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Abstract. This paper focuses on the aggregation operations in the group 
decision-making model based on the concept of majority opinion. The weighted-
selective aggregated majority-OWA (WSAM-OWA) operator is proposed as an 
extension of the SAM-OWA operator, where the reliability of information 
sources is considered in the formulation. The WSAM-OWA operator is 
generalized to the quantified WSAM-OWA operator by including the concept of 
linguistic quantifier, mainly for the group fusion strategy. The QWSAM-IOWA 
operator, with an ordering step, is introduced to the individual fusion strategy. 
The proposed aggregation operators are then implemented for the case of 
alternative scheme of heterogeneous group decision analysis. The heterogeneous 
group includes the consensus of experts with respect to each specific criterion. 
The exhaustive multi-criteria group decision-making model under the linguistic 
domain, which consists of two-stage aggregation processes, is developed in order 
to fuse the experts’ judgments and to aggregate the criteria. The model provides 
greater flexibility when analyzing the decision alternatives with a tolerance that 
considers the majority of experts and the attitudinal character of experts. A 
selection of investment problem is given to demonstrate the applicability of the 
developed model. 
 
Keywords: OWA operator, majority additive-OWA, linguistic quantifiers, group 
decision making. 
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1. Introduction 
 
An aggregation operation is central in many applications which involve 
information processing, such as decision making, information retrieval, and 
pattern recognition. Group decision making (GDM), one of the research topics in 
the multi-criteria decision analysis (MCDA), relies on the aggregation operation to 
obtain a representative value for a group of experts. Two general frameworks or 
schemes that are normally used in GDM can be classified as classical and 
alternative schemes (Bordogna and Sterlacchini, 2014). These schemes, in general, 
have different approaches for aggregating the experts’ judgments as the final 
group decision. In particular, the classical scheme refers to the consensus of 
experts for each alternative, while the alternative scheme deals with the consensus 
for each criterion. Principally, there are two main aggregation processes in GDM; 
they are the aggregation of criteria and the aggregation of experts. There are many 
aggregation functions that have been proposed as the fusion method in GDM 
models. One of the most commonly used aggregation operators is the ordered 
weighted averaging (OWA) operator introduced by Yager (1988). The OWA can 
be explained as a general class of aggregation functions that encompasses the 
operations between the min and max operators. The induced OWA (IOWA) 
operator, another OWA extension, has also been applied to most of the GDM 
models. Recent development of OWA-related aggregation operators from 
theoretical and application perspectives can be referred to, for instance, in Yager 
and Kacprzyk, (1997), Yager and Filev (1999), Merigó and Gil-Lafuente (2009), 
Merigó and Casanovas (2010), Merigó and Yager (2013). 

Fuzzy set theory (Zadeh, 1965), on the other hand, provides MCDA models 
with a flexibility in the representation and/or the aggregation of information. The 
information used in MCDA problems, in general, is either quantitative and/or 
qualitative. Quantitative information may be expressed by numerical values; 
whereas qualitative information may be represented by linguistic assessments in 
order to capture the vagueness and uncertainty of the information. Human 
judgments, for example, involve subjective evaluations that are more suitably and 
conveniently modelled by the fuzzy linguistic approach. They can be represented 
by linguistic values using linguistic variables, i.e., the variables whose values are 
not numbers but words or sentences in a natural or artificial language (Zadeh, 
1983). This approach is adequate for qualifying phenomena related to human 
perception. Many approaches have been proposed recently to model linguistic 
information, see for example Bordogna et al. (1997), Delgado et al. (1993), 
Herrera and Herrera-Viedma (2000), Merigó et al. (2010).  



Fuzzy set theory is also useful in modelling the aggregation process. Soft 
aggregation processes can be implemented, specifically, by the inclusion of 
linguistic quantifiers in OWA operator (Yager, 1988; 1996). In this way, various 
decision strategies can be determined in order to provide a complete picture of 
the decision analysis. For example, considering a portion of criteria to be satisfied 
from “at least one” criterion (existential quantifier) to “all” criteria (universal 
quantifier). Analogously, with respect to the GDM, the soft majority agreement 
among experts can be modelled, for instance by using semantics such as “at least 
80%” and “most”. However, the linguistic quantifiers used to represent the 
majority concept as a group consensus is manipulated differently than that of the 
regular quantifiers in the classical OWA. For instance, instead of defining “Q of 
the values need to be satisfied,” where the argument values are seen as truth 
values or degrees of satisfaction and Q represents any semantic, alternatively “Q 
of the relevant/similar values” is used to model the meaning of majority (Pasi and 
Yager, 2006; Peláez et al., 2007). 

In most cases, it is difficult to achieve a unanimous decision when dealing with 
a group of experts. As an alternative, agreement among a majority of experts can 
be tolerated. In the literature, there are some approaches which have been 
proposed to model the majority concept using OWA operators. Pasi and Yager 
(2006) proposed two approaches to deal with this issue. The first is based on the 
use of the IOWA operator, where the support function is applied to derive a set 
of order-inducing, scalar-valued variables, i.e., reordered based on the most 
similar opinions. While the other approach is based on a fuzzy subset that 
represents the majority opinion under the vague concept. Correspondingly, 
Bordogna and Sterlacchini (2014) extended the Pasi-Yager method, specifically 
based on the IOWA operator, by employing the Minkowski OWA-based 
similarity measure to obtain the order-inducing variables. Moreover, in their 
method, instead of synthesizing the consensus on each alternative (classical 
scheme), they proposed an alternative approach where the consensus measure on 
each specific criterion (alternative scheme) is implemented. Furthermore, they 
propose to apply the importance degrees of experts to heterogeneous GDM.  

In other related research, Peláez and Doña (2003a) proposed the majority 
additive OWA operator (MA-OWA) to aggregate the argument values that have 
cardinality greater than one. Particularly, this operator is an extension of the 
simple arithmetic mean (AM) since it is the arithmetic mean of arithmetic means. 
Peláez and Doña (2003a) notes that for classical aggregation operators such as the 
AM, the aggregated value is not representative of the majority aggregation since 
the result is affected by the extreme values. This results in an aggregated value 
that is correlated to the symmetric tendency between the values. Even though the 
OWA operators can be implemented as an alternative approach, they have 



distribution problems when aggregating arguments with cardinalities (Peláez and 
Doña, 2003a). Hence, the MA-OWA can be used to treat this type of problem 
more effectively. Furthermore, in this case, the overall value of the majority 
opinion is determined without elimination of the minority opinion. In other 
words, all the information is employed in the aggregation process. Since its 
inception, some extensions of the MA-OWA operator have been proposed in the 
literature, such as: the linguistic aggregation MA-OWA, the majority 
multiplicative-OWA, the quantified MA-OWA and the work committee-OWA 
(Peláez and Doña, 2003b; Peláez et al., 2005; Peláez et al., 2007; La Red et al., 
2011). Recently, Karanik et al., (2016) has proposed the selective MA-OWA 
(SMA-OWA) operator to deal with the problem of fast convergence of the 
associated weights. More precisely, when the difference between the cardinalities 
of the aggregated values is huge, then, only the argument value with the highest 
cardinality is taken into account, while the other may be excluded. As a solution, 
the cardinality relevance factor (CRF) was introduced as a degree of tolerance to 
modify the associated weights so that all the argument values can be included. In 
addition, Peláez et al., (2016) has proposed the selective aggregated majority 
OWA (SAM-OWA) operator where the cardinality is used to calculate the 
individual weight for each group of argument values. Previously, in the MA-OWA 
and SMA-OWA operators, the individual weights were set as equally important.  

Nevertheless, the SAM-OWA operators are limited to the case of 
homogeneous GDM problems. Although the SAM-OWA is associated with a set 
of weights that are based on cardinalities, the argument values are still considered 
equally important. In addition, the information to be aggregated is not associated 
with the reliability of information sources as in the case of heterogeneous GDM 
problems. In the context of GDM, each expert has an associated degree of 
importance that reflects his/her expertise, knowledge, skill, etc. Motivated by the 
heterogeneous GDM problems, the inclusion of the reliability of information 
sources (or degree of importance) is suggested as the extension of SAM-OWA 
and it is denoted as the weighted SAM-OWA operator. Furthermore, by 
integrating over the linguistic quantifiers, the WSAM-OWA is extended to the 
quantified WSAM-OWA to provide a greater flexibility in the aggregation 
process, specifically for the group fusion strategy. While in the individual fusion 
strategy, QWSAM-IOWA is introduced to deal with the ordering problem and to 
better represent the majority opinions of experts. Finally, based on the proposed 
aggregation operators, the multi-expert GDM model with respect to the 
alternative scheme is developed under the linguistic domain. A selection of 
investment problem is given as an example of the applicability of the developed 
model. This paper is structured as the followings. Section 2 provides some 
preliminaries include the definitions and basic concepts of OWA, neat OWA, 



IOWA and linguistic labels. In Section 3, a review of MA-OWA, SMA-OWA and 
SAM-OWA operators is provided. In section 4, the proposed WSAM-OWA, 
QWSAM-OWA and QWSAM-IOWA are presented. Section 5, the multi-criteria 
GDM model is developed based on the proposed aggregation operators and in 
section 6, a numerical example is given. Finally, the conclusion is provided in 
section 7. 
 
