract

European options are financial derivatives, governed by the solution of an integral,
the so-called discounted expectation of the pay-off function. For the computation of
the expectation we require knowledge about the probability density function of the
stochastic asset price process, which is typically available by its Fourier transform.
In this project, we will explore wavelets theory to be able to construct the Shannon
wavelets and use them to describe the density function. Also, a numerical method
proposed by Luis Ortiz-Gracia and Cornelis W. Oosterlee to price these derivatives
will be presented. This is called SWIFT (Shannon wavelet inverse Fourier technique).
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1 Introduction.

Financial derivatives are contracts whose price depends on the value of an underlying
asset. This underlying asset refers for example to a stock, a foreign exchange or even
a derivative in itself. Derivatives are useful for traders to be prepared for a bullish
or a bearish period. There are several kinds of derivatives and we will focus on one
in particular that is called European derivative.

A European derivative is a contract that gives to the buyer the right, but not the
obligation, to buy or sell an underlying asset for a fixed price K (strike) in a certain
date T (maturity). If we decide to buy we will have a call option and if we choose
to sell we will get a put option. One of the aims in financial mathematics is to price
these derivatives. To be able to do this, we will need a pay-off which is the profit
that the buyer of the option can gain at maturity.

The pay-off is a positive random variable because we do not know the value of
the asset price at maturity ST . Stochastic calculus is used to model the evolution
of St. For this purpose, two models will be presented: Black-Scholes and Heston
model. With the first one we have analytic formulas but because the volatility is not
constant, Heston proposed another one. In this second model it is necessary to use
numerical analysis because there are no analytic expressions.

That is why this work exposes a numerical method for pricing European deriva-
tives. This method is called SWIFT (Shannon wavelet inverse Fourier technique) and
it was proposed by Ortiz-Gracia and Oosterlee in [8, Ort16]. Whereas the density
function f of the random variable St is typically not known, the characteristic func-
tion f̂ of the log-asset price is often avaliable. The characteristic function is related
with the Fourier transform of f . Also we need an orthonormal basis to describe f as
a sum of some specific functions. Because the density function is smooth and defined
on the real line we will use Shannon wavelets.

The master thesis is organized as follows. In Section 2 we will construct the
Shannon wavelets. For that aim we need to understand concepts of Hilbert spaces
and what an orthonormal basis is. Then, the Fourier transform and also results of
multiresolution analysis will appear. We recall that this part is made to present the
Shannon wavelets which are used to describe the density function f as a combination
of basis functions. In Section 3 there are results of probability and stochastic calculus.
Here we will give the definitions of European derivatives and we will give details on
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the aforementioned models. In Section 4, we will present the numerical method
SWIFT. At the end of this section we will present some numerical results for a
European call option and also for another derivate: a cash-or-nothing option. Both
Black-Scholes and Heston models are used to drive the dynamics of the asset price.
In Section 5, we will give some conclusions.
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2 Hilbert spaces and wavelet theory.

In this chapter we will review some basic facts about Hilbert spaces, specially about
orthonormal basis. This will be necessary to develope the wavelets theory. The aim
of this section is to expose all the theory we need to be able to understand how to
construct the Shannon wavelet.

2.1 Basic concepts on Hilbert spaces.

Definition 2.1 (Scalar product). A scalar product in a real or complex vector
space H is a K (K = R,C) valued function on H ×H

<,>: H ×H → K

with the following properties,

i) For every x ∈ H, < ·, x > is a linear map on H and < x, · > is a skewlinear
map meaning that

< x, y1 + y2 >=< x, y1 > + < x, y2 >, < x, λy >= λ̄ < x, y >,

where λ̄ is the complex conjugate of λ.

ii) Symmetry : < y, x >= < x, y >.

iii) < x, x >≥ 0 and < x, x >= 0 ⇐⇒ x = 0.

Remark 2.1. Every scalar product induces a norm defined as follows

‖x‖ =
√
< x, x >.

It is easy to prove that ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0. It is also verified
‖λx‖ = |λ|‖x‖, so we have to prove if the triangle inequality holds. This means

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

First of all, let us recall the Cauchy-Schwartz inequality

| < x, y > | ≤ ‖x‖‖y‖.

Therefore,

‖x+ y‖2 =< x+ y, x+ y >= ‖x‖2 + ‖y‖2 + 2<(< x, y >)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2

and we get what we want, ‖x+ y‖ ≤ ‖x‖+ ‖y‖. We recall that < is the real part of
a complex number.
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Definition 2.2. Let H be a space with a scalar product. We say that a sequence
(xn)∞n=1 ⊂ H converges to an element x ∈ H if ‖xn−x‖ → 0 with the norm endowed
by the scalar product on H.

Definition 2.3 (Cauchy sequence). (xn)∞n=1 ⊂ H is a Cauchy sequence on H
endowed with a scalar product if for every ε > 0 there exists n0 ∈ N, such that for
all m,n ≥ n0 we have that ‖xn − xm‖ < ε.

Definition 2.4 (Hilbert space). A vector space H with a scalar product is called
a Hilbert space if every Cauchy sequence converges to an element x that belongs to
H. It is important to recall that the convergence is with the topology induced by
the norm of the scalar product.

Proposition 2.1. The scalar product is a continuos function on the product space
H ×H, with H a Hilbert space.

Proof. To prove that the scalar product is a continuos function, we have to verify
that for every sequence (xn, yn)∞n=1 ⊂ H×H that converges to an element (x, y) with
the topology of H × H, then the sequence (< xn, yn >)∞n=1 converges to < x, y >
with the topology of K. Let us say first which topology has each space.
The topology for H ×H is defined through the norm

‖(x, y)‖H×H = max{‖x‖H , ‖y‖H}

and the norm in K is the absolut value for R and the module for C.
Since (xn, yn)→ (x, y) in H×H, by the definition of the norm in this space we have
that the sequences (xn)∞n=1, (yn)∞n=1 converge to x, y respectivelly in H,

‖xn − x‖H → 0, ‖yn − y‖H → 0.

We must only check that < xn, yn >→< x, y >. For that we will use the Cauchy-
Schwartz inequality.

| < xn, yn > − < x, y > | = | < xn − x, yn > + < x, yn − y > |
≤ | < xn − x, yn > |+ | < x, yn − y > |
≤ ‖xn − x‖‖yn‖+ ‖x‖‖yn − y‖ → 0.

Hence the scalar product is a continous function.
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Example 2.1. The spaces Rn, Cn are Hilbert spaces with the usual scalar product

< (x, . . . , xn), (y1, . . . , yn) >=
n∑
i=1

xiyi.

Example 2.2. Let T be the unit circle, T = {z ∈ C : |z| = 1}. This set will be idetified
for our purpose by the interval [−π, π) (sometimes it is used the interval [0, 1), or
[0, 2π)), and we consider also the real line R. Then the space L2(X) composed by
all the square integrable functions on X,

L2(X) =

{
f :

∫
X

|f |2 <∞
}

is a Hilbert space with the scalar product

< f, g >=

∫
X

f(x)g(x) dx

This is well defined because of the Cauchy-Schwartz inequality taking the norm like

‖f‖2 =

√∫
X

|f |2

Example 2.3. The space `2 defined as follows

`2 =

{
(xn)∞n=1 :

∞∑
n=1

|xn|2 <∞

}

is a Hilbert space with the scalar product

< x, y >=
∞∑
n=1

xnyn

From now on we will denote by H a Hilbert space.

Definition 2.5 (orthogonality). We say that x, y ∈ H are orthogonal if

< x, y >= 0.
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Figure 1: Orthogonal projection.

It is easy to prove the famous Pythagoras theorem for a Hilbert space if two
elements are orthogonal only developing the definiton of the norm,

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Another indentity that we will use is the Parallelogram identity,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Definition 2.6. Given x ∈ H and F ⊂ H a closed subspace, we define the distance
between x and F as

d(x, F ) = inf{‖x− y‖ : y ∈ F}

Theorem 2.1 (Projection theorem). Let F be a closed subspace of H. Then for
every x ∈ H there exists a unique y ∈ F such that d(x, F ) = ‖x − y‖. We denote
this projection as y = PF (x).

Proof. Let d = d(x, F ). By the definition of infimum there exists a sequence
(yn)∞n=1 ⊂ F such that d = limn→∞ ‖x − yn‖. Now, by the parallelogram inden-
tity we have

2‖ym − x‖2 + 2‖yn − x‖2 = ‖ym − yn‖2 + ‖ym + yn − 2x‖2

= ‖ym − yn‖2 + 4

∥∥∥∥ym + yn
2

− x
∥∥∥∥2 .
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Since F is a subspace, (ym + yn)/2 ∈ F , and moreover

‖yn − ym‖2 = 2‖ym − x‖2 + 2‖yn − x‖2 − 4

∥∥∥∥ym + yn
2

− x
∥∥∥∥2

≤ 2‖ym − x‖2 + 2‖yn − x‖2 − 4d2 → 0.

F is a closed subspace of a Hilbert space and therefore F is also a Hilbert space.
Like (yn)∞n=1 ⊂ F is a Cauchy sequence, yn → y ∈ F . Hence, since the norm is a
continuos function

d = d(x, F ) = lim
n→∞

‖x− yn‖ = ‖x− y‖, y ∈ F.

For uniqueness: Let us assume that there exists two elements y1, y2 ∈ F such that

d = d(x, F ) = ‖x− y1‖ = ‖x− y2‖.

Then using the previous argument with the sequence {y1, y2, y1, y2, . . . } we obtain
that this sequence has a limit and thus y1 = y2.

Theorem 2.2. Let F be a closed subspace of H as before. We define the orthogonal
complement F⊥ as follows

F⊥ = {x ∈ H :< x, y >= 0, ∀y ∈ F}.

Then F⊥ is a closed subspace such that

H = F ⊕ F⊥.

Proof. It is straightforward that F⊥ is a subspace. Let’s prove that it is closed.
We take a sequence (xn)∞n=1 ⊂ F⊥ that converges to x in H, ‖xn− x‖ → 0. We have
to see that x ∈ F⊥. Let y ∈ F ,

| < x, y > | = | < x− xn + xn, y > | = | < x− xn, y > + < xn, y > |
= | < x− xn, y > | ≤ ‖x− xn‖‖y‖ → 0.

Since < x, y >= 0 for all y ∈ F we have that x is in F⊥. That proves that F⊥ is
closed.

Now, for the second part we have to verify two things. The first one is that
F ∩ F⊥ = {0}. If x ∈ F ∩ F⊥ then x ∈ F⊥ and we have that < x, y >= 0 for all
y ∈ F . Specially x ∈ F and we obatin that < x, x >= 0 which implies that x = 0.
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The second thing to do, is to prove that every element x ∈ H is the sum of two
elements, one that belongs to F and other that belongs to F⊥.
Let x ∈ H. By the projection theorem we have that there exists an element y ∈ F
such that y = PF (x). Then it would be enough to prove that x− y ∈ F⊥. Let t be
0 < t < 1 and z ∈ F . We have

‖x− y‖2 ≤ ‖x− (1− t)y − tz‖2 = ‖x− y − t(z − y)‖2

= ‖x− y‖2 + t2‖z − y‖2 − 2t<(< z − y, x− y >)

and hence 2<(< z−y, x−y >) ≤ t‖z−y‖2. Letting t as small as possible we get that
<(< u, x− y >) ≤ 0 because it is for every z ∈ F and F is a subspace. Multiplying
this inequality by -1, i and −i we have that < u, x − y >= 0, ∀u ∈ F and we are
done.

This theorem gives us a useful inequality. Let x ∈ H, because of the projection
theorem we can put x as a sum of two elements, one is the projection on F and the
other is an element on F⊥,

x = PF (x) + z, z ∈ F⊥.