 
2. Preliminaries 
 
In this section, some definitions and basic concepts related to the OWA, neat 
OWA and IOWA operators and also the linguistic labels are presented.  
 
2.1 OWA, neat OWA and IOWA operators 

 

Definition 1 (Yager, 1988). An OWA operator of dimension 𝑛 is a mapping 

𝐹𝑂𝑊𝐴: ℝ
𝑛 → ℝ that has an associated weighting vector 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑛] 

such that 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, defined as: 

 
 

𝐹𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖𝑎𝜎(𝑖)
𝑛

𝑖=1
, (1) 

 

where 𝑎𝜎(𝑖) is the argument value 𝑎𝑖 being ordered in non-increasing order 

𝑎𝜎(𝑖) ≥ 𝑎𝜎(𝑖+1). 
 
As can be seen, the OWA is a nonlinear aggregation operator since it involve the 
ordering process. Moreover, it is a mean-type aggregation operator that meets all 
the commutative, monotonic, bounded and idempotent properties. The type of 
aggregation performed by OWA operator is mainly affected by the weighting 

vector 𝑊. It can be shown that a number of well-known aggregation operators 
are included in the OWA operator such as min and max operators, simple 
average, median, to name a few. Other families of OWA operators can be 
referred to Yager (1993). 

Different approaches have been suggested for deriving the weights for OWA 
operator, such as, using the linguistic quantifiers, maximum entropy, minimal 
variability, and learning method. See (Xu, 2005) for a complete review of the 
other approaches. In particular, Yager (1988) defined the OWA operator from the 

proportional linguistic quantifiers 𝑄 (i.e., based on monotonic non-decreasing 
function) by defining the weights in the following way: 



 
 
 𝑤𝑖 = 𝑄 (

𝑖

𝑛
) − 𝑄 (

𝑖 − 1

𝑛
) , 𝑖 = 1,2, … , 𝑛, (2) 

where 𝑤𝑖 represents the increase of satisfaction in getting 𝑖 with respect to 𝑖 − 1 
criteria satisfied. In this case, all the criteria are associated with the identical 

degrees of importance, 𝑤𝑖 = 1/𝑛, as shown when 𝑄(𝑥) = 𝑥. However, in the 

case where each of the criteria 𝑐𝑖 to be aggregated has an importance degree 𝑣𝑖 
associated with it, such that (𝑣𝑖 , 𝑐𝑖), the inclusion of importance degrees in OWA 

operators from 𝑄 can be defined as follows (Yager, 1996): 
 

 

𝜔𝑖 = 𝑄 (
∑ 𝑣𝜎(𝑘)
𝑖
𝑘=1

𝑇
) − 𝑄 (

∑ 𝑣𝜎(𝑘)
𝑖−1
𝑘=0

𝑇
), (3) 

 

where 𝑣𝜎(𝑖) are the degrees of importance associated with the criteria that has the 

ith largest satisfaction 𝑐𝑖 such as (𝑣𝜎(𝑖), 𝑐𝜎(𝑖)) and 𝑇 = ∑ 𝑣𝜎(𝑖)
𝑛
𝑖=1 , the total sum 

of degrees of importance. The linguistic quantifiers Q can be presented in the 
form of (Zadeh, 1983): 
 

 

𝑄(𝑟) =

{
 

 
0         𝑖𝑓  𝑟 ≤ 𝑎,  

(𝑟 − 𝑎)

(𝑏 − 𝑎)
 𝑖𝑓 𝑎 < 𝑟 < 𝑏,

1         𝑖𝑓  𝑟 ≥ 𝑏,

 (4) 

 

with 𝑎, 𝑏, 𝑟 ∈ [0,1]. For example, the semantic “most”, “almost all” and “at least 

half” can be given as parameters (𝑎, 𝑏) with (0.35, 0.7), (0, 0.5) and (0.5, 1), 
respectively. 
 
Alternatively, the associated weights for the OWA operator can be obtained 
directly from its argument values. This method is known as the neat OWA 
operator and it can be defined as the following.  
 
Definition 3 (Yager, 1993): Neat OWA or weight-dependent OWA operator is a 

function 𝐹𝑁𝑂𝑊𝐴: ℝ
𝑛 → ℝ, defined as: 

 
𝐹𝑁𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖(𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝑛))

𝑛

𝑖=1
𝑎𝜎(𝑖) (5) 

 



where 𝑎𝜎(𝑖) is the argument value 𝑎𝑖 with any permutation and the vector valued 

function 𝑤:ℝ𝑛 → [0,1]𝑛 is normalized such that ∑ 𝑤𝑖(𝑎1, 𝑎2, … , 𝑎𝑛)
𝑛
𝑖=1 = 1. 

 
The neat OWA meets the properties of idempotency, commutativity and 
boundedness. However the monotonic property is generally lost. The arithmetic 
mean is one of the examples of neat OWA. 

In addition, the induced OWA operator is another useful aggregation operator 
that deal with the different ordering step. Instead of ordering the arguments with 
respect to their magnitudes such in the OWA operator, the additional parameters 
called order inducing variables are used to induce the arguments. The definition 
of IOWA can be given as follows. 

  

Definition 4 (Yager and Filev, 1999) An IOWA operator of dimension 𝑛 is 

mapping 𝐼𝑂𝑊𝐴:ℝ𝑛 → ℝ that has an associated weighting vector 𝑊 such that 

𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , given by the following formula:  

 
𝐼 − 𝐹(〈𝑢1, 𝑎1〉, 〈𝑢2, 𝑎2〉, … , 〈𝑢𝑛, 𝑎𝑛〉) =∑ 𝑤𝑖𝑎𝜎(𝑖)

𝑛

𝑖=1
 (6) 

where 𝑎𝜎(𝑖) is the argument value of pair 〈𝑢𝑖 , 𝑎𝑖〉 of order inducing variable 𝑢𝑖 , 

reordered such that 𝑢𝜎(𝑖) ≥ 𝑢𝜎(𝑖+1). The IOWA operators are all satisfying 

commutative, monotonic, bounded and idempotent properties.  
 
2.2 Linguistic labels 
 
The input of the decision analysis can be represented in various forms, such as in 
qualitative and quantitative forms. In the case of qualitative form, the linguistic 
labels are used to capture the information based on the subjective evaluation such 
as “poor”, “good”, “very good”, etc. The general definition of linguistic labels can be 
given as follows: 
 
Definition 4 (Herrera and Herrera-Viedma, 2000): Let a set of linguistic labels, 

𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑚𝑎𝑥} be uniformly distributed on a scale, then, the ordering is 

defined as (𝑠𝑎 , 𝑠𝑏) ∈ 𝑆, 𝑠𝑎 < 𝑠𝑏 ⇔ 𝑎 < 𝑏 with 𝑠0 and 𝑠𝑚𝑎𝑥 are the lowest and 

the highest elements, respectively. The 𝑚𝑎𝑥 is given as |𝑆| − 1, where |𝑆| 
denotes the cardinality of 𝑆.  
 

As stated by Herrera and Herrera-Viedma (2000), the cardinality of 𝑆 must be 
small enough so as not to impose useless precision on the experts and it must be 
rich enough in order to allow discrimination of the performances of each object 



in a limited number of grades. In the literature, there are many approaches which 
proposed to compute with the linguistic labels. In this paper, the method by 
Bordogna et al., (1997) is applied, where the linguistic labels are converted directly 
to the numerical values to deal with the operations in numerical environment. 
Finally, the results based on numerical values are reconverted to the linguistic 
labels as the final ranking purpose.  
 
Definition 5 (Bordogna et al., 1997): The conversion of the linguistic labels to 

the numbers in unit interval [0,1] can be conducted by using the function 

𝐿𝑎𝑏𝑒𝑙−1 defined as: 𝐿𝑎𝑏𝑒𝑙−1: 𝑆 → [0,1], 𝐿𝑎𝑏𝑒𝑙−1(𝑠𝑖) =
𝑖

|𝑆|−1
  with 𝑖 =

0,1, … ,𝑚𝑎𝑥. While, the retranslation from the numerical values into the linguistic 

labels can be given as: 𝐿𝑎𝑏𝑒𝑙(𝑥) = 𝑠𝑖 for 
𝑖

|𝑆|
≤ 𝑥 <

𝑖+1

|𝑆|
, 𝑖 = 0,1, … ,𝑚𝑎𝑥 and 

𝐿𝑎𝑏𝑒𝑙 (1) = 𝑆𝑚𝑎𝑥. 
 
 
3. Aggregation functions based on Majority-additive OWA 

 
In this section, a review of the definitions and basic properties of MA-OWA, 
SMA-OWA and SAM-OWA operators are presented prior to the definition of 
WSAM-OWA and QWSAM-OWA operators. 
 
Definition 4 (Peláez and Doña, 2003a): A MA-OWA operator is a function 

𝐹𝑀𝐴: ℝ
𝑛 × ℕ𝑁 → ℝ defined as: 

 
 

 𝐹𝑀𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖,𝑁𝑏𝜎(𝑖)
𝑛

𝑖=1
, (7) 

 

where 𝑁 = max1≤𝑖≤𝑛𝑚𝑖 and 𝜎 denotes a permutation of group of argument 𝑏𝑖 
with respect to the cardinality 𝑚𝑖, such that 𝑏𝜎(𝑖) ≥ 𝑏𝜎(𝑖+1). The weights 

associated to the arguments are defined by the recurrence relations: 

𝑤𝑖,1 =
1

𝑢1
=
1

𝑛
: 𝑢1 = 𝑛, (8) 

  

𝑤𝑖,𝑘 =
𝛾𝑖,𝑘 + 𝑤𝑖,𝑘−1

𝑢𝑘
: ∀𝑘, 2 ≤ 𝑘 ≤ 𝑁, (9) 

 

where 𝑢𝑘 = 1 + ∑ 𝛾𝑗,𝑘
𝑛
𝑗=1 , and  ∑ 𝑤𝑖,𝑘

𝑛
𝑖=1 = 1, for 𝑘 = 𝑁, such that: 



 
 

𝛾𝑗,𝑘 = {
1    
0   

𝑚𝜎(𝑗) ≥ 𝑘,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

(10) 

 

Note that 𝑘 factor represents the current cardinality considered at a moment in 
the aggregation process. The MA-OWA operators meet all the bounded, 
idempotent and commutative properties. However the monotonicity is preserved 

if only if the cardinality vector, 𝑚 is exactly the same in both aggregate sets, i.e., 

𝐹𝑀𝐴,𝑤(𝑏,𝑚) ≥ 𝐹𝑀𝐴,𝑤(𝑑,𝑚), 𝑏 ≥ 𝑑, ∀𝑗. Moreover, the MA-OWA reduces to 

arithmetic mean, 𝐹𝑀𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝐹𝐴𝑀(𝑎1, 𝑎2, … , 𝑎𝑛), if all cardinalities, 

𝑚𝑖 = 1 (Peláez and Doña, 2003a). 
 

Example 1. Assume that 𝐴 = 〈𝑎1, … 𝑎𝑖 , … , 𝑎𝑛〉 ∈ ℝ
𝑛 × ℕ𝑛 where 𝑎𝑖 = (𝑏𝑖 ,𝑚𝑖) 

represents the aggregate value 𝑏𝑖, and its cardinality 𝑚𝑖 > 0.  For 𝐴 =
{(0.6, 1), (0.2, 1), (0.1, 3)}, the MA-OWA can be computed as the following. 

 

Table 1. Values of 𝛾𝑖,𝑘 and 𝑢𝑘 

 𝑏𝜎(1) 𝑏𝜎(2) 𝑏𝜎(3)  

 0.6 0.2 0.1  
 𝑚𝜎(1) 𝑚𝜎(2) 𝑚𝜎(3) 𝛿 = 1 

𝛾𝑖,𝑘 1 1 3 𝑢𝑘 

𝛾𝑖,1 1 1 1 3 

𝛾𝑖,2 0 0 1 2 

𝛾𝑖,3 0 0 1 2 

 
The cardinal-dependent weights can be given as: 
 

𝑤1,3 =
1

2
(0 +

1

2
(0 +

1

3
1)) =

1

12
, 

𝑤2,3 =
1

2
(0 +

1

2
(0 +

1

3
1)) =

1

12
, 

𝑤3,3 =
1

2
(1 +

1

2
(1 +

1

3
1)) =

5

6
, 

Then, the MA-OWA operator for 𝛿 = 1 can be derived as: 
 



𝐹𝑀𝐴({(0.6, 1), (0.2, 1), (0.1, 3)}) = 0.6 ∙
1

12
+ 0.2 ∙

1

12
+ 0.1 ∙

5

6
= 0.150. 

 

While for 𝛿 = 0.5, the MA-OWA operator yields: 𝐹𝑀𝐴 = 𝐹𝐴𝑀 = 0.220. 
 
As can be seen, the MA-OWA indicates the better result for the majority opinion 
than AM, as 80% of the argument values are equal and less than 0.2 and 60% is 
0.1. Hence, the representative value should be in between these two values or 
closer to 0.1.  

As mentioned earlier, the main goal of the MA-OWA operator is to determine 
a synthesized value with considering all the information, i.e., the majority opinion 
and the minority opinion. However in certain cases, the minority opinion is 
excluded in the aggregation process due to the huge different between the 

cardinalities of arguments. In this case, the weight 𝑤𝑖,𝑁 = 0 is obtained for the 

minority opinion, whilst 𝑤𝑖,𝑁 = 1 is given for the majority opinion. To deal with 

this problem, Karanik et al., (2016) proposed the selective MA-OWA operator 

where the cardinality relevance factor (CRF) is introduced to weaken the 𝛾𝑗,𝑘 

values in MA-OWA as to obtain the weight, 𝑤𝑖,𝑁 > 0 for the minority opinion. 

 
Definition 5 (Karanik et al., 2016): A SMA-OWA operator is a function 

𝐹𝑆𝑀𝐴: ℝ
𝑛 × ℕ𝑁 → ℝ defined as:  

 
 
 
 

𝐹𝑆𝑀𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖,𝑁𝑏𝜎(𝑖)
𝑛

𝑖=1
, (11) 

where 𝑁 = max1≤𝑖≤𝑛𝑚𝑖 and 𝜎 denotes a permutation with respect to the 

cardinality 𝑚𝑖, such that 𝑏𝜎(𝑖) ≥  𝑏𝜎(𝑖+1). Their weights are defined by the 

recurrence relations, such in Eq. (8) and Eq. (9), given that 𝑢𝑘 = 1 + ∑ 𝛾𝑗,𝑘
𝑛
𝑗=1  

and  ∑ 𝑤𝑖,𝑘
𝑛
𝑖=1 = 1, for 𝑘 = 𝑁, such that: 

 
 

𝛾𝑗,𝑘 = {
𝛿    

1 − 𝛿   

𝑚𝜎(𝑗) ≥ 𝑘,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (12) 

 

The parameter 𝛿 is the cardinality relevance factor (CRF) with 𝛿 ∈ [0,1]. 
 
By assigning the appropriate value for CRF, the minority opinion can be included 
in the aggregation process, specifically, by increasing its associated weight, such 

that, 𝑤𝑖,𝑁 > 0. The behavior of CRF value can be explained as the following. For 



𝛿 → 1, the opinion with the largest cardinality (majority of opinion) is more 
emphasized than the opinion with the smallest cardinality. Hence, it is given a 

higher weight than the others. On the contrary, if 𝛿 → 0, the opinion with the 
smallest cardinality is given more priority than the largest cardinality. Meanwhile, 

if 𝛿 = 0.5, the AM of the arguments is obtained, 𝐹𝑆𝑀𝐴 = 𝐹𝐴𝑀 such that all the 

cardinalities of arguments are reduced to cardinality 𝑚𝑖 = 1. It can be 
demonstrated that the properties of idempotency, commutativity and 
boundedness hold for the SMA-OWA. However, the monotonicity is preserved 
only if the cardinality vector is exactly the same in both aggregate sets (Karanik et 
al., 2016). 

In other related work, Peláez et al., (2016) proposed the SAM-OWA operator 
as the generalization of the SMA-OWA where weights are assigned to different 
group of arguments based on their cardinalities. The definition of SAM-OWA 
operator can be given as the following. 
 