Using the Pithagoras theorem we finally get that

‖PF (x)‖2 + ‖z‖2 = ‖x‖2 =⇒ ‖PF (x)‖2 ≤ ‖x‖2.

2.2 Orthonormal basis

Definition 2.7. We say that {ei}i∈N ⊂ H is an orthonormal system if their
elements are pairwise orthogonal, and moreover, the norm of each element is equal
to one, that is

< ei, ej >=

{
0 i 6= j

1 i = j

Definition 2.8. Let x ∈ H. Given an orthonormal system {ei}i∈N we define the
Fourier coefficient of x as

x̂(i) =< x, ei >, i ∈ N.

Then we define x̂ = {x̂(i)}i∈N. The sum
∑

i∈N x̂(i)ei is called the Fourier series of
x.
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Definition 2.9. An orthonormal system E = {ei}i∈N is called complete if E⊥ = {0}.
In other words this means that

x̂(i) = 0, ∀ i ∈ N =⇒ x = 0.

An orthonormal complete system of H is also known as orthonormal basis of H.

Theorem 2.3 (Bessel’s inequality). Given an orthonormal system {ei}i∈N on H,
and let x ∈ H. Then

∞∑
i=1

|x̂(i)|2 ≤ ‖x‖2.

Proof. First of all we fix n ∈ N and let Fn be the closed subspace generated by the
elements {e1, . . . , en}. Then PFn(x) =

∑n
i=1 ciei for some coefficients ci. Using the

Pythagoras theorem we have

‖PFn(x)‖2 =

∥∥∥∥∥
n∑
i=1

ciei

∥∥∥∥∥
2

=
n∑
i=1

|ci|2 ≤ ‖x‖2.

We know that x− PFn(x) ∈ F⊥ and for all i = 1, . . . , n

< x−
n∑
i=1

ciei, ei >=< x, ei > −ci = 0

and therefore < x, ei >= ci = x̂(i). Letting n tend to infinity we obtain the Bessel’s
inequality.

Remark 2.2. This inequality can be used to confirm that the function from H → `2

such that x → x̂ is well defined. Moreover, it is subjective. For all (xn) ∈ `2 the
sum

∑∞
i=1 xiei converges to an element x ∈ H such that x̂(i) =< x, ei >= xi. That

is easy to prove.
Let us define sn =

∑n
i=1 xiei. If we take p, q ∈ N, q > p we have

‖sq − sp‖2 =

∥∥∥∥∥
q∑

i=p+1

xiei

∥∥∥∥∥
2

=

q∑
i=p+1

|xi|2 → 0

Therefore (sn)∞n=1 is a Cauchy sequence on H and there exists an element x ∈ H such
that

∑∞
i=1 xiei = x. To finish, for all i ∈ N and taking into account the continuity of

the scalar product we have

xi = lim
n→∞

<

n∑
i=1

xiei, ei >=< lim
n→∞

n∑
i=1

xiei, ei >=< x, ei >= x̂(i)
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Usually this function is not injective. If x̂ = 0, the inverse by the map can not be
the element x = 0. In case it does (the map is bijective) the space H is complete.

Now we will introduce a very important theorem that allow us to assure if some
orthonormal system is an orthonormal basis. This characterization is very useful
because to prove that something is an orthormal basis by means of the definition is
often much more complicated that this theorem.

Theorem 2.4 (Fischer-Riesz theorem). An orthonormal countable system {en}∞n=1

is complete (then it is an orthonormal basis) on H, if and only if, for every x ∈ H ,

x =
∞∑
n=1

x̂(n)en

and the Parseval’s identity holds

‖x‖2 =
∞∑
n=1

|x̂(n)|2.

Proof. If we consider that x is the infinity sum of its Fourier coefficients, it is imme-
diate that if x̂(n) = 0, ∀n ∈ N we have that x = 0, and it is complete.
To prove the converse we know that x̂ ∈ `2 and there existes y ∈ H such that∑∞

n=1 x̂(n)en = y. Thus x̂(n) = ŷ(n), and

0 = x̂(n)− ŷ(n) = x̂− y(n) =⇒ x = y

and the Parseval’s identity holds.

Remark 2.3. The previous map we have defined from H to `2 as x→ x̂ is an isome-
try when the orthonormal system of H is complete due to the Fischer-Riesz theorem.

Example 2.4. The canonical basis {ei, i = 1, . . . , n} on Rn

ei = (0, . . . , 1︸︷︷︸
i

, . . . , 0)

is an orthonormal basis.
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Example 2.5. For the space `2 the orthonormal system {ei}∞i=1 with ei = (δi,n)∞n=1 is
a complete orthonormal system. The delta represents the Kronecker delta,

δi,j =

{
1 i = j

0 i 6= j

Example 2.6. A well known orthonomal basis on L2(T) with T = [−π, π) is{
1√
2π
eikx : k ∈ Z

}
.

Then, if f ∈ L2(T), its Fourier coefficients are

f̂(k) =< f, ek >=
1√
2π

∫ π

−π
f(x)e−ikx dx.

Using this basis of L2(T), we can encode f with the coefficients ck =< f, ek >. And
then, we can reconstruct again the function f by these coefficients. This is something
very used in signal theory. But functions in finance are normally defined on the real
line R and that is why we have to use another efficient basis like the wavelets basis
is. We will introduce this chapter just after a comment on a very important basis on
L2(R).

Example 2.7. The Haar system {ψj,k : j, k ∈ Z} such that

ψj,k(x) = 2j/2ψ(2jx− k)

is an orthonormal basis on L2(R) where ψ(x) = χ(0,1/2)(x)− χ(1/2,1)(x). It is easy to
check that

‖ψj,k‖22 =

∫
R

2j|ψ(2jx− k)|2 dx =

∫
R
|ψ(x)|2 dx =

∫ 1

0

dx = 1.

We can observe that the support of ψj,k is the interval [k/2j, (k+ 1)/2j] in which the
function ψj,k has the values

ψj,k(x) =


2j/2 k

2j
< x < k+1/2

2j

−2j/2 k+1/2
2j

< x < k+1
2j

0 otherwise

If we take two functions ψj,k, ψm,l, we can see that if k 6= l we have that the inter-
section of the two supports is empty and thus the scalar product is zero. And if we
have that k = l and j 6= m the intersection of both supports is the smaller one. That
makes that the half of the interval is positive and the other half is negative with the
same value, canceling the areas and therefore the scalar product is also zero. It can
also be proved that this orthonormal system is complete on L2(R).
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2.3 Fourier transform and orthonormal wavelets.

Definition 2.10. Let f ∈ L1(R). We define the Fourier transform as

f̂(ξ) =

∫
R
f(x)e−ixξ dx.

Remark 2.4. The Fourier transform is well defined becuase |f̂(ξ)| ≤ ‖f‖1, and there-
fore

‖f̂‖∞ ≤ ‖f‖1, =⇒ f̂ ∈ L∞.

We will often say that x is the time variable and ξ is the frequency variable.

Proposition 2.2 (Plancherel’s theorem).

< f, g >=
1

2π
< f̂, ĝ >, f, g ∈ L1(R) ∩ L2(R)

Remark 2.5. The Fourier transform can be extentended for a function f ∈ L2(R)
due to Plancherel’s theorem.
We know that L1(R) ∩ L2(R) is dense in L2(R), so we can find a sequence (fn)∞n=1 ⊂
L1(R) ∩ L2(R) than converges to f in L2(R). Since

‖f̂n − f̂m‖2 = ‖ ̂fn − fm‖2 =
√

2π ‖fn − fm‖2 → 0

(f̂n)∞n=1 is a Cauchy sequence in L2(R), and thus we define the Fourier transform of
f ∈ L2(R) as

f̂ = lim
n→∞

f̂n in L2(R).

Definition 2.11. The inverse Fourier transform is defined as

f(x) =
1

2π

∫
R
f̂(ξ)eixξ dξ.

We will expose two examples about how to compute the inverse Fourier transform
of two functions that we will need to construct the Shannon wavelet.

Example 2.8.
φ̂(ξ) = χ[−π,π](ξ).
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φ(x) =
1

2π

∫
R
φ̂(ξ)eixξ dξ =

∫ π

−π
eixξ dξ

=
1

2π

(∫ π

−π
cos(xξ) dξ + i

∫ π

−π
sin(xξ) dξ

)
=

1

2π

(
sin(xξ)

x

∣∣∣∣∣
π

−π

− i cos(xξ)

x

∣∣∣∣∣
π

−π

)

=
sin(πx)

πx
.

Example 2.9.

ψ̂(ξ) = ei
ξ
2χI(ξ), I = [−2π,−π) ∪ (π, 2π].

ψ(x) =
1

2π

∫
I

ei
ξ
2 eiξx dξ =

1

2π

∫
I

ei
ξ
2
(2x+1) dξ

=
1

2π

[∫
I

cos

(
ξ

2
(2x+ 1)

)
+ i

∫
I

sin

(
ξ

2
(2x+ 1)

)]
=

sin
(
ξ
2
(2x+ 1)

)
π(2x+ 1)

∣∣∣∣−π
−2π

+
sin
(
ξ
2
(2x+ 1)

)
π(2x+ 1)

∣∣∣∣2π
π

= 2
sin(2πx+ π)− sin

(
πx+ π

2

)
π(2x+ 1)

= −2
sin(2πx) + cos(πx)

π(2x+ 1)
.

Definition 2.12. Let f be a function. Then we define the traslation τh and the
dilation ρr of f as follows

(τhf)(x) = f(x− h), (ρrf)(x) = f(rx).

Proposition 2.3.
τ̂hf(ξ) = e−ihξf̂(ξ)

Proof.

τ̂hf(ξ) =

∫
R
(τhf)(x)e−ixξ dx =

∫
R
f(x− h)e−ixξ dx

=

∫
R
f(u)e−i(u+h)ξ du = e−ihξ

∫
R
f(u)e−iuξ du = e−ihξf̂(ξ).
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Figure 2: Haar wavelet

Definition 2.13 (Orthonormal wavelet). An orthonormal wavelet on R is a func-
tion ψ ∈ L2(R) such that {ψj,k : j, k ∈ Z} is an orthonormal basis of L2(R) where

ψj,k(x) = 2j/2ψ(2jx− k).

Remark 2.6. Observe that what we are doing are translations and dilations of the
function ψ. The factor 2j/2 is used to preserve orthonormality. Moreover, due to this
factor all the functions ψj,k have the same norm as ψ, ‖ψj,k‖ = ‖ψ‖, so this system
is normalized if the norm of ψ is equal to one.

Remark 2.7. Another interesting observation about using orthonormal wavelets in-
stead of Fourier series is that we can move, stretech, or compress the wavelets to
accurately represent the local properties of the functions that we will find in finance.

Example 2.10. The Haar system obtained by dilations and translations of the Haar
wavelet ψ

ψ(x) = χ(0,1/2)(x)− χ(1/2,1)(x)

is an orthonormal wavelet for L2(R). In the section of orthonormal basis we exposed
this system in one example and we checked that it is an orthonormal basis.

Proposition 2.4.
ψ̂j,k(ξ) = e−i2

−jkξ2−j/2ψ̂(2−jξ)
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Proof.

ψ̂j,k(ξ) =

∫
R
ψj,k(x)e−ixξ dx =

∫
R

2j/2ψ(2jx− k)e−ixξ dx

=2−j/2
∫
R
ψ(u)e−i(u+k)2

−jξ du = e−i2
−jkξ2−j/2ψ̂(2−jξ).