Definition 6 (Peláez et al., 2016): A SAM-OWA operator is a function 

𝐹𝑆𝐴𝑀: ℝ
𝑛 × ℕ𝑁 → ℝ defined as: 

 
 
 
 

𝐹𝑆𝐴𝑀(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖,𝑁𝑏𝜎(𝑖)
𝑛

𝑖=1
, (13) 

where 𝑁 = max1≤𝑖≤𝑛𝑚𝑖 and 𝜎 denotes a permutation with respect to the 

cardinality 𝑚𝑖, such that 𝑏𝜎(𝑖) ≥  𝑏𝜎(𝑖+1). The associated weights are defined by 

the recurrent relations:  
 
 
 

𝑤𝑖,1 = 𝑤𝑖 =
𝑚𝑖

∑ 𝑚𝑗
𝑛
𝑗=1

, (14) 

 
 
 

 

    𝑤𝑖,𝑘 =
𝑤𝑖𝛾𝑖,𝑘𝑦𝑘 + 𝑤𝑖,𝑘−1

𝑧𝑘
, 

 

(15) 

 
 
 
 

𝑦1 = 1, 𝑦𝑘 =

{
 
 

 
 1,                         𝑖𝑓 ∑ 𝑤𝑗𝛾𝑗,𝑘

𝑛

𝑗=1
= 0,

∑ 𝛾𝑗,𝑘
𝑛
𝑗=1

∑ 𝑤𝑗𝛾𝑗,𝑘
𝑛
𝑗=1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (16) 

 



 
 
 
 

𝑧1 = 1, 𝑧𝑘 =

{
 

 1,                         𝑖𝑓 ∑ 𝑤𝑗𝛾𝑗,𝑘
𝑛

𝑗=1
= 0,

1 +∑ 𝛾𝑗,𝑘
𝑛

𝑗=1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

(17) 

where 𝛾𝑗,𝑘 is defined in the similar way as Eq. (12), 𝛿 is the cardinality relevance 

factor (CRF) such that 𝛿 ∈ [0,1] and 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑘 ≤ 𝑁. 
 
Example 2. Consider again the previous example where a set of aggregated 

values is given as 𝐴 = {(0.6, 1), (0.2, 1), (0.1, 3)}. The weights 𝑤𝑖,1 = 𝑤𝑖 then 

can be obtained as: 𝑤1,1 = 1/5, 𝑤2,1 = 1/5 and 𝑤3,1 = 3/5. 

 
The final cardinal-dependent weights are derived as: 
 

𝑤1,3 = 0.050,𝑤2,3 = 0.050,𝑤3,3 = 0.900, 
 

and the SAM-OWA operator for 𝛿 = 1 yields: 
 

𝐹𝑆𝐴𝑀({(0.6, 1), (0.2, 1), (0.1, 3)}) = 0.130. 
 

However, as can be noticed, the individual weights in the MA-OWA and SMA-

OWA operators are distributed uniformly to each group of arguments, i.e., 

𝑤𝑖,1 = 1/𝑢1 = 1/𝑛. Thus, for each aggregated value 𝑎𝑖 in (𝑏𝑖 , 𝑚𝑖), the weight 

can be given as 1/𝑢1𝑚𝑖 = 1/𝑛𝑚𝑖. On the contrary, for the SAM-OWA 
operator, the individual weights are distributed proportionally to each group of 

opinions, i.e., 𝑤𝑖,1 = 𝑤𝑖 = 𝑚𝑖/∑ 𝑚𝑗
𝑛
𝑗=1 , such that, the weights are uniformly 

distributed to each argument 𝑎𝑖 .  
In general, the aggregated values in MA-OWA, SMA-OWA and SAM-OWA 

are independent of the degrees of importance or the reliability of information 
sources. In the context of group decision making, they can be considered as the 
homogenous GDM problems. However, under the heterogeneous GDM 
problems, each argument value is associated with the degree of importance as to 
reflect the knowledge, expertise or experience of each expert. Hence, in the next 
section, the weighted SAM-OWA operator is proposed as an extension of the 
SAM-OWA operator to deal with the mentioned problem. In addition, the 
quantified WSAM-OWA operator for the group fusion strategy and the 
QWSAM-Induced OWA for the individual fusion strategy are presented. 
 



4. Weighted SAM-OWA aggregation functions 
 

In this section the WSAM-OWA operator is presented and the QWSAM-OWA 
and QWSAM-IOWA operators are proposed as its generalization and extension. 
 
4.1  Weighted SAM-OWA operator 
 

Definition 7: A WSAM-OWA operator is a function 𝐹𝑊𝑆𝐴𝑀: ℝ
𝑛 × ℕ𝑁 → ℝ that 

has an associated weighting vector 𝑉 of dimension 𝑛 such that ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 

𝑣𝑖 ∈ [0,1], defined as: 
 
 

𝐹𝑊𝑆𝐴𝑀(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖,𝑁𝑏𝜎(𝑖)
𝑛

𝑖=1
, (18) 

 

where 𝑁 = max1≤𝑖≤𝑛𝑚𝑖 and 𝜎 denotes a permutation with respect to the 

cardinality 𝑚𝑖. The associated weights are defined by the recurrent relations: 
 

𝑤𝑖,1 = 𝜔𝑖 = {

𝑣𝑖 ,                  𝑖𝑓  𝑚𝑖 = 1,

∑ 𝑣𝑖
𝑚𝑖

𝑖=1
, 𝑖𝑓  𝑚𝑖 > 1,

 

 

(19) 

and the cardinal-dependent weights are given as, 
  

𝑤𝑖,𝑘 =
𝜔𝑖𝛾𝑖,𝑘𝑦𝑘 + 𝑤𝑖,𝑘−1

𝑧𝑘
, 

 

(20) 

 

𝑦1 = 1, 𝑦𝑘 =

{
 
 

 
 1,                         𝑖𝑓 ∑ 𝜔𝑗𝛾𝑗,𝑘

𝑛

𝑗=1
= 0,

∑ 𝛾𝑗,𝑘
𝑛
𝑗=1

∑ 𝜔𝑗𝛾𝑗,𝑘
𝑛
𝑗=1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (21) 

  

𝑧1 = 1, 𝑧𝑘 =

{
 

 1,                         𝑖𝑓 ∑ 𝜔𝑗𝛾𝑗,𝑘
𝑛

𝑗=1
= 0,

1 +∑ 𝛾𝑗,𝑘
𝑛

𝑗=1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

(22) 

where 𝛾𝑗,𝑘 is defined in the similar way as Eq. (12), the parameter 𝛿 is the 

cardinality relevance factor (CRF) and 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑘 ≤ 𝑁. 



 Similarly, it can be demonstrated that the WSAM-OWA operator meets the 
bounded, idempotent and monotonic properties. However, they are not 
commutative as involve the importance degrees or weighted arithmetic mean 
(WAM). 
 
Property 1: Boundedness  

Let 𝑚𝑘 is the cardinality of the lowest argument value of vector 𝐴, if 𝑚𝑘 → ∞ 

and  𝛿 → 1, then 𝐹𝑊𝑆𝐴𝑀((𝑏𝑖 , 𝑚𝑖)) = 𝑏𝑘, 𝑀𝑖𝑛[𝑎𝑖]. 

Let 𝑚𝑘 is the cardinality of the highest argument value of vector 𝐴, if 𝑚𝑘 → ∞ 

and   𝛿 → 1, then 𝐹𝑤𝑆𝐴𝑀((𝑏𝑖 ,𝑚𝑖)) = 𝑏𝑘, 𝑀𝑎𝑥[𝑎𝑖]. 

Hence, it is bounded by 𝑀𝑖𝑛[𝑎𝑖] ≤ 𝐹𝑊𝑆𝐴𝑀((𝑏𝑖 , 𝑚𝑖)) ≤ 𝑀𝑎𝑥[𝑎𝑖]. 
 
Property 2: Idempotency 

An aggregation function 𝐹𝑊𝑆𝐴𝑀 is idempotent if, 𝐹𝑊𝑆𝐴𝑀((𝑏,𝑚)) = 𝑏 for any 𝛿 

and 𝑚. 
 
Property 3: Monotonicity  
The monotonicity is preserved if and only if the cardinality vector is exactly the 

same in both aggregate sets, i.e., 𝐹𝑊𝑆𝐴𝑀(𝑏𝑖 ,𝑚) ≥ 𝐹𝑊𝑆𝐴𝑀(𝑑𝑖 , 𝑚), 𝑏𝑖 ≥ 𝑑𝑖 for all 

𝑖 = 1,2, … , 𝑛. 
 
Property 4: Commutativity 

An aggregation function 𝐹𝑊𝑆𝐴𝑀 is commutative if and only if 𝑣𝑖 = 1/𝑛 for all 

𝑖 = 1,2, … , 𝑛. 
 

Remark 1. It can be demonstrated that for 𝛿 = 0.5, then WSAM-OWA is 

reduced to WAM, 𝐹𝑊𝑆𝐴𝑀 = 𝐹𝑊𝐴𝑀. In addition, for 𝛿 → 1, a higher weight is 

given to the argument with greater cardinality (majority opinion) and if 𝛿 → 0, 
then a higher weight is given to the argument with lower cardinality (minority 
opinion).  
 

Remark 2. Conversely, when 𝜔𝑖 = 𝑤𝑖 (or 𝑣𝑖 = 1 𝑛⁄ ), then WSAM-OWA is 

reduced to SAM-OWA, 𝐹𝑊𝑆𝐴𝑀 = 𝐹𝑆𝐴𝑀 . 
 
The issue that may arise in WSAM-OWA operator is how to aggregate the 
argument values based on cardinality with respect to the inclusion of the degrees 
of importance. In WAM, the degrees of importance reflect the reliability of 
information sources, for example, given more priority to the most skilled or 



experience person. Nevertheless, the majority of information which represents 
the highest degree of importance is not directly emphasized in the WAM. Here, 
the WSAM-OWA can be used to include both characteristics, i.e., the degree of 
importance and the majority concept. Note that in the SAM-OWA operators, the 
emphasis is directly given on cardinality or majority opinion since the degrees of 
importance are uniform. In WSAM-OWA, the CRF is suggested as a tolerant 
factor in considering the majority and the degrees of importance simultaneously. 
This value can be derived as the following formula (Karanik, et al., 2016): 
  

𝛿 = 1 − (2 + 𝑠2(𝑚𝜎(𝑖)))
−1

 

 
(23) 

where 𝑠2(𝑚𝜎(𝑖)) is the variance of cardinality values, such that 𝛿 ∈ [0,1]. Notice 

that in Karanik et al., (2016) the expected value is calculated as 𝐸(𝑚𝜎(𝑖)) =
∑ 𝑤𝑖,1
𝑛
𝑖=1 𝑚𝜎(𝑖), where 𝑤𝑖,1 = 1 𝑛⁄ . For the case of WSAM-OWA, the degrees of 

importance, 𝑤𝑖,1 = 𝜔𝑖 are used such in Eq. (19), then the variance can be given as 

𝑠2(𝑚𝜎(𝑖)) = ∑ 𝜔𝑖 (𝑚𝜎(𝑖) − 𝐸(𝑚𝜎(𝑖)))
2

𝑛
𝑖=1 . Hence, by formulating in this way, 

the influence of the degrees of importance is taken into account in deriving the 
CRF value for the overall aggregation process. Should be noted that, in the case 
of WSAM-OWA, the CRF is applied to provide a compensation between the 
degrees of importance and the cardinalities of aggregated values instead of the 

obtaining the 𝑤𝑖,1 > 0 for the minority opinion. 

 

Remark 3. It can be shown that for 𝜔𝑘 = 1 and 𝜔𝑖 = 0 for all 𝑖 ≠ 𝑘, then 

𝐹𝑊𝑆𝐴𝑀((𝑏𝑖 , 𝑚𝑖)) = 𝑏𝑘 for any 𝛿 = (0,1]. 
 

Example 3: Given that 𝐴 = 〈0.6, 0.2, 0.1, 0.1, 0.1〉 and their associated weights 

are provided as 𝑉 = 〈0.1,0.1,0.3,0.3,0.2〉. For simplicity it can be represented as 

𝐴 = {(0.6, 1, 0.1), (0.2, 1, 0.1), (0.1, 3, 0.8)}, where 𝑎𝑖 = (𝑏𝑖 , 𝑚𝑖 , 𝜔𝑖). Based on 
the cardinalities and degrees of importance, the CRF can determined as follows: 
 

𝐸(𝑚𝜎(𝑖) ) = (0.1 ∙ 1) + (0.1 ∙ 1) + (0.8 ∙ 3) = 2.6, 

 

𝑠2(𝑚𝜎(𝑖)) = 0.1(1 − 2.6)2 + 0.1(1 − 2.6)2 + 0.8(3 − 2.6)2 = 0.64. 

 

𝛿 = 1 − (2 + 0.64)−1 = 0.621 

 



 

Table 2. Values of 𝛾𝑖,𝑘 , 𝑢𝑘 and 𝑦𝑘 

 𝑏𝜎(1) 𝑏𝜎(2) 𝑏𝜎(3) 
  

 
0.6 0.2 0.1 

  

 

𝑚𝜎(1) 𝑚𝜎(2) 𝑚𝜎(3) 
𝛿
= 0.621 

 𝛾𝑖,𝑘 1 1 3 𝑢𝑘 𝑦𝑘 

𝛾𝑖,1 1 1 1 3 
 𝛾𝑖,2 0.379 0.379 0.621 2.379 2.407 

𝛾𝑖,3 0.379 0.379 0.621 2.379 2.368 

 
The cardinal-dependent weights are: 

𝑤1,3 = 0.064,𝑤2,3 = 0.064,𝑤3,3 = 0.872, 

and the WSAM-OWA operator yields: 

𝐹𝑊𝑆𝐴𝑀({(0.6, 1, 0.1), (0.2, 1, 0.1), (0.1, 3, 0.8)}) = 0.138. 

In this example, the WAM is given as, 𝐹𝑊𝐴𝑀 = 0.160. Similarly to the MA-
OWA, in this case, the representative value is expected to be closer to 0.1 as the 
highest weight (the total sum of individual weights) is belong to the group of 

arguments 𝑏3 = 0.1, which is the majority opinion. 
 

Example 4: Assume that 𝐴 = {(0.6, 1, 0.6), (0.2, 1, 0.1), (0.1, 3, 0.3)} where 

𝑉 = 〈0.6,0.1,0.1,0.1,0.1〉. In this example, the highest weight is associated with 
the minority opinion. Based on the cardinalities and the degrees of importance, 
the CRF is obtained as 0.648. 
 
The cardinal-dependent weights are derived as: 

𝑤1,3 = 0.457,𝑤2,3 = 0.076,𝑤3,3 = 0.467, 

and the WSAM-OWA operator yields: 

𝐹𝑊𝑆𝐴𝑀({(0.6, 1, 0.6), (0.2, 1, 0.1), (0.1, 3, 0.3)}) = 0.336. 

In this example, the WAM is given as, 𝐹𝑊𝐴𝑀 = 0.410. As can be seen, this value 
is lower than WAM which reflects the majority opinion with the relevancy of the 
degrees of importance.  
 



 
 
4.2  Quantified Weighted SAM-OWA operators 
 
In the previous section, all the majority operators take into account not only the 

majority opinion but also the minority opinion in deriving the aggregated value. 

As mentioned by Peláez et al., (2007), this definition in general uses the majority 

semantics which consider “all” of the arguments, but it is not able to model the 

majority concepts like “most” or “at least 80%” of arguments. Hence, Peláez et al., 

(2007) proposed the inclusion of linguistic quantifiers as to generalize the MA-

OWA operator. Two quantified weights in MA-OWA operators were introduced, 

namely the individual fusion strategy and the group fusion strategy. The individual 

fusion strategy can be explained as applying the semantics of the quantifier on 

each individual weight of the aggregation process. While the group fusion strategy 

applies the semantics of quantifier to each group of arguments with respect to 

their cardinalities. Analogously, in this paper, both decision strategies can be 

extended to the case of WSAM-OWA operator. The method for the group fusion 

strategy can be applied directly to the case of WSAM-OWA since the ordering of 

the group of cardinalities is not affecting the overall result. The definition of the 

group fusion strategy of WSAM-OWA is given as the following. 