Haar wavelet is an important example in wavelets theory. But for the purpose of
this thesis, we want to develope another wavelet which is called Shannon wavelet.
The problem that the Haar basis has, is that there are discontinuities. The functions
we will use are smooth and Shannon wavelet can help us for this aim. The following
example is related to this wavelet.

Example 2.11. Let ψ be a function such that

ψ̂(ξ) = χI(ξ), I = [−2π,−π] ∪ [π, 2π].

Then ψ is an orthonormal wavelet. Let’s prove it. First of all we will check if
‖ψj,k‖ = 1. Recall that it is only necessary to see if ‖ψ‖ = 1,

‖ψ‖22 =
1

2π
‖ψ̂‖22 =

1

2π
2π = 1.

On the other hand, if j 6= l the intersection of the supports of the functions ψ̂j,k, ψ̂l,m
is empty and by Plancherel’s theorem we have

< ψj,k, ψl,m >=
1

2π
< ψ̂j,k, ψ̂l,m >= 0 j 6= l

Now, if j = l,

< ψj,k, ψj,m > =
1

2π
< ψ̂j,k, ψ̂j,m >

=
1

2π
2−j
∫
|ψ̂(2−jξ)|2e−i2−j(k−m)ξ dξ

=
1

2π

∫
|ψ̂(u)|2e−i(k−m)u du

=
1

2π

(∫ −π
−2π

e−i(k−m)u du+

∫ 2π

π

e−i(k−m)u du

)
= δk,m.

15



This proves that the system {ψj,k : j, k ∈ Z} is an orthonormal system. Let us check
that it is exactly an orthonormal basis.∑

j∈Z

∑
k∈Z

| < f, ψj,k > |2 =
∑
j∈Z

∑
k∈Z

1

4π2
| < f̂, ψ̂j,k > |2

=
∑
j∈Z

∑
k∈Z

2−j

4π2

∣∣∣∣∫
R
f̂(ξ)ψ̂(2−jξ)ei2

−jkξ dξ

∣∣∣∣2
=
∑
j∈Z

2j

2π

∑
k∈Z

∣∣∣∣∫
I

f̂(2ju)
1√
2π
eiku du

∣∣∣∣2
=
∑
j∈Z

2j

2π

∫
I

|f̂(2ju)|2 du

=
1

2π

∑
j∈Z

∫
R
χI(2

−jξ)|f̂(ξ)|2 dξ

=
1

2π

∫
R

(∑
j∈Z

χI(2
−jξ)

)
|f̂(ξ)|2 dξ

=
1

2π
‖f̂‖22 = ‖f‖22.

Since the Parseval’s identity holds, the function ψ is an orthonormal wavelet on
L2(R).

2.4 Multiresolution analysis

Definition 2.14. A multiresolution analysis (MRA) consists of a sequence of
closed subspaces Vj, j ∈ Z of L2(R) satisfying the following properties.

1. Vj ⊂ Vj+1, ∀j ∈ Z

2. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, ∀j ∈ Z

3.
⋂
j∈Z Vj = {0}

4.
⋃
j∈Z Vj = L2(R)

5. There exists a function φ ∈ V0, such that {τkφ : k ∈ Z} is an orthonormal basis
for V0. This function φ is called the scaling function of the given MRA.

16



Remark 2.8. Typically given a function φ we can define the closed subspace V0 as

V0 = span{τkφ : k ∈ Z}

and by Property 5 every function f ∈ V0 can be written as the following sum

f(x) =
∑
k∈Z

ckφ(x− k), ck =< f, τkφ > .

Clearly through Property 2 since φ(x) ∈ V0 then φ(2jx) ∈ Vj and the system

{2j/2φ(2j · −k) : k ∈ Z}

is an orthonormal basis for Vj, chosen Vj as

Vj = span{2j/2φ(2j · −k : k ∈ Z}.

Another interesting result is deduced from Property 3 which says that
⋃
j∈Z Vj is

dense on L2(R). It means that given a function f ∈ L2(R) and for every ε > 0 there
exists a function g ∈ Vj for some j ∈ Z such that ‖f − g‖2 < ε.

Definition 2.15. Let φ the scaling function of an MRA and let φj,k the function
such that φj,k = 2j/2φ(2jx− k). For each j ∈ Z we define the projection operator
Pj : L2(R)→ Vj by

Pjf(x) =
∑
k∈Z

cj,k(x)φj,k(x)

where ck =< f(x), φj,k(x) >.

Proposition 2.5. With the same previous assumptions, for all f ∈ L2(R) we have
that

lim
j→∞
‖Pjf − f‖2 = 0

Proof. Because of the Property 4 of MRA, we can assure that there exists a J ∈ Z
such that ‖f − g‖2 ≤ ε/2 for some g ∈ VJ . By Property 1 we have also that
g ∈ Vj, ∀j ≥ J and therefore Pjg = g, ∀j ≥ J . Finally, for all j ≥ J

‖f − Pjf‖2 =‖f − g + g − Pjf‖2 ≤ ‖f − g‖2 + ‖Pj(g − f)‖2
≤2‖f − g‖2 < 2

ε

2
= ε

and that proves that ‖f − Pjf‖2 → 0 when j →∞.
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The next proposition is a characterization about orthonormal systems that we
will use several times. It can be used to prove that {τkφ : k ∈ Z} is an orthonormal
system for V0.

Proposition 2.6. If φ ∈ L2(R) then the system {τkφ : k ∈ Z} is an orthonormal
system if and only if

Φ(ξ) =
∑
k∈Z

|φ̂(ξ + 2kπ)| = 1, a.e. ξ

Naturally, the function Φ is 2π-periodic.

Proof. We have that for every k ∈ Z

δ0,k =< φ, τkφ >=
1

2π
< φ̂, τ̂kφ >=

1

2π

∫
R
|φ̂(ξ)|2eikξ dξ

=
1

2π

∑
j∈Z

∫ 2(j+1)π

2jπ

|φ̂(ξ)|2eikξ dξ

=
1

2π

∑
j∈Z

∫ 2π

0

|φ̂(u+ 2jπ)|2eiku du

=
1

2π

∫ 2π

0

∑
j∈Z

|φ̂(u+ 2jπ)|2eiku du

and the proposition holds.

2.5 Construction of wavelets from a multiresolution analysis

Now we will show how to construct an orthonormal wavelet from a mutiresolution
analysis MRA. We suppose that we have a collection of closed subspaces {Vj : j ∈
Z} ⊂ L2(R) forming an MRA with a scaling function φ. Let Wj be the orthogonal
complement of Vj in Vj+1, it means

Vj+1 = Vj ⊕Wj

Since Vj → {0} we have that

Vj+1 =

j⊕
i=−∞

Wi

18



and because of Vj → L2(R) when j →∞ we see that

∞⊕
j=−∞

Wj = L2(R)

Then, to find an orthonormal wavelet what we need is to find a function ψ ∈ W0

such that the system {τkψ : k ∈ Z} is an orthonormal basis on W0. Then by the
second property of an MRA we have that {2j/2ψ(2j · −k) : k ∈ Z} is an orthonormal
basis on Wj. Thus the system {ψj,k : j, k ∈ Z} is an orthonormal basis of L2(R) and
finally we can conclude that ψ is an orthonomal wavelet.

Remark 2.9. It is clear that we can write the projection operator Pj : L2(R)→ Vj in
another way using the functions ψj,k like

Pjf(x) =

j−1∑
i=−∞

∞∑
k=−∞

di,kψi,k(x)

where di,k =< f, ψi,k >. By Proposition 2.5 we can see also that when j →∞

‖f − Pjf‖22 =
∞∑
i=j

∞∑
k=−∞

|di,k|2 → 0.

Let us consider the scalling function φ ∈ V0. Then the function 1
2
φ(x

2
) ∈ V−1 ⊂

V0. With this information, we can write 1
2
φ(x

2
) as a sum by the orthonormal basis

{τ−kφ : k ∈ Z},
1

2
φ(
x

2
) =

∑
k∈Z

ckφ(x+ k)

where ck =< 1
2
φ(x

2
), φ(x+k) >, and we know that the sequence (ck)

∞
k=1 ∈ `2. Taking

the Fourier transform on both sides of the equation we have

φ̂(2ξ) =
∑
k∈Z

ckτ̂−kφ(ξ) = φ̂(ξ)
∑
k∈Z

cke
ikξ = φ̂(ξ)m0(ξ)

where m0(ξ) =
∑

k∈Z cke
ikξ. This function is 2π − periodic in L2(T) = L2([−π, π)).

The function m0 is called the low pass filter associated to the scaling function φ.

Proposition 2.7. Let m0 be the low pass filter of a scaling function φ. Then it is
verified the following equality

|m0(ξ)|2 + |m0(ξ + π)|2 = 1, a.e. ξ

We can deduce from here that m0 is bounded.
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Proof. By Propotion 2.6 we know that∑
k∈Z

|φ̂(2ξ + 2kπ)|2 = 1, a.e. ξ

and we have also that∑
k∈Z

|φ̂(2(ξ + kπ))|2 =
∑
k∈Z

|φ̂(ξ + kπ)|2|m0(ξ + kπ)|2 = 1, a.e. ξ

Now we separate the sum into two sums, one with the even integers and the other with
the odd integers. Taking into account the Proposition 2.6 and the 2π − periodicity
of m0 we finally get

1 =
∑
k∈Z

|φ̂(ξ + 2kπ)|2|m0(ξ + 2kπ)|2 +
∑
k∈Z

|φ̂(ξ + (2k + 1)π)|2|m0(ξ + (2k + 1)π)|2

=|m0(ξ)|2
∑
k∈Z

|φ̂(ξ + 2kπ)|2 + |m0(ξ + π)|2
∑
k∈Z

|φ̂(ξ + (2k + 1)π)|2

=|m0(ξ)|2 + |m0(ξ + π)|2
∑
k∈Z

|φ̂(ξ + π + 2kπ)|2

=|m0(ξ)|2 + |m0(ξ + π)|2.

Proposition 2.8. Let φ the scaling function of an MRA and m0 the low pass filter
associated. Then we can characterize the spaces V−1 and V0 as follows

V−1 = {f : f̂(ξ) = m(2ξ)m0(ξ)φ̂(ξ), m ∈ L2(T)}

V0 = {f : f̂(ξ) = l(ξ)φ̂(ξ), l ∈ L2(T)}

for some m, l functions that are 2π-periodic.

Proof. Let’s begin to prove that

V−1 ⊆ {f : f̂(ξ) = m(2ξ)m0(ξ)φ̂(ξ), m ∈ L2(T)}.

Let f ∈ V−1. Then { 1√
2
φ( ·

2
− k) : k ∈ Z} is an orthonormal basis on V−1 and we can

write f like

f(x) =
1√
2

∑
k∈Z

ckφ
(x

2
− k
)
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Then we take the Fourier transform to obtain

f̂(ξ) =
1√
2

∑
k∈Z

ckφ̂−1,k(ξ) =
1√
2

∑
k∈Z

cke
−i2kξ
√

2φ̂(2ξ)

= φ̂(2ξ)
∑
k∈Z

cke
−i2kξ = m(2ξ)m0(ξ)φ̂(ξ)

where m(ξ) =
∑

k∈Z cke
−ikξ is a 2π-periodic function in L2(T).

Conversely, let m ∈ L2(T) a function that is 2π-periodic. We want to check if f ∈ V−1
has the form

f̂(ξ) = m(2ξ)m0(ξ)φ̂(ξ)

Thus, we have to verify that f ∈ L2(R). We define h(ξ) = m(2ξ)m0(ξ). We know
that m0 is bounded and since m ∈ L2(T) we get that h ∈ L2(T). Since m,m0 are
2π-periodic, h is also 2π-periodic. And thus,

‖f̂‖22 =‖h(ξ)m(ξ)‖22 =

∫
R
|h(ξ)|2|φ̂(ξ)|2 dξ =

∑
k∈Z

∫ 2π

0

|h(ξ)|2|φ̂(ξ + 2kπ)|2 dξ

=

∫ 2π

0

|h(ξ)|2
(∑
k∈Z

|φ̂(ξ + 2kπ)|2
)
dξ =

∫ 2π

0

|h(ξ)|2 = ‖h‖2L2(T) <∞

Since f̂ ∈ L2(R) the function f is in L2(R).