Definition 8: A QWSAM-OWA operator under the group fusion strategy is a 

function 𝐹𝑊𝑆𝐴𝑀: ℝ
𝑛 × ℕ𝑁 → ℝ that has an associated weighting vector 𝑉 of 

dimension 𝑛 such that ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], defined as: 

 
 

𝐹𝑄𝑊𝑆𝐴𝑀(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑖
𝑄−𝐺𝑏𝜎(𝑖)

𝑛

𝑖=1
, 

 

(24) 

where 𝑁 = max1≤𝑖≤𝑛𝑚𝑖 and the weights are defined by the recurrent relations 

such in 𝐹𝑊𝑆𝐴𝑀. The weights for the group fusion strategy can be presented as in 
the following expression (Peláez et al., 2007): 
  
 

𝑤𝑖
𝑄−𝐺 =

𝜔𝑖
𝑚𝑖

∙∑ 𝑄 (
𝑗

𝑚𝑖

)
𝑚𝑖

𝑗=1

+ [∑ 𝑄 (
𝑗

𝑚𝑖

)
𝑚𝑖

𝑗=1
∙
1 − ∑

𝜔𝑖
𝑚𝑖

𝑛
𝑖=1 ∙ ∑ 𝑄 (

𝑗
𝑚𝑖
)

𝑚𝑖
𝑗=1

∑ ∑ 𝑄 (
𝑗
𝑚𝑖
)

𝑚𝑖
𝑗=1

𝑛
𝑖=1

] , 

(25) 

 



where 𝑄 is the quantifier, 𝑛 is the number of majority groups and 𝑚𝑖 is the 

cardinality of the group 𝑖. This fusion strategy avoids the exclusion of any group 
in the aggregation process. Moreover, in this way it is possible to eliminate the 
distribution problems in the group decision-making problems.  
 
Example 5: By extending the previous example (Example 3), the group fusion 
strategy using the QWSAM-OWA operator can be implemented. Firstly, the 

cardinal-dependent weight vector is obtained, 𝑊 = [0.064, 0.064, 0.872] as in 

𝐹𝑊𝑆𝐴𝑀. After that, the value of the quantifier with semantics “most” such in Eq. 

(4) can be calculated for each group. The 𝑄 vectors for each majority group are 
obtained as: 

Group with cardinality, 𝑚 = 1: [1], 
Group with cardinality, 𝑚 = 1: [1], 

Group with cardinality, 𝑚 = 3: [0, 0.633, 1]. 
 

Then, the quantified weight vector for the group fusion strategy is obtained as 

𝑊𝑄−𝐺 = [0.173, 0.173, 0.653], where: 

𝑤1
𝑄−𝐺 =

0.064

1
∙ 1 + 1 ∙

1 − 0.603

3.633
= 0.173, 

 

𝑤2
𝑄−𝐺 =

0.064

1
∙ 1 + 1 ∙

1 − 0.603

3.633
= 0.173, 

 

𝑤2
𝑄−𝐺 =

0.872

3
∙ 1.633 + 1.633 ∙

1 − 0.603

3.633
= 0.653. 

 
Finally, the QWSAM-OWA operator for the group fusion strategy yields: 
 

𝐹𝑄𝑊𝑆𝐴𝑀({(0.6, 1, 0.3), (0.2, 1, 0.3), (0.1, 3, 0.4)}) = 0.211. 
 
 
4.3  Quantified Weighted SAM-IOWA operators 
 
For the individual fusion strategy, an extension of QMA-OWA to the QWSAM-
IOWA is proposed as to deal with the issue of reordering process. As can be 

noticed, in this case each weight, 𝑤𝑖,𝑁 is multiplied by the linguistic quantifier, 

𝑄(𝑖/𝑛) of monotonically non-decreasing function. Peláez et al., (2007) suggests 
the reordering of arguments with respect to their cardinalities, i.e., in non-
decreasing order such that, the greater the cardinality of argument, then the higher 



weight is associated to that argument. However, the problem may arise in the case 
where there are two or more arguments with identical cardinality, i.e., different 
order of these arguments may produce different results of the aggregation 

processes. For example, let say (𝑏𝑖 , 𝑚𝑖) = (〈0.2,1〉, 〈0.3,1〉, 〈0,3〉). The ordering 

of (0.2,0.3,0,0,0) and (0.3,0.2,0,0,0) then producing distinct results if the 

quantified weight vector is given as (0,0.1,0.2,0.3,0.4). Hence, in this paper, the 
extension of the individual fusion strategy to the case of IOWA operator is 
suggested, where the order inducing variable reflects the similarity between 
arguments. Note that, in this case, both majority opinions and similarity between 
arguments are considered, but more emphasis is given to the most similar values. 

As can be seen, in this case, the order of (0.3,0.2,0,0,0) is better represent the 
similarity between arguments. In the following, the definition of QWSAM-IOWA 
operator is presented. 

 
Definition 8: A QWSAM-IOWA operator of the individual fusion strategy is a 

function 𝐼 − 𝐹𝑄𝑊𝑆𝐴𝑀: ℝ
𝑛 → ℝ that has an associated weighting vector 𝑉 of 

dimension 𝑛 such that ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], defined as: 

 
𝐼 − 𝐹𝑄𝑊𝑆𝐴𝑀(〈𝑢1, 𝑎1〉, 〈𝑢2, 𝑎2〉, … , 〈𝑢𝑛, 𝑎𝑛〉) =∑ 𝑤𝑖

𝑄−𝐼𝑎𝜎(𝑖)
𝑛

𝑖=1
, 

 

(26) 

where 𝑎𝜎(𝑖) is the argument value of pair 〈𝑢𝑖 , 𝑎𝑖〉 of order inducing variable 𝑢𝑖 , 

with 𝑢𝜎(𝑖) ≤ 𝑢𝜎(𝑖+1), such that: 

 

𝑢𝑖 = (∑𝑣𝑖𝑠𝑖
𝜆

𝑗

𝑖=1

)

1 𝜆⁄

, 𝑖 = 1,2, … , 𝑛, 

 

(27) 

and 𝑠𝑖 = 𝑠(𝑎𝑖 , 𝑎𝑗) = 1 − |𝑎𝑖 − 𝑎𝑗| is a similarity measure between each 

argument 𝑎𝑖 with respect to arguments 𝑎𝑗, (𝑗 = 1,2, … , 𝑛), 𝑖 ∈ 𝑗 and 𝜆 is a 

parameter in a range 𝜆 ∈ (−∞,∞) ∖ {0}. The individual fusion weight 𝑤𝑖
𝑄−𝐼

 is 

obtained from the following equation: 

 
𝑤𝑖
𝑄−𝐼 =

𝑤𝑖,𝑁 ∙ 𝑣𝑖
𝜔𝑖

∙ 𝑄 (
𝑖

𝑛
)

+

[
 
 
 
 

𝑄 (
𝑖

𝑛
) ∙

1 − ∑ (
𝑤𝑖,𝑁 ∙ 𝑣𝑖
𝜔𝑖

∙ 𝑄 (
𝑖
𝑛
))𝑛

𝑖=1

∑ 𝑄 (
𝑖
𝑛
)𝑛

𝑖=1
]
 
 
 
 

 , 

(28) 



 

where 𝑤𝑖,𝑁 is the weight determined by the recurrent relations such in 𝐹𝑊𝑆𝐴𝑀 for 

𝑁 = max1≤𝑖≤𝑛𝑚𝑖, 𝑄 is the linguistic quantifier and the expression in the bracket 

is the 𝑄 − normalization. It can be demonstrated that, the QWSAM-IOWA 
satisfies bounded, idempotent, monotonic properties. However, it is not 
commutative as it involves the WAM.  
 
As can be noticed, in this expression, some modifications have been made to the 

original QMA-OWA of individual fusion strategy where the weight, 𝑤𝑖,𝑁 is 

multiplied by 𝑣𝑖 𝜔𝑖⁄  to decompose its individual weights proportionally with 
respect to their degrees of importance. In the original form (Peláez et. al., 2007), 

the weight 𝑤𝑖,𝑁 is divided equally with respect to its cardinality. Moreover, the 

order inducing variable is introduced to order the arguments with respect to their 
degrees of similarity and also resolve the issue of ordering problem. 
 

Example 6: Let 𝐴 = 〈0.6, 0.2, 0.1, 0.1, 0.1〉 and its weight vector is provided as 

𝑉 = 〈0.1,0.1,0.3,0.3,0.2〉. The individual fusion strategy using the QWSAM-
IOWA operator with semantics “most” can be computed as the following. Firstly, 
the order inducing variable is computed for each argument: 
 

 𝑢1 = ∑ 𝑣𝑖𝑠𝑖
5
𝑖=1 = 0.1(1 − |0.6 − 0.6|) + 0.1(1 − |0.6 − 0.2|) +

0.3(1 − |0.6 − 0.1|) + 0.3(1 − |0.6 − 0.1|) + 0.2(1 − |0.6 − 0.1|) = 0.56. 
 
Similarly, the rest of order inducing variables can be determined, such that: 
 

𝐴 = 〈(0.56,0.6), (0.88,0.2), (0.94,0.1), (0.94,0.1), (0.94,0.1)〉. 
 

Secondly, the 𝐹𝑊𝑆𝐴𝑀 aggregation operator is applied to obtain the cardinal-

dependent weighting vector, 𝑊𝑁 = [0.064, 0.064, 0.872]. The individual 

weighting vector 𝑊 is given as: 
 

𝑊 = [0.064, 0.064, 0.327, 0.327, 0.218], 
 



where  𝑤3,𝑁 = 0.872 can be decomposed to: 𝑤3,𝑁
1 = 𝑤3,𝑁

2 = (0.872 × 0.3)/

0.8 = 0.327, 𝑤3,𝑁
3 = (0.872 × 0.2)/0.8 = 0.218. Then, the individual weights 

𝑤𝑖
𝑄−𝐼

 are calculated using the above expression: 

 

𝑊𝑄−𝐼 = [0, 0.017, 0.162, 0.389, 0.432] 
 
Finally, the WSAM-OWA operator for individual fusion strategy yields: 
 

𝐼 − 𝐹𝑄𝑊𝑆𝐴𝑀({(𝑢1, 0.6, 1, 0.1), (𝑢2, 0.2, 1, 0.1), (𝑢3, 0.1,0.3), 

(𝑢4, 0.94,0.1), (𝑢5, 0.94,0.1)}) = 0.102. 
 
 
5. Multi-criteria group decision making under linguistic domain 

 
In this section, a multi-criteria group decision-making model under the linguistic 
domain is developed. Two-stage aggregation processes are involve, in particular, 
the proposed WSAM-OWA operator and its extensions are used as group 
aggregators. While the classical OWA operator with the inclusion of degrees of 
importance is applied to aggregate the criteria as the final ranking. The proposed 
model is based on the extension of Bordogna-Fedrizzi-Pasi model (Bordogna et 
al., 1997), specifically it is extended to the case of alternative scheme. The input 
provided by the experts are based on the linguistic labels. These input are then 

directly converted to the numeric values in unit interval [0,1] to simplify the 
aggregation process. The algorithm of the proposed model is explained step by 
step as the following. 

 
Stage 1: Majority aggregation for experts’ judgments 
 

Step 1: Construct a decision matrix of dimension 𝑀 × 𝑁 for each expert, 

𝐷ℎ , (ℎ = 1,2, … , 𝑘) as follows: 
 

 𝐶1 …   𝐶𝑛 

𝐷ℎ =
𝐴1
⋮
𝐴𝑚

(
𝑎11
ℎ ⋯ 𝑎1𝑛

ℎ

⋮ ⋱ ⋮
𝑎𝑚1
ℎ ⋯ 𝑎𝑚𝑛

ℎ
), 

(29) 

 

where 𝐴𝑖 indicates the alternative 𝑖 (𝑖 = 1,2, … ,𝑚), 𝐶𝑗 denotes the 

criterion 𝑗 (𝑗 = 1,2, … , 𝑛), and 𝑎𝑖𝑗
ℎ  denotes the preferences for alternative 



𝐴𝑖 with respect to criterion 𝐶𝑗. The input value 𝑎𝑖𝑗
ℎ  is the linguistic label 

provided by each expert based on the predefined linguistic scale, 𝑆.  
Step 2: Determine the degree of importance (or trust) of each expert with respect 

to each criterion, such that, 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑘}. The degree of importance, 

𝑡ℎ is drawn from the same linguistic scale, 𝑆.  
Step 3: Transform the performance labels and the importance labels of all experts 

into the numeric values by applying the function 𝐿𝑎𝑏𝑒𝑙−1: 𝑆 → [0,1]. 

Then, the numeric value 𝑡ℎ ∈ 𝑇 is normalized to form 𝑇̂ = {𝑡̂1, 𝑡̂2, … , 𝑡̂𝑘}, 

where 𝑡̂ℎ = 𝑡𝑙/∑ 𝑡ℎ
𝑘
ℎ=1 , such that ∑ 𝑡̂ℎ

𝑘
ℎ=1 = 1. With respect to each 

criterion, the transformed values (performance and importance labels of 
each expert) are used to determine the cardinality relevance factor (CRF), 

𝛿 such in Eq. (23). 
Step 4: Aggregate the experts’ preferences using the WSAM-OWA operator to 

form a group decision matrix: Eq. (18) – Eq. (22). Note that, at this stage, 
the decision strategy (consensus on experts) can also be implemented by 
specifying the semantics “most” and manipulated either using the group 
fusion strategy: Eq. (24) – Eq. (25) or the individual fusion strategy: Eq. 
(26) – Eq. (28). 

 
Stage 2: Aggregation of criteria and ranking process  
 

Step 5: Determine the importance degrees of criteria, 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑛), such 

that 𝑣𝑗 are drawn from the linguistic scale, 𝑆. Then, these weights are 

transformed to the numerical values using the function 𝐿𝑎𝑏𝑒𝑙−1: 𝑆 →
[0,1]. At this stage, the OWA weights can be computed using the Eq. (3). 

Step 6: Aggregate the judgment matrix of the majority of experts using the OWA 
operator such in Eq. (1) with respect to the weighting vector obtained in 
Step 5. Finally, rank the alternatives based on their values. Note that here, 
the proportion of criteria is subject to the attitudinal character of the 
majority of experts. Specifically, by assigning any semantics to the linguistic 
quantifiers, specifically in Eq. (3), various decision strategies can be 
obtained. 

 
 
6. Numerical example 

 
In this section, an investment selection problem is studied where a group of 
experts are assigned for the judgment and selection of an optimal strategy. 
Assume that a company plans to invest some money in one or several available 



options (allocated proportionally based on their rankings). Primarily, five possible 

investment options are considered as follows: 𝐴1 = hedge funds, 𝐴2 = 

investment funds, 𝐴3 = bonds, 𝐴4 = stocks and 𝐴5 = equity derivatives. These 
investment options are described with respect to the following characteristics: 

𝐶1 = benefits in the short term, 𝐶2 = benefits in the long term, 𝐶3 = risk of the 

investment,  𝐶4 = social responsible investment and 𝐶5 = difficulty of the 
investment. In order to evaluate these options, the investor has brought together 
a group of experts which consist of five persons; with different backgrounds or 
areas of expertise. To enable the experts to formulate their judgments in a natural 

way, a set 𝑆 of linguistic labels is supplied. For example, 𝑆 can be defined so as its 
elements are uniformly distributed on a scale on which a total order is defined as:  

𝑆 = {
𝑠0 = 𝑛𝑜𝑛𝑒,  𝑠1 = 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤,  𝑠2 = 𝑙𝑜𝑤,  𝑠3 = 𝑚𝑒𝑑𝑖𝑢𝑚,  

𝑠4 = ℎ𝑖𝑔ℎ,  𝑠5 = 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ,  𝑠6 = 𝑝𝑒𝑟𝑓𝑒𝑐𝑡
} 

 

in which 𝑠𝑎 < 𝑠𝑏 if and only if 𝑎 < 𝑏. Based on this linguistic scale 𝑆, a decision 

matrix for each expert can be constructed for options 𝐴𝑖 with respect to the 

characteristics 𝐶𝑗 as shown in Table 4 and the reliability of each expert on specific 

criterion is given in Table 5.  
 

Table 4. Available investment strategies of each expert, 𝐸ℎ 

 

  
𝐸1 

     
𝐸2 

  

   𝐸3   

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 
 
𝐶1 𝐶2 𝐶3 𝐶4 𝐶5  𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝑠3 𝑠2 𝑠3 𝑠2 𝑠5 
 
𝑠2 𝑠5 𝑠6 𝑠5 𝑠5  𝑠1 𝑠3 𝑠5 𝑠4 𝑠5 

𝑠4 𝑠6 𝑠1 𝑠6 𝑠2 
 
𝑠6 𝑠3 𝑠1 𝑠6 𝑠4  𝑠5 𝑠5 𝑠1 𝑠6 𝑠3 

𝑠2 𝑠3 𝑠2 𝑠2 𝑠1 
 

𝑠1 𝑠5 𝑠4 𝑠3 𝑠2  𝑠4 𝑠4 𝑠3 𝑠3 𝑠2 

𝑠5 𝑠2 𝑠4 𝑠6 𝑠5 
 
𝑠5 𝑠1 𝑠3 𝑠6 𝑠5  𝑠5 𝑠1 𝑠4 𝑠6 𝑠3 

𝑠1 𝑠3 𝑠3 𝑠4 𝑠5 

 