Let us prove another characterization of V0. Let g ∈ V0. We know that the
system {τkφ : k ∈ Z} is an orthonormal basis on V0. Then g can be written as

g(x) =
∑
k∈Z

ckφ(x− k).

Taking the Fourier transform on both sides

ĝ(ξ) =
∑
k∈Z

ckτ̂kφ(ξ) = φ̂(ξ)
∑
k∈Z

cke
−ikξ

where l(ξ) =
∑

k∈Z cke
−ikξ is a function 2π-periodic that belongs to L2(R). Now

conversely we apply the same as we did for V−1 taking h(ξ) = l(ξ).

We will continue with the construction of the wavelet ψ. We recall that the
elements of W−1 are functions such that f ∈ V0 and are orthogonal to V−1, < f, g >=
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0 for all g ∈ V−1. We define the function U : V0 → L2(T) by U(f) = l taking l the
function that we have constructed on the space V0 by Proposition 1.8. U satisfies

‖U(f)‖2L2(T) = ‖l‖2L2(T) = 2π
∑
k∈Z

|ck|2 = 2π
∑
k∈Z

| < f, τkφ > |2 = 2π‖f‖22.

By the polarization identity and this last equality we have

< f, g >L2(R)=
1

2π
< Uf, Ug >L2(T), f, g ∈ V0.

If g ∈ V−1 ⊂ V0, we take Ug(ξ) = m(2ξ)m0(ξ) due to the characterization of V−1. It
shows us that

0 =< f, g >L2(R)=
1

2π
< l(ξ),m(2ξ)m0(ξ) >L2(T)

which implies that l is orthogonal to m(2ξ)m0(ξ) for all 2π-period function m in
L2(T).

0 =

∫ 2π

0

l(ξ)m(2ξ)m0(ξ) dξ =

∫ π

0

m(2ξ)
(
l(ξ)m0(ξ) + l(ξ + π)m0(ξ + π)

)
dξ

This tell us that the π-periodic function inside the parentheses is orthogonal for all
π-periodic square integrable functions and thus

l(ξ)m0(ξ) + l(ξ + π)m0(ξ + π) = 0, a.e. ξ ∈ T

Therefore for some function λ we can put the pair l(ξ), l(ξ + π) as{
l(ξ) = −λ(ξ + π)m0(ξ + π)

l(ξ + π) = λ(ξ + π)m0(ξ)

and taking now ξ = µ+ π and using that l and m0 are 2π-periodic{
l(µ+ π) = −λ(µ+ 2π)m0(µ)

l(µ) = λ(µ+ 2π)m0(µ+ π)

Because of that we can observe{
l(ξ) = −λ(ξ + π)m0(ξ + π) = λ(ξ + 2π)m0(ξ + π)

l(ξ + π) = λ(ξ + π)m0(ξ) = −λ(ξ + 2π)m0(ξ)
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Due to Proposition 2.7 we obtain that λ(ξ + π) = −λ(ξ + 2π), and substracting π
on both sides we have λ(ξ) = −λ(ξ + π), for almost every point ξ. Clearly λ is a
2π-periodic function in L2(T) and for some function s, that is also 2π-periodic and
in L2(T), we can write λ like λ(ξ) = eiξs(2ξ). With this form the function λ verifies
the property we have obtained

λ(ξ + π) = eiξe−iπs(2ξ + 2π) = −e−iξs(2ξ) = −λ(ξ)

Finally, if we take again the function l and we substitute the value λ in one of the
previous equalities we get

l(ξ) = −λ(ξ + π)m0(ξ + π) = eiξs(2ξ)m0(ξ + π)

In conclusion, we have found a characterization for the space W−1

W−1 =
{
f : f̂(ξ) = eiξs(2ξ)m0(ξ + π)φ̂(ξ) : s ∈ L2(T)

}
with s a function that is 2π-periodic. By the property of dilations for an MRA we
can establish the characterization of W0

Lemma 2.1. If φ is a scaling function of an MRA, and m0 the low pass filter
associated, then

W0 = {f : f̂(2ξ) = eiξs(2ξ)m0(ξ + π)φ̂(ξ) : s ∈ L2(T)}

for some function s that is 2π-periodic.

With all this theory we can define our orthonormal wavelet like the function ψ
that verifies

ψ̂(2ξ) = eiξm0(ξ + π)φ̂(ξ)

taking s ≡ 1. This is the principal idea to begin to construct wavelets.

We will end wavelets theory with a proposition that shows how to obtain |φ̂| from
|ψ̂|. It will help to find a candidate scaling fuction given an orthonormal wavelet.

Proposition 2.9. Let φ, ψ, the scaling function and the wavelet of an MRA respec-
tively. Therefore the following equality holds

|φ̂(ξ)|2 =
∞∑
j=1

|ψ̂(2jξ)|.
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Proof. We recall that

φ̂(2ξ) = φ̂(ξ)m0(ξ), ψ̂(2ξ) = eiξm0(ξ + π)φ̂(ξ)

and considering these equalities we get

|φ̂(2ξ)|2 + |ψ̂(2ξ)|2 = |φ̂(ξ)|2(|m0(ξ)|2 + |m0(ξ + π)|2) = |φ̂(ξ)|2

Iterating this result we have

|φ̂(ξ)|2 = |φ̂(2nξ)|2 +
n∑
i=1

|ψ̂(2iξ)|2.

The function φ̂ is bounded by one due to Propostition 2.6, |φ̂(ξ)|2 ≤ 1, and thus the
sequence

an =
n∑
i=1

|ψ̂(2iξ)|2, n = 1, 2, . . .

is increasing and bounded by 1. Since the limit of an exists, the limit of |φ̂(2nξ)| also
exists. Moreover we know that∫

R
|φ̂(2nξ)|2 dξ =

1

2n

∫
R
|φ̂(u)|2 du =

‖φ̂‖22
2n

n→∞−−−→ 0

and by Fatou’s lemma∫
R

lim
n→∞

|φ̂(2nξ)|2 dξ ≤ lim
n→∞

∫
R
|φ̂(2nξ)|2 = 0

Hence |φ̂(2nξ)|2 = 0 and the equality of the proposition holds.

Finally, we arrive to the aim of this section. We will construct the Shannon
wavelet defining a specific function and then we will give the scaling function asso-
ciated to some multiresolution analysis.

Example 2.12. The Shannon wavelet is the function ψ whose Fourier transform is

ψ̂(ξ) = ei
ξ
2χI(ξ), I = [−2π,−π) ∪ (π, 2π].

To prove that ψ is a wavelet we use the Proposition 2.9 to be able to find a scaling
function φ for some MRA generated by this wavelet. We have that

ψ̂(2jξ) = ei2
j−1ξχIj(ξ), Ij = [−2−j+1π,−2−jπ) ∪ (2−jπ, 2−j+1π].
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Figure 3: Shannon wavelet ψ is drawn by the blue line. The red line is the scaling
function φ.

The sets Ij are disjointed for all j = 1, 2, . . . and the union of all of them is the
interval [−π, π]. Since

∞∑
j=1

|ψ̂(2jξ)| = 1, ∀ξ ∈ [−π, π]

a possible candidate φ for the scaling function we are finding could be a function φ
such that

φ̂(ξ) = χ[−π,π](ξ).

Due to Proposition 2.6 and because of the lenght of the interval [−π, π] is 2π,∑
k∈Z

|φ̂(ξ + 2kπ)|2 =
∑
k∈Z

|χ[π,π](ξ + 2kπ)|2 = 1

the system {τkφ : k ∈ Z} is an orthonormal system.
We choose for Vj the closed subspace generated by the functions φj,k

Vj = span ({φj,k = 2j/2(2j · −k) : k ∈ Z}), ∀j ∈ Z.

25



If we see that 1
2
φ(x

2
) is an element of V0 we will have that {Vj : j ∈ Z} is an MRA.

This is equivalent to find the low pass filter m0 verifying φ̂(2ξ) = φ̂(ξ)m0(ξ) for some
m0 ∈ L2(T) and 2π-periodic. As we have said m0 must satisfy

χ[−π
2
,π
2
](ξ) = χ[−π,π](ξ)m0(ξ)

We can define m0 on the interval [−π, π] as

m0(ξ) =

{
1 ξ ∈ [−π

2
, π
2
]

0 otherwise

and we extend periodically this function to R.
Finally we recall that a function ψ given a scaling function φ and a low pass filter
m0 is characterized by Lemma 1.1 and we obtain

ψ̂(2ξ) = eiξm0(ξ + π)φ̂(ξ) = eiξm0(ξ + π)χ[−π,π](ξ) = eiξXJ(ξ)

with J = [−π,−π
2
) ∪ (π

2
, π] and thus we have proved that the function ψ we have

defined by its Fourier transform is exactly a wavelet.
The analytic functions of φ and ψ were computed in the examples of the inverse
Fourier transform, and they are

φ(x) =
sin(πx)

πx
, ψ(x) = −2

sin(2πx) + cos(πx)

2x+ 1
.
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3 Black-Scholes and Heston model in finance.

3.1 European options.

This section is designed for all those who are not familiar with financial concepts,
specially with European options.

Let us see one example on Figure 4. Here we have the price of NETFLIX asset
from the 3rd July 2017 until 1st August 2018. Imagine that you have some assets of
this company and you are worried because you wait a bearish period. That means
that the price will decrease in the following days and you want to be prepared for
the worst case. Then you have the option to prepare yourself for that event with
financial options. We will only explain the European options because we will try to
compute them in Section 4.

Definition 3.1. A European option is a contract that gives to the buyer the right
(but NOT the obligation) to buy/sell (Call / Put) an underlying asset for a certain
price K (Strike) in a concrete date T (maturity). The seller of the European option
has the obligation to sell (the buyer has a call) or buy (the buyer has a put) in case
the buyer of the option uses his right.

We continue with our example of NETFLIX. Because we expect that there will
be a bearish period we buy a put option. This option gives us the right to sell the
asset for a certain price K at maturity time T . On the date 1st August 2018 the
price of the NETFLIX asset is S0 = 338.38$. We want to sell this asset at least by
the strike K = 300$ at maturity T = 3/12 (3 months). With these assumptions,
what can happen at T?

We have two possibilites. If the price at maturity ST is greater than the strike
we will not exercise our right and will sell the asset for the price ST on the market.
However, if the price ST is less than K we will exercise our right and we will get a
profit of K − ST . That makes that if I finally decide to sell the asset on the market
I will earn ST , plus the profit of K − ST , I will exactly have the strike K.

To do this we need to price the option. To buy this right you have to pay a
premium that the seller will use to get the profit for his worst case (if the buyer fi-
nally applies his right). Mathematical tools have been developed to get this purpose.
The value of the option at maturity VT will be called the pay-off, and it will be the
possible profit that the buyer could get. In the following section we will explain the
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Figure 4: Price of NETFLIX asset.

way to compute European options at any time t between today and the maturity date.

In Figure 5 there are two plots with the payoff of a call option CT , and a put
option PT with strike K = 20. The analytic expressions are the following

CT = (ST −K)+ =

{
ST −K ST ≥ K

0 ST < K

PT = (K − ST )+ =

{
K − ST ST ≤ K

0 ST > K

There is a famous relation between the pay-off of a European call and a European
put which is called the Put-Call parity. It implies that if we know the price of one
of these options we can calculate the other. It can be easy to check through the
formulas or looking at Figure 5 that this relation is

CT − PT = ST −K.

So the Put-Call Parity at any time t between 0 and T will be

Ct − Pt = St −Ke−r(T−t)
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Figure 5: Pay-off for the call and put european options.

where e−r(T−t) is the discount factor on the interval [t, T ]. It means that the amount
of e−r(T−t) at time t will become a unity at time T .

Anyway we can create any option given a pay-off. The pay-off will be a positive
random variable X. Another famous option that we will compute is the cash-or-
nothing option. This option has the pay-off

X = 1{ST>K}

that gives to the buyer the profit of one amount of money if the price at maturity is
greater than the strike, or 0 otherwise.

The goal for the next section is to construct a probabilistic model to model the
evolution of the underlying price asset St.

3.2 Important results of stochastic calculus.

In this section we will expose some basic concepts and results of probability theory
and stochastic calculus. Two imporant theorems, Itô’s lemma and Girsanov’s theo-
rem, will be mentioned to develope the Black-Scholes model.

Let us begin with a probability space (Ω,F , P ) such that
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i) Ω is the sample space. This set is the collection of all events ω of our experi-
ment.

ii) F is a σ-field.

iii) P is a probability.

Definition 3.2 (Conditional expectation). Let X be an integrable random vari-
able (E|X| <∞) and G a σ-field such that G ⊂ F . Then the conditional expectation
of X given G is the unique random variable

E[X|G] : Ω→ R

such that

i) E[X|G] is G-measurable.

ii) E[E[X|G]1G] = E[X1G], G ∈ G.

Remark 3.1. A simple observation gives us the first property of conditional expecta-
tion. Taking G = Ω

E[E[X|G]] = E[X].

There is another interesting thing we can observe if we take the σ-field G = {∅,Ω}.
A possible candidate for the conditional expectation in this case should be a constant
a = E[X|G] (a constant is {∅,Ω}-measurable), and by the previous observation

E[E[X|G]] = E[X] = E[a] = a

and the value of the constant a is E[X].

There are two important properties that are very useful throughout this section.
The first one is that if Y is a random variable G-measurable then

E[XY |G] = Y E[X|G].

And the other one is that if X and G are independent then

E[X|G] = E[X].

Definition 3.3 (Stochastic process). A stochastic process {Xt : t ∈ I} is a
collection of random variables indexed by a set I. In finance, the set I usually is
a bounded interval of R of the form [0, T ], representing that the time goes from an
initial time 0 until a final date T called maturity.
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Definition 3.4 (Sample path). If we have a stochastic process {Xt : t ∈ [0, T ]},
then for every ω ∈ Ω the map

X(· , ω) : [0, T ]→ R

is called the sample path or also the trajectory.

Definition 3.5. We say that a stochastic process {Bt : t ∈ [0, T ]} is a Brownian
motion if it verifies the following properties

i) B0 = 0, a.s.

ii) The trajectories Bt are continuos almost surely.

iii) For every partition of the interval [0, T ],

t0 = 0 < t1 < · · · < tn−1 < tn = T

the random variables of the increments Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1 are in-
dependent.

iv) The increments Bt−Bs with s < t, follow a normal distribution of mean 0 and
variance the length of the interval [s, t],

Bt −Bs ∼ N(0, t− s).

Definition 3.6. A family of σ-algebras {Ft : t ∈ [0, T ]} is a filtration if Fs ⊂
Ft, ∀s ≤ t, and Ft ⊂ F , ∀t ∈ [0, T ].

Definition 3.7 (Martingale). We consider a stochastic process {Mt : t ∈ [0, T ]}
and a filtration {Ft : t ∈ [0, T ]}. We say that M is a martingale with respect this
filtration if

i) Mt is Ft-measurable (M is adapted).

ii) E|Mt| <∞.

iii) E[Mt|Fs] = Ms, for all s < t.

Remark 3.2. Obviously applying the properties of the definition we have that

E[Mt] = E[E[Mt|Fs]] = E[Ms], s < t.

In particular,
E[Mt] = E[M0], ∀t ∈ [0, T ].
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Figure 6: Different sample paths of a Brownian motion.

Example 3.1. The Brownian motion {Bt : t ∈ [0, T ]} is a martingale with the natural
filtration defined as

Ft = σ{Bs : 0 ≤ s ≤ t} = {X−1s (B) : 0 ≤ s ≤ t, B ∈ B(R)}.

It is clear thath the first and second property are verified. Let us check the third
one.

E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs] =

= E[Bt −Bs] +Bs = Bs

Example 3.2. Fix a ∈ R. The stochastic process

Mt = e

(
aBt−a

2

2
t
)

is a martingale with respect to the natural filtration generated by the Brownian
motion. Obviously the first property holds. In order to prove the other properties
we check that

E
[
eaZ
]

= e
a2

2 , Z ∼ N(0, 1).
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E
[
eaZ
]

=

∫
R

1√
2π
eaxe−

x2

2 =

∫
R

1√
2π
eax−

x2

2

= e
a2

2

∫
R

1√
2π
e−

(x−a)2
2 = e

a2

2 .

First we compute the expectation of Mt

E[Mt] = e−
a2

2
tE[aaBt ] = e−

a2

2
tE[ea

√
tZ ] = e−

a2

2
te

a2

2
t = 1

And finally let us see if the third property holds

E[Mt|Fs] = E

[
Mt

Ms

Ms

∣∣∣∣∣Fs
]

= MsE
[
ea(Bt−Bs)−

a2

2
(t−s)

∣∣∣Fs]
= MsE

[
ea(Bt−Bs)−

a2

2
(t−s)

]
= Mse

−a
2

2
(t−s)E

[
ea
√
t−sZ

]
= Mse

−a
2

2
(t−s)e

a2

2
(t−s) = Ms

We will continue the Itô’s integral. The goal is to define and compute the
integral ∫ T

0

Xt dBt

where {Bt : t ∈ [0, T ]} is a Brownian motion and {Xt : t ∈ [0, T ]} is another
stochastic process. It can be proved that the trajectories of a Brownian motion
have infinite variation on every finite interval and that makes impossible to define
this integral with the definition of Riemann-Stieltjes. However, the trajectories of a
Brownian motion have finite quadratic variation on every finite interval with value
exactly the length of the interval. Therefore we give the following definition

Definition 3.8. Let {Xt : t ∈ [0, T ]} be a stochastic process such that

i) Xt is adapted.

ii)
∫ T
0
E[X2

t ] dt <∞.

Then the Itô’s integral is defined as follows∫ T

0

Xt dBt = lim
n→∞

n∑
i=1

Xti−1
(Bti −Bti−1

)

where the limit in probability is taken over a sequence of partitions Pn of [0, T ],
where Pn = {0 = t0 < t1 < · · · < tn = T} with the mesh tending to 0.
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Remark 3.3. Let {Xt : t ∈ [0, T ]} be an adapted stochastic process and such that∫ T
0
E[X2

t ] dt <∞. Then for every t ∈ [0, T ], the new process {Mt : t ∈ [0, T ]},

Mt =

∫ t

0

Xt dBt =

∫ T

0

Xt1[0,t] dBt

is a martingale.

Definition 3.9. Let {µt : t ∈ [0, T ]}, {σt : t ∈ [0, T ]} be two adapted stochastic
processes such that ∫ T

0

|µt| dt <∞ a.s.

∫ T

0

σ2
t dt <∞ a.s.

Then, the stochastic process of the form

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dBs, t ∈ [0, T ]

is called an Itô’s process. It is also used the differential notation

dXt = µtdt+ σtdBt.

Theorem 3.1 (Itô’s formula). Let f : [0, T ] × R → R be a function in C1,2, and
let Xt be an Itô’s process

dXt = µtdt+ σtdBt.

Thus, the following formula holds

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)(dXt)

2.

We compute (dXt)
2 taking into account the equalities

dt · dt = 0

dt · dBt = dBt · dt = 0

dBt · dBt = dt

Example 3.3 (GMB: Geometric Brownian Motion). The Itô’s process St

dSt = µStdt+ σStdBt
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where µ, σ are constants is called a Geometric Brownian motion. To compute the
value of St knowing an initial value S0 we will use the Itô’s formula. Let f(x) =
log(x). This function is twice differentiable and its derivatives are

f ′(x) =
1

x
, f ′′(x) = − 1

x2
.

To be able to compute d(log(St)) we see first that (dSt)
2 = σ2S2

t dt, and now we
apply the previous theorem.

d(log(St)) =
1

St
St(µdt+ σdBt)−

1

S2
t

σ2S2
t dt =

(
µ− 1

2
σ2

)
dt+ σdBt

which implies that

log(St) = log(S0) +

(
µ− 1

2
σ2

)
t+ σBt

and finally we obtain the famous formula for a geometric brownian motion

St = S0e
(µ−σ2/2)t+σBt .

A GBM is not usually a martingale. But a new process envolving the evolution
of a GBM can be a martingale respect a change of probability for continuos random
variables. We will give a simplified version of the Girsanov theorem wich we will
apply to explain the Black-Scholes model.

Theorem 3.2 (Girsanov theorem). Let {Bt, t ∈ [0, T ]} be a Brownian motion.
Therefore there exists a unique probability P ∗ equivalent to P (P (A) > 0 ⇐⇒
P (A∗) > 0, ∀A ∈ F) such that the stochastic proces {B∗t : t ∈ [0, T ]} defined as

B∗t = λt+Bt, λ ∈ R

is a P ∗-Brownian motion.

3.3 Black-Scholes model.

We consider a market in continuos time t ∈ [0, T ]. There is an asset without risk S0
t

(bond, bank account), that follows the following differential equation{
dS0

t = rS0
t dt

S0
0 = 1

=⇒ S0
t = ert

35



where r is the risk-free rate that we suppose is a positive number. There is also
a risky asset with price St at time t which we model with a Geometric Brownian
motion

dSt = µStdt+ σStdBt.

Both µ and σ are constant. µ is the drift of St and σ is the standard desviation of
the stock’s return that we call volatility. We know the value S0 at time 0, so S0 is
a constant value. We take the natural filtration generated by the Brownian motion
{Bt : t ∈ [0, T ]}.
Remark 3.4. We have computed the solution of a GBM which is

St = S0e
(µ−σ2/2)t+σBt

and from here we can deduce some properties. The first one is that the expectation
of the stock price depends only on the drift.

E[St] = S0e
(µ−σ2/2)tE[eσBt ] = S0e

µte−
σ2

2
te

σ2

2
t = S0e

µt

The quocient St/Ss for any 0 ≤ s ≤ t ≤ T is equal to

St
Ss

= e(µ−σ
2/2)(t−s)+σ(Bt−Bs)

which is independent of Fs. This fact will be used to compute the value of European
options. And the last property due to this last equality is that the law of the random
variable log(St/Ss) follows a normal distribution with mean (µ − σ2/2)(t − s) and
variance σ2(t− s),

log

(
St
Ss

)
∼ N((µ− σ2/2)(t− s), σ2(t− s)).

Now we consider a new process called the discounted price process {S̃t : t ∈
[0, T ]},

S̃t = e−rtSt.

Note S̃t is the quantity that we need to invest today with the risk-free rate r to get
St at time t. The risk-free rate is the rate of return of an investment with no risk of
financial loss.
Let f be the function f(t, x) = e−rtx. Its partial derivatives are

ft(t, x) = −re−rtx, fx(t, x) = e−rt, fxx = 0
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and we are able to apply the Itô’s formula to compute dS̃t

dS̃t = df(t, St) = −re−rtStdt+ e−rtdSt

= −re−rtStdt+ µe−rtStdt+ σe−rtStdBt

= S̃t((µ− r)dt+ σdBt)

= σS̃t

((
µ− r
σ

)
+ dBt

)
= σS̃tdB

∗
t

where B∗t is

B∗t =
µ− r
σ

+Bt.

Note B∗t is a Brownian motion with respect to a new probability P ∗ equivalent to P
due to Girsanov theorem. Finally the main result is that the stochastic process

S̃t = S0 + σ

∫ t

0

S̃s dB
∗
s

is a P ∗-martingale by Remark 3.3.

Definition 3.10. A continous time portfolio with the risky asset St and the riskless
asset S0

t is a stochastic process

Φ = {Φt = (Dt, Ht) : t ∈ [0, T ]}

where Dt is the amount of riskless asset and Ht is the amount of the risky asset at
time t. We assume that both are continuos adapted processes, such that∫ T

0

|Dt| dt <∞ a.s,

∫ T

0

H2
t dt <∞ a.s.

Naturally, the value of the portfolio at time t is

Vt = Dte
rt +HtSt.

Definition 3.11. Let Φ be a portfolio. If it holds that Vt ≥ 0, for all t ∈ [0, T ], we
say that the portfolio is admissible. And it is said that the portfolio is self-financing
if for each t ∈ [0, T ] we have

dVt = DtdS
0
t +HtdSt.
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We follow defining the discounted value of the portfolio Ṽt in the natural way,

Ṽt = e−rtVt.

If the portfolio Φ is self-financing we have that Ṽt is a P ∗-martingale. To check it,
we will use the Itô’s formula again and we will see that dVt only depends on some
Brownian motion.

dṼt = −re−rtVtdt+ e−rt(DtdS
0
t +HtDSt)

= −re−rtVtdt+ re−rtDtS
0
t dt+ e−rtHtdSt

= −re−rt(Vt −Dte
rt)dt+ e−rtHtdSt

= −re−rtHtStdt+ e−rtHtdSt

= Ht(−re−rtStdt+ e−rtdSt)

= HtdS̃t = σHtS̃tdB
∗
t .

Thus Ṽt is a P ∗-martingale.

Definition 3.12. We say that a positive random variable X is replicable if there
exists and admissible portfolio {Φt : t ∈ [0, T ]} such that the value of the portfolio
at time T is equal to the random variable X, VT = X.

Definition 3.13. It is said that a model for a market is complete if any positive
random variable X is replicable.

The aim of this part is the following theorem. We will not prove it because the
principal idea is to compute the value of some financial derivatives.

Theorem 3.3. The Black-Scholes model is complete. It means, under de probability
P ∗ and for every non negative random variable X that is FT -measurable, there exists
an admissible self-financing portfolio Φ such that VT = X.

Because of the stochastic process Ṽt is a P ∗-martingale we can compute the value
of the portfolio at any time t as

Ṽt = E∗[ṼT |Ft] = e−rTE∗[VT |Ft] = e−rTE∗[X|Ft]

and therefore we get finally

Vt = e−r(T−t)E∗[X|Ft].

In particular, the value of the portfolio at time 0 does not need the condicional
expectation (we know the stock price at time 0 and F0 = {∅,Ω}) and its value is
interesting because it will be the premium we will have to pay for an option

V0 = e−rTE∗[X].
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3.4 Pricing options with the Black-Scholes model.

Now it is time to compute the value of a European call and a European put option
at any time t ∈ [0, T ] if we suppose the Black-Scholes model. We have to apply
Theorem 3.3. and we are done.
We recall that the pay-off for a European call is

X = CT = (ST −K)+ = (ST −K)1{ST>K} = ST1{ST>K} −K1{ST>K}

and thus
Ct = e−r(T−t)

(
E[ST1{ST>K}|Ft]−KE[1ST>K |Ft]

)
The price of the asset follows a Geometric Brownian motion and we can modify

the expression ST > K to get an inequality with a standard normal distribution Z.
Let t be such that 0 ≤ t ≤ T and we know all the information until time t what it
means we know the value of St. Therefore

ST
St

>
K

St
⇐⇒ e(r−σ

2/2)(T−t)+σ(BT−BT ) >
K

St
⇐⇒ (r − σ2/2)(T − t) + σ(BT −Bt) > log(K/St)

⇐⇒ Z >
log(K/St)− (r − σ2/2)(T − t)

σ
√
T − t

⇐⇒ Z <
log(St/K) + (r − σ2/2)(T − t)

σ
√
T − t

To make the computations easier we denote this quantity like d2

d2 =
log(St/K) + (r − σ2/2)(T − t)

σ
√
T − t

.

We call another quantity as d1 with the value

d1 = d2 + σ
√
T − t =

log(St/K) + (r + σ2/2)(T − t)
σ
√
T − t

.

To get the value of a European call option, we will compute both expectations
separately. We begin with the easiest one.

E[1{ST>K}|Ft] = E[1{ST>K}] = P (ST > K) = P (Z < d2) = Φ(d2)
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where Φ is the cumulative standard normal distribution. And here we have the
computations on the other expectation.

E[ST1{ST>K}|Ft] = StE

[
ST
St
1{ST>K}

∣∣∣∣Ft]
= StE[e(r−σ

2/2)(T−t)+σ(BT−Bt)1{ST>K}|Ft]
= Ste

(r−σ2/2)(T−t)E[eσ(BT−Bt)1{ST>K}|Ft]
= Ste

(r−σ2/2)(T−t)E[eσ(BT−Bt)1{ST>K}]

= Ste
(r−σ2/2)(T−t)E[eσ

√
T−tZ

1{Z<d2}]

For this expectation we will use directily the definition,

E[eσ
√
T−tZ

1{Z<d2}] =

∫ d2

−∞

1√
2π
e−

x2

2 eσ
√
T−t x dx

= e
σ2

2
(T−t)

∫ d2

−∞

1√
2π
e−

(x−σ
√
T−t)2
2 dx

= e
σ2

2
(T−t)

∫ d2+σ
√
T−t

−∞

1√
2π
e−

x2

2 dx

= e
σ2

2
(T−t)Φ(d1).

what it finally does

E[ST1{ST>K}|Ft] = Ste
r(T−t)Φ(d1).

With all these calculations the value of the European call option at time t, 0 ≤
t ≤ T is

Ct = e−r(T−t)(Ste
r(T−t)Φ(d1)−KΦ(d2)) = StΦ(d1)−Ke−r(T−t)Φ(d2).

The price of a European call option has been obtained. The price for a European
put option can be computed with the Put-Call parity and thus its value is

Pt = Ct − St +Ke−r(T−t)

= StΦ(d1)−Ke−r(T−t)Φ(d2)− St +Ke−r(T−t)

= St(Φ(d1)− 1) +Ke−r(T−t)(1− Φ(d2))

= −StΦ(−d1) +Ke−r(T−t)Φ(−d2).

The other financial option we mentioned is the cash-or-nothing option. Its payoff
is the random variable X = 1{ST>K} and hence the value for this option is

Vt = e−r(T−t)E[1{ST>K}|Ft] = e−r(T−t)Φ(d2).
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Figure 7: Implied volatility.

3.5 Heston model.

The evolution of the price follows a geometric Brownian motion according to Black-
Scholes model. For this model we assume that the volatily is constant. However, it
can be proved that this is not true. It seems that the volatility changes over time.
This is simple to check due to the implied volatility. To know more about this mat-
ter, you can see it on [5, HULL].

Since the price of the derivatives are known on the market we can construct an
implicit equation fixing the parameters St, T, r,K. In another way, if we can observe
the price of a derivative, we are able to give the implied volatility for certain param-
eters. Figure 7 shows the implied volatility according to the Strike and we can see
that the volatility is not constant. It is moved between 0.28 to 0.3. This shows that
the assumption of a constant volatility in Black-Scholes model is wrong.

In 1993 Heston introduced another model. Here we assume that the volatility is
not constant, but follows a random process. The volatility is denoted by ut and xt
will be the log-asset price xt = log(St/K). Here we have the stochastic differential
equation {

dxt = (µ− 1
2
ut)xtdt+

√
utxtdB1t

dut = λ(ū− ut)dt+ η
√
utdB2t
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The parameters λ ≥ 0, ū ≥ 0, η ≥ 0 are called the speed of mean reversion, the mean
level of variance, and the volatility of volatility, repectively. Moreover we assume the
two Brownian motions B1t, B2t are correlated with correlation coefficient ρ.

As we have said this model has no analytic formulas to compute the value of an
option as the Back-Scholes model has. This thing motivates the use of numerical
analysis to obtain a value for a specific derivative. The following section introduce a
new numerical method for this aim.
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4 A numerical method for option pricing. SWIFT.

4.1 Exposition of the SWIFT method.

We have arrived to the final section. Here we will explain a numerical method to
compute the value of European options which is called SWIFT (Shannon wavelet
inverse Fourier technique). This method was introduced by Ortiz-Gracia and Oost-
erlee in [8, Ort16]. We remember that in the first section we have developed the
theory of Hilbert spaces and wavelets theory to be able to understand the Shannon
wavelet.

The main idea in the SWIFT method is to expand a density function f in terms
of the Shannon scaling function φ

φ(x) = sinc(x) =
sin(πx)

πx
,

and therefore we will use

φj,k(x) = 2j/2φ(2jx− k) = 2j/2
sin(π(2jx− k))

π(2jx− k)
.

In Section 2 we have seen the value of a European option is computed as the expec-
tation of a pay-off multiplied by the discounted factor. The formula is

v(x, t) = e−r(T−t)
∫
R
v(y, T )f(y|x) dy,

where v is the option value, T is the maturity, t is the initial date and f(y|x) is the
probability function of y given x. The variables x, y denote the log-asset prices at
time t and T respectively

x = log(St/K), y = log(ST/K).

To show an example of the function v at maturity if we consider a European call
option we have that the pay-off function is

v(y, T ) = (ST −K)+ = (K(ey − 1))+.

It is important to recall that whereas f is typically unknown, the characteristic
function of the log-asset price is usually avaliable as the Fourier transform of f .
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Let f ∈ L2(R) be the density function of a certain random variable X. We have
defined the Fourier transform as

f̂(ξ) =

∫
R
f(x)e−ixξ dx.

The characteristic function of f is defined in probability as

ϕ(t) = E[eitX ]

which differs from a sign with the definition of the Fourier transform,

ϕ(t) = E[eitX ] =

∫
R
f(x)eitx dx = f̂(−t).

Following the wavelets theory, the density function f can be approximated at a level
of resolution j by the Projection operator

f(x) ≈ Pjf(x) =
∑
k∈Z

cj,kφj,k(x)

where Pjf converges to f in L2(R) as j tends to infinity :

‖f − Pjf‖2
j→∞−−−→ 0.

Following the multiresolution analysis theory we have that

‖f − Pjf‖22 =
∑
i≥j

∑
k∈Z

|di,k|2

where di,k =< f, ψi,k >. By Parseval’s identity we can develope this scalar product.
Here we will use the Fourier transform of the Shannon wavelet

ψ̂(ξ) = e−i
ξ
2χI(ξ), I = [−2π,−π) ∪ (π, 2π]

and by Proposition 2.4. we have

ψ̂j,k(ξ) = e−i2
−jkξ2−j/2ψ̂(2−jξ) = e−iξ(k+1/2)2−j2−j/2χIj,k(ξ)

where Ij,k = [−2j+1π,−2jπ) ∪ (2jπ, 2j+1π]. Thus we finally get

< f, ψj,k > =
1

2π

〈
f̂ , ψ̂j,k

〉
=

1

2π

∫
R
f̂(ξ)ψ̂j,k(ξ) dξ

=
2−j/2

2π

(∫ −2jπ
−2j+1π

f̂(ξ)eiξ(k+1/2)2−j dξ +

∫ 2j+1π

2jπ

f̂(ξ)eiξ(k+1/2)2−j dξ

)
.
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Since

|di,k| ≤
2−i/2

2
2i
(

max
ξ∈[−2i+1π,−2iπ)

|f̂(ξ)|+ max
ξ∈[2iπ,2i+1π)

|f̂(ξ)|
)

we deduce that the approximation of f by the projection operator is highly dependent
on the rate of decay of the Fourier transform f̂ of f . Anyway, this approximation is
defined as an infinite sum of some functions φj,k and this does not interest us. We
would like to get some interval for which we could sum finite values without loss of
considerable density mass. The following lemma guarantees we can do that.

Lemma 4.1. Let f be a function that tends to zero at plus and minus infinite. Then
f
(
h
2j

)
≈ 2j/2cj,h, h ∈ Z, and it is verified that

lim
h→±∞

cj,h = 0.

Proof. We take h ∈ Z, then

f

(
h

2j

)
≈ Pjf

(
h

2j

)
=
∑
k∈Z

cj,kφj,k

(
h

2j

)
= 2j/2

∑
k∈Z

cj,kφ(h− k)

and the value of the Shannon scalling function for integer numbers are

φ(h− k) =
sin(π(h− k))

π(h− k)
= δh,k.

Therefore

f

(
h

2j

)
≈ 2j/2

∑
k∈Z

cj,kδh,k = 2j/2cj,h.

Since we assume that the function f tends to zero at infinite we obtain that

lim
h→±∞

cj,h = 0.

As we have said, the Lemma 4.1 assures that we can approximate well the function
f by a finite sum without loss of considerable density mass,

f(x) ≈ Pjf(x) ≈ fj(x) =

k2∑
k=k1

cj,kφj,k(x).
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Once the sum is limited between two integer numbers k1, k2 we have to compute the
scaling coefficients cj,k. We recall that these coefficients are computed by a scalar
product

cj,k =< f, φj,k >=

∫
R
f(x)φj,k(x) dx = 2j/2

∫
R
f(x)φ(2jx− k) dx.

Also we define the integers k1 and k2 as the smallest integers such that

k1
2j
≤ a ≤ b ≤ k2

2j

where a, b are numbers which conserve enough mass of the density function in the
sense ∫

R
f(x) dx ≈

∫ b

a

f(x) dx.

These numbers were calculated in the article [3, Fan08] using the nth cumultant of
log(ST/K), and ST will depend on the financial model we are working on. Therefore
the interval [a, b] is

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
, L = 10.

Remark 4.1. Let X be a random variable. The cumulant generating function K(t)
of X is defined as

K(t) = logE
[
etX
]
,

and the nth cumulant denoted by cn is

cn = Kn)(0).

Finally with these assumptions the main idea of this method is the following. We
set the interval Ij = [k1

2j
, k2
2j

] as we have said. Then the price of the option at time t
can be approximated as

v(x, t) = e−r(T−t)
∫
R
v(y, T )f(y|x) dy ≈ e−r(T−t)

k2∑
k=k1

cj,k(x)Vm,k,

where Vj,k is called the pay-off coefficient

Vj,k =

∫
Ij

v(y, T )φj,k(y) dy = 2j/2
∫
Ij

v(y, T )φ(2jy − k) dy.
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To be able to continue and compute the scaling coefficients cj,k(x), we will apply
the Vieta’s formula. This formula can be used to write the cardinal sine as an infinite
product of cosines and as we did to approximate the function f we limit this product
by a finite product,

sinc(x) =
∞∏
l=1

cos
(πx

2l

)
≈

L∏
l=1

cos
(πx

2l

)
.

Thanks to the cosine product-to-sum identity

cos(α) cos(β) =
1

2
(cos(α + β) + cos(α− β))

we transform the product into a sum

L∏
l=1

cos
(πx

2l

)
=

1

2L−1

2L−1∑
l=1

cos

(
2l − 1

2L
πx

)
.

In conclusion, we can approximate the cardinal sinus function as the following sum

sinc(x) ≈ sinc(x)∗ =
1

2L−1

2L−1∑
l=1

cos

(
2l − 1

2L
πx

)
.

Then we will give a lemma to be able to estimate the error for this approximation
of the cardinal sinus function.

Lemma 4.2. We define the following error ε(x) = sinc(x)− sinc∗(x). Then

|ε(x)| ≤ (πc)2

22(L+1) − (πc)2

for x ∈ [−c, c], where c ∈ R, c > 0, and L ≥ log2(πc).

Proof. Taking into account that

sinc
( x

2L

)
=
∞∏
l=1

cos
( πx

2L+l

)
=

∞∏
l=L+1

cos
(πx

2l

)
we obtain the expression

sinc(x) = sinc
( x

2L

) L∏
l=1

cos
(πx

2l

)
= sinc

(πx
2L

)
sinc∗(x).
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Therefore
|ε(x)| =

∣∣∣sinc
(πx

2L

)
− 1
∣∣∣∣∣sinc∗(x)

∣∣ ≤ ∣∣∣sinc
(πx

2L

)
− 1
∣∣∣.

The Taylor serie expansion for the cardinal sinus is

sinc(x) =
sin(πx)

πx
=
∞∑
n=0

(−1)n(πx)2n

(2n+ 1)!
,

and we can use this serie to get

|ε(x)| ≤
∞∑
n=1

π2n

(2n+ 1)22Ln
|x|2n ≤

∞∑
n=1

( πc

2L+1

)2n
,

if we consider |x| < c, with c > 0, and observe that (2n + 1)! > 2n. The error ε(x)
is narrowed by a geometric serie and since L ≥ log2(πc) we have that πc

2J+1 < 1 and
thus the serie converges to the value

|ε(x)| ≤
(πc)2

22(L+1)

1− (πc)2

22(L+1)

=
(πc)2

22(L+1) − (πc)2
.

This lemma can be applied for choosing the value of L. We define Mj,k =
max{|2ja − k|, |2jb + k|} and then we take Mj = maxk1≤k≤k2 Mj,k. The value of
L will be L = ` = dlog2(πMj)e where dxe denotes the smallest integer number
greater or equal than x. The proof can be seen by Theorem 1 in [8, Ort16].

With all of this information, we can replace the function φ(x) = sinc(x) in the
integral of the scaling coefficient cj,k to get another approximation

cj,k ≈ c∗j,k =
2j/2

2L−1

2L−1∑
l=1

∫
R
f(x) cos

(
2l − 1

2L
π(2jx− k)

)
dx

Taking into account that <(f̂(ξ)) =
∫
R f(x)cos(xξ) dx we have on the one hand that

f̂(ξ)eikπ
2l−1

2L =

∫
R
f(x)e−i(xξ−kπ

2l−1

2L
) dx

and therefore

f̂

(
2l − 1

2L
π2j
)
eikπ

2l−1

2L =

∫
R
f(x)e−i(

2l−1

2L
π(2jx−k)) dx.
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On the ohter hand the real part of this Fourier transform is used to compute the
approximation of the scaling coefficients,

cj,k ≈ c∗j,k =
2j/2

2L−1

2L−1∑
l=1

<
(
f̂

(
2l − 1

2L
π2j
)
e
ikπ(2l−1)

2L

)
For the rest of this work we will give some computations for different options,

in particular for a cash-or-nothing option and for a European call option. We have
shown how to proceed with the scaling coefficients. Now, for each option we will
have an integral which depends on the value of the pay-off. This allows to find the
value of the pay-off coefficient Vj,k.

4.2 Cash-or-nothing option pricing.

This option has the following payoff

X = 1{ST>K}.

This function can be written by the pay-off v(y, T ) in the log-asset space as

v(y, T ) =

{
1 y > 0,

0 y < 0.

So if we replace the function f by its approximation fj for a certain j we have that
the value for this option for every time t

v(x, t) = e−r(T−t)
∫
R
v(y, T )f(y|x) dy = e−r(T−t)

∫ ∞
0

f(y|x) dy

≈ e−r(T−t)
∫ ∞
0

fj(y|x) dy = e−r(T−t)
k2∑

k=k1

(
cj,k(x)

∫ ∞
0

φj,k(y) dy

)

= e−r(T−t)
k2∑

k=k1

cj,k(x)Vj,k

The value Vj,k =
∫∞
0
φj,k dy is the pay-off coefficient. The following lemma can be

applied to calculate these coefficients.

Lemma 4.3. The pay-off coefficient Vj,k for a cash-or-nothing option is

Vj,k = 2−j/2
(

sign(k)Si(|k|) +
1

2

)
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where sign is the sign function

sign(x) =

{
1 x > 0

−1 x < 0

and Si is the sine integral function

Si(x) =

∫ x

0

sinc(t) dt.

Proof.

Vj,k = 2j/2
∫ ∞
0

φj,k(y) dy = 2j/2
∫ ∞
0

φ(2jy − k) dy = 2−j/2
∫ ∞
−k

φ(x) dx = 2−j/2
∫ ∞
−k

sin(πx)

πx
dx

= 2−j/2
(∫ 0

−k

sin(πx)

πx
dx+

∫ ∞
0

sin(πx)

πx
dx

)
= 2−j/2

(∫ 0

−k
sinc(x) dx+

1

2

)
= 2−j/2

(
sign(k)Si(|k|) +

1

2

)

Anyway, this integral should be computed by a finite sum, so we can replace
the value in the sinc integral function Si by the approximation of the cardinal sinus
we have done with the Vieta’s formula. Finally the value of the function Si will be
calculated as follows

Si(x) ≈ Si∗(x) =

∫ x

0

sinc(x) dx =
1

2L−1

2L−1∑
l=1

(∫ x

0

cos

(
2l − 1

2L
πx

)
dx

)

=
2

π

2L−1∑
l=1

1

2l − 1
sin

(
2l − 1

2L
πx

)
.

As we did with the density coefficients, we consider now a new value L for the
approximation of the sine integral function Si, which is different of the constant L
of the approximation of the scaling coefficient. Then, we define this new value as
¯̀ = dlog2(πM)e, where M = max{|k1|, |k2|}. This proof is done in Proposition 1 in
[8, Ort16].
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4.3 European call option pricing.

In this part we will price a European call option. This option has as pay-off the
random variable

X = (ST −K)+

and the function v(y, T ) in the log-asset space will be

v(y, T ) =

{
K(ey − 1) y > 0

0 y < 0

We truncate the real line to a finite domain Ij = [k1
2j
, k2
2j

] as we have justified before
due to Lemma 4.1. Thus, the value of the call option at time t is approximated by

v(x, t) ≈ e−r(T−t)
∫
Ij

v(y, T )fj(y|x) dy = e−r(T−t)
∫
Ij∩[0,∞)

K(ey − 1)fj(y|x) dy

= e−r(T−t)
k2∑

k=k1

cj,k(x)Vj,k

with Vj,k the pay-off coefficient which is

Vj,k = K2j/2

(∫
Ij∩[0,∞)

eyφ(2jy − k) dy −
∫
Ij∩[0,∞)

φ(2jy − k) dy

)
.

Let us define the following integrals

I1(a, b) =

∫ b

a

ey cos(Cl(2
jy − k)) dy,

I2(a, b) =

∫ b

a

cos(Cl(2
jy − k)) dy

where Cl = 2l−1
2L
π. Therefore, using the approximation of the sinus cardinal we obtain

now the approximation for the pay-off coefficient by a finite sum

Vj,k ≈ V ∗j,k =
K2j/2

2L−1

2L−1∑
l=1

(
I1

(
k̄1
2j
,
k2
2j

)
− I2

(
k̄1
2j
,
k2
2j

))
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where k̄1 = max{k1, 0}. Both integrals, I1(a, b), I2(a, b) are easy to compute. Of
course the second one can be calculated directly and the first integral I1(a, b) has to
be computed by integration by parts. The results of both integrals are

I1(a, b) =
1

1 + (Cl2j)2

(
Cl2

j
(
eb sin(Cl(2

jb− k))− ea sin(Cl(2
ja− k))

)
+ eb cos(Cl(2

jb− k))− ea cos(Cl(2
ja− k))

)

I2(a, b) =
1

Cl2j
(sin(Cl(2

jb− k))− sin(Cl(2
ja− k)))

Finally, as we did in the case for the cash-or-nothing option we have to narrow
now the value L for the pay-off coefficient. Then we define ¯̀ = dlog2(πN)e, where
N = maxk1≤k≤k2 Nk, and Nk = max{|k̄1 − k|, |k2 − k|}. This proof can be seen in
Proposition 3 in [8, Ort16].

4.4 Numerical results.

As we have said in the presentation of the SWIFT method, whereas the density
function f is not known, the function of the log-asset price is available as the Fourier
transform of f . The two models that have been treated are the Black-Scholes and
Heston model.

The characteristic function for the Black-Scholes model (we recall that the stock
price follows a Geometric Brownian motion GBM) is

f̂GBM(ω, x) = exp(−iωx) exp

(
−iω

(
r − 1

2
σ2

)
(T − t)− 1

2
σ2ω2(T − t)

)
where r is the risk-free rate, σ the volatility, T the maturity, and x = log(St/K) is
the log-asset price at time t.

The Heston model has a characteristic function the following function,

f̂(ω, x, uo) = exp(−iωx) exp

(
−iωµ(T − t) +

u0
η2

(
1− e−D(T−t)

1−Ge−D(T−t)

)
(λ+ iρηω −D)

)
· exp

(
λū

η2

(
(λ+ iρηω −D)(T − t)− 2 log

(
1−Ge−D(T−t)

1−G

)))
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with the values D, G

D =
√

(λ+ iρηω) + (ω2 − iω)η2, G =
λ+ iρηω −D
λ+ iρηω +D

.

The other parameters are T the maturity, x the log-asset price at time t, λ the speed
of mean reversion, ū the mean level of variance, η the volatility of volatility and u0
the volatility of the underlying asset at initial time. For this case we have called µ
the risk-free rate.

In this section we will use the SWIFT method to calculate the price of a cash-
or-nothing and a European call option. Both options will be computed with both
models. We remember that the SWIFT method needs some integers k1 and k2 for a
specific j level of multiresolutional analysis. These parameters are useful to obtain
the most quantity of mass of the density function. Another two important parame-
ters are ` and ¯̀which are the truncation values for the sum on the scaling coefficients
and on the pay-off coefficients respectively. There will be two values for ¯̀, one for
the cash-or-nothing and other for the European call.

The next step is to change the parameter j from 1 until another number (5 or
6) for a certain K, and with these previous parameters k1, k2, `, ¯̀, we will obtain the
price for the option. Let us begin with the Black-Scholes model.

We recall that to get the integer values k1 and k2 we need to compute first of all
an interval [a, b] and these values depend on the nth cumulants. This was explained
on page 46. For the Black-Scholes we know the behaviour of St,

St = S0e
(r−σ2/2)t+σBt , Bt ∼ N(0, t).

But for this model we are using the log-asset price X = log(St/K). To begin with
this aim, we give the cumulant generating function which is

K(s) = logE
[
esX
]

= logE

[(
St
K

)s]
= logE

[(
S0

K

)s
e(r−σ

2/2)ts+σBts

]
= sx0 +

(
r − σ2

2

)
ts+

σ2t

2
s2

where x0 = log(S0/K). The derivatives of K(s) are
K ′(s) = x0 +

(
r − σ2

2

)
t+ σ2ts

K ′′(s) = σ2t

Kn)(s) = 0, ∀s ≥ 3
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and therefore the cumulants we will use are

c1 = K ′(0) = x0 +

(
r − σ2

2

)
t, c2 = K ′′(0) = σ2t.

The interval [a, b] is computed as

[a, b] =

[
x0 +

(
r +

σ2

2

)
t+ 10σ

√
t, x0 +

(
r +

σ2

2

)
t− 10σ

√
t

]
.

This allows to get the parameters k1, k2, and moreover `, ¯̀.

We set now the following parameters for the Black-Scholes model,

r = 0.1, T = 0.1, σ = 0.25, S0 = 100, K = 80.

Like for this model we have analytic formulas we will give the results first and will
try to compare them with the values obtained with the SWIFT method. With the
previous paramenters we get at time 0 for a European call C0, and for a cash-or-
nothing option CN0 the numbers

C0 = 20.79923, CN0 = 0.988258.

Let us see what happens with the numerical results for the cash-or-nothing.

j k1 k2 ` ¯̀ SWIFT error

1 -2 3 4 4 0.917466 0.070792
2 -3 5 5 4 1.026831 0.038573
3 -5 9 6 5 0.986008 0.00225
4 -9 17 7 6 0.988259 1.11778e-06
5 -18 33 8 7 0.988258 1.11022e-16

By theory we know that as we increase the value of j, the operator projection con-
verges to the exact value. It seems that with j = 5 we obtain practically the value for
a cash-or-nothing. In addition the absolut error of SWIFT and CN0 has increased a
lot between 4 and 5 which proves that the method converges very fast to the exact
price.

Finally we will show what happens for a European call. In the following table we
will not put the values for k1, k2, ` because they are the same as before. But we have
to write the value for ¯̀ because it depends on the new option. Here are the results,
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j ¯̀ SWIFT error

1 4 16.05752 4.74171
2 5 17.01339 3.78584
3 6 21.25494 0.455713
4 7 20.79991 0.000682
5 8 20.79923 2.13163e-14

The result obtained with j = 4 for a European call option is practically the exact
value obtained with the Black-Scholes formula. As we can see the convergence of
the method is very fast and we can conclude that the value for this concret option
is equal to 20.79923.

To end with this numerical section, we will present some results for the Heston
model. For this concrete model we do not have analytic formulas unlike we had in
the previous model. Thus it would be necessary to compare with another numerical
method to assure that the values we obtain with SWIFT are the correct ones. One
simple method is called Euler-Maruyama for stochastic differential equations.

We suppose we have the following stochastic differential system,{
dX1t = µ1tdt+ σ1tdB1t

dX2t = µ2tdt+ σ2t(ρdB1t +
√

1− ρ2dB2t)

whith ρ the correlation coefficient between the two Brownian motions for each equa-
tion. That is why we can wirte the second one as a relation between two independent
Brownian motions B1t and B2t using the correlation ρ. Then we discretize the time
interval [0, T ] in n equal parts and instead of having a continous time dt we will have
a discrete time ∆t = T

n
. We suppose also that at time 0 we know the value of X1,0

and X2,0. Therefore the Euler-Maruyama method is to get all the values X1,ti , X2,ti

with
ti = t0 + i∆t, i = 1, . . . , n.

doing the following iterations from i equal to 1 until n,{
X1,ti+1

= X1,ti + µ1t∆t+ σ1t∆B1t

X2,ti+1
= X2,ti + µ2t∆t+ σ2t(ρ∆B1t +

√
1− ρ2∆B2t)

where ∆B1,t and ∆B2,t are two independent Brownian motions which follow a normal
distribution with mean 0 and variance ∆t.
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Explained the Euler-Maruyama we go back to Heston model. The parameters we
will use for this case will be

µ = 0, T = 0.1, λ = 1.5768, η = 0.5751, ū = 0.0398,

S0 = 100, u0 = 0.0175, K = 100.

First of all we apply the Euler-Maruyama method for the stochastic differential
system of Heston model exposed on page 41. We will repeat this method several
times to get different prices at time T . Then we will use the concrete pay-off and
with the discounted factor we will obtain a price for the option. This will make
possible to give a confidence interval with confindence level of 95%. We recall that
we are doing this to compare these results with the SWIFT method.

The confidence interval at 95% for the cash-or-nothing and the European call
with the previous parameters are

Cash-or-nohting: [0.514, 0.612],

European call: [1.4781, 1.817].

Let us expose the numerical results with the SWIFT method. We will check if the
result obtained is within the interval to know if we are proceeding well. Also, we will
give one more value for j to see better if there is convergence.

For Heston model the computations of the cumulants are much more difficult than
for the Black-Scholes model and because of this we will not write them. Anyway they
have been programmed and it allows to get the integers k1, k2, `, ¯̀. Do not forget
that for ¯̀ we will have two different values depending on the option. We begin with
the cash-or-nothing. Here are the results

j k1 k2 ` ¯̀ SWIFT within

1 -1 1 3 2 0.499455 no
2 -2 2 4 3 0.496365 no
3 -4 4 5 4 0.503436 no
4 -7 7 6 5 0.543152 yes
5 -14 14 7 6 0.564314 yes
6 -28 28 8 7 0.566585 yes

In fact there is convergence and from the value j = 4 we can assure that the SWIFT
method gives a correct price for the cash-or-nothing because these results are within
[0.514, 0.612]. We could price this derivative as the amount of 0.566585 using the
Heston model. Finally, here are the results for the European call,

56



j ¯̀ SWIFT within

1 3 11.588814 no
2 4 0.0021 no
3 5 1.028843 no
4 6 1.672078 yes
5 7 1.663541 yes
6 8 1.636663 yes

We conclude the same as before. The method seems to converge to an element
and from j = 4 the values are within the interval [1.4781, 1.817] with a 95% confi-
dence level. The price for a call option with the Heston model could be the amount
1.636663.
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5 Conclusions.

In this master thesis we have studied a new numerical method for computacional
finance. This method is called SWIFT and to apply it, it is important to understand
wavelets theory.
Wavelets are orthonormal basis that can be extended on the real line, what improves
the fact to use Fourier series. There are several orthonormal wavelets but SWIFT
uses one in particular: Shannon wavelets. These functions are smooth and that is
why this wavelet has been chosen instead of the Haar basis.
The derivatives shown in this project are European derivatives. Also the cash-or-
nothing option has been explained . The use of financial derivatives by traders makes
important the tool of numerical analysis in mathematical finance. A lot of models try
to model the evolution of the asset price, but we have exposed two very well-known
models: Black-Scholes and Heston.
Black-Scholes is very simple but gives us fast results with easy and analytic for-
mulas. Heston model tries to solve the problem with the constant volatility that
Black-Scholes assumes, and thus we complicate the model and we do not obtain
simple formulas. Like Heston is being used more and more by financial companies is
important to develope strong numerical techniques for pricing derivatives.
Explained the SWIFT method we finally get some numerical results for some specific
parameters depending on the model. By wavelet theory we know that the projection
operator converges to the density function in L2(R). We have proved with our results
that it is absolutely true. Moreover the convergence is very fast and only with value
j = 6 we can obtain a price for the option. With the Black-Scholes model we were
able to compare the numerical results, but for the Heston model we gave a confidence
interval for which the exact price is within a 95% confidence level.
This SWIFT method is very useful in the sense that a lot of numerical methods use
simulations. Monte Carlo is one of them. This method is very slow when we increase
the quantity of simulations. Also with Monte Carlo we obtain different results be-
cause we generate random numbers. Here with SWIFT we get the same value with
the same inputs, it never changes. And also the time for the computer is reduced
because with a low level of multiresolution analysis we can price financial derivatives.
With all this knowledge some improvements could be done to continue studying an-
other complex derviates like Asian options. Also it could check if there are other
wavelets that improve the time of the CPU.
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