𝑠3 𝑠3 𝑠5 𝑠5 𝑠5  𝑠4 𝑠3 𝑠4 𝑠5 𝑠4 

 
 

  𝐸4     

  
𝐸5 

  𝐶1 𝐶2 𝐶3 𝐶4 𝐶5   𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝑠1 𝑠3 𝑠5 𝑠4 𝑠4   𝑠1 𝑠2 𝑠3 𝑠2 𝑠4 

𝑠5 𝑠3 𝑠2 𝑠5 𝑠2   𝑠5 𝑠4 𝑠1 𝑠5 𝑠1 

𝑠2 𝑠2 𝑠1 𝑠4 𝑠1   𝑠2 𝑠2 𝑠1 𝑠4 𝑠3 

𝑠3 𝑠1 𝑠3 𝑠3 𝑠5   𝑠4 𝑠3 𝑠2 𝑠5 𝑠4 

𝑠2 𝑠2 𝑠3 𝑠4 𝑠5   𝑠1 𝑠2 𝑠4 𝑠2 𝑠4 



 
 
 
 
 
 

Table 5. Reliability of experts on each criterion 
  

 

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 

𝐶1 𝑠5 𝑠4 𝑠5 𝑠3 𝑠3 

𝐶2 𝑠4 𝑠5 𝑠3 𝑠4 𝑠4 

𝐶3 𝑠3 𝑠3 𝑠5 𝑠4 𝑠5 

𝐶4 𝑠4 𝑠4 𝑠5 𝑠4 𝑠3 

𝐶5 𝑠3 𝑠4 𝑠4 𝑠5 𝑠4 

 
At this stage, after transforming the preference labels and the importance labels 
into numbers in [0,1], the group aggregation based on majority concept can be 
implemented. For example, the computation for the majority aggregation of 

option 𝐴1 with respect to characteristic 𝐶1 can be shown as follows: 
 

𝐴1 = {𝐸1 = 𝑠3, 𝐸2 = 𝑠2, 𝐸3 = 𝑠1, 𝐸4 = 𝑠1, 𝐸5 = 𝑠1}, 
 

𝐴1
= {𝐿𝑎𝑏𝑒𝑙−1(ℎ𝑖𝑔ℎ), 𝐿𝑎𝑏𝑒𝑙−1(𝑚𝑒𝑑𝑖𝑢𝑚),  𝐿𝑎𝑏𝑒𝑙−1(𝑙𝑜𝑤), 𝐿𝑎𝑏𝑒𝑙−1(𝑙𝑜𝑤), 𝐿𝑎𝑏𝑒𝑙−1(𝑙𝑜𝑤)}, 
 

𝐴1 = {0.667, 0.5, 0.333,0.333, 0.333} = {(0.667,1), (0.5, 1), (0.333,3)}. 
 
Similarly, weights are transformed to the numerical values: 
 

𝑇 = {𝐸1 = 𝑠5, 𝐸2 = 𝑠4, 𝐸3 = 𝑠5, 𝐸4 = 𝑠3, 𝐸5 = 𝑠3} 
 

𝑇 = {𝐿𝑎𝑏𝑒𝑙−1(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ), 𝐿𝑎𝑏𝑒𝑙−1(ℎ𝑖𝑔ℎ), 𝐿𝑎𝑏𝑒𝑙−1(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ),
𝐿𝑎𝑏𝑒𝑙−1(𝑚𝑒𝑑𝑖𝑢𝑚), 𝐿𝑎𝑏𝑒𝑙−1(𝑚𝑒𝑑𝑖𝑢𝑚)}, 

 

then 𝑇 = {0.833, 0.667, 0.833,0.5, 0.5} and they are normalized so that the sum 

of all weights is one,  𝑇̂ = {0.25, 0.2, 0.25,0.15, 0.15}. 
 



Based on the cardinalities and the normalized degrees of importance, the CRF can 

determined and is given as 𝛿 = 0.666. Then the resulted cardinal-dependent 
weights are: 
 

𝑤1,3 = 0.155,𝑤2,3 = 0.124,𝑤3,3 = 0.720, 

and the WSAM-OWA operator on 𝐶1 yields: 

𝐹𝑊𝑆𝐴𝑀({(0.667, 1), (0.5, 1), (0.333, 3)}) = 0.406, 
 
The overall aggregated results of majority opinions based on WSAM-OWA are 
given in Table 6. 
 

Table 6. Majority opinion based on WSAM-OWA 
 

   

𝐸𝑚𝑎𝑗 
  

 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 0.406 0.466 0.722 0.545 0.779 

𝐴2 0.828 0.681 0.177 0.938 0.403 

𝐴3 0.349 0.514 0.354 0.528 0.290 

𝐴4 0.761 0.239 0.552 0.919 0.772 

𝐴5 0.391 0.430 0.623 0.664 0.779 

 
Having the decision matrix which represent the majority opinion of experts on 
each criteria, then the aggregation process to aggregate the final judgment or 
ranking of alternatives are conducted, where the weight of each criterion is 

provided as 𝑠4, 𝑠5, 𝑠5, 𝑠3, 𝑠3, for each criterion  𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5, 

respectively. For example, the computation for 𝐴1 can be given as the following: 
 

𝐼𝑛𝑢𝑚𝑒𝑟𝑖𝑐 = [𝐶1 = 𝐼4, 𝐶2 = 𝐼5, 𝐶3 = 𝐼5, 𝐶4 = 𝐼3, 𝐶5 = 𝐼3] 
 

𝐼𝑛𝑢𝑚𝑒𝑟𝑖𝑐 = {𝐿𝑎𝑏𝑒𝑙−1(ℎ𝑖𝑔ℎ), 𝐿𝑎𝑏𝑒𝑙−1(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ),  𝐿𝑎𝑏𝑒𝑙−1(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ),
𝐿𝑎𝑏𝑒𝑙−1(𝑚𝑒𝑑𝑖𝑢𝑚), 𝐿𝑎𝑏𝑒𝑙−1(𝑚𝑒𝑑𝑖𝑢𝑚)}, 

𝐼𝑛𝑢𝑚𝑒𝑟𝑖𝑐 = {𝐼4 = 0.667, 𝐼5 = 0.833, 𝐼5 = 0.833, 𝐼3 = 0.5, 𝐼3 = 0.5} 
 

The weight vector 𝑊𝑚𝑜𝑠𝑡 is then obtained by applying the Eq. (3): 𝑊𝑚𝑜𝑠𝑡 =
[0,0.2,0.3,0.5,0]. The overall aggregation process can be determined using 
classical OWA operator, Eq. (1): 
 



𝐹𝑂𝑊𝐴−𝑊𝑚𝑜𝑠𝑡(0.406, 0.466, 0.722, 0.545, 0.779) = 0.5411. 
 

Finally, the linguistic overall performance value is obtained as: 𝐿𝑎𝑏𝑒𝑙(0.5411) =
𝑠3 = 𝑚𝑒𝑑𝑖𝑢𝑚. 

 
The aggregated results for all the alternative are presented in Table 7. In addition, 
the aggregated results based on SMA-OWA and SAM-OWA are also given as to 
see the results of the majority aggregation processes without the inclusion of the 
degrees of importance. 
 

Table 7. Overall aggregated results based on SMA-OWA, SAM-OWA and 
WSAM-OWA 

 

 SMA-
OWA 

Rank SAM-
OWA 

Ran
k 

WSAM-
OWA 

Rank 

A1 S3, 
0.5372 

4 S3, 
0.5544 

4 S3, 0.5411 3 

A2 S4, 
0.5738 

2 S4, 
0.6034 

2 S3, 0.5619 2 

A3 S2, 
0.3557 

5 S2, 
0.3975 

5 S2, 0.3842 5 

A4 S4, 
0.6837 

1 S4, 
0.6646 

1 S4, 0.6391 1 

A5 S3, 
0.5708 

3 S3, 
0.5672 

3 S3, 0.5069 4 

 

In the case where only “most” of the experts are needed for the overall decision, 
then, the individual fusion strategy or the group fusion strategy can be 
implemented as given in the Table 8 and Table 9. Note that, the results of the 
individual fusion strategy are derived based on QWSAM-IOWA operator, while 
the group fusion strategy is mainly based on QWSAM-OWA. 
 

Table 8. Majority opinion and overall aggregated results based on QWSAM-
IOWA 

 

   

𝐸𝑚𝑎𝑗 
  

 Overall 

Aggregation 

 

 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5  Ranking 

𝐴1 0.3384 0.4566 0.7523 0.5762 0.8273  𝑆3, 0.5102 2 



𝐴2 0.8384 0.5991 0.1667 0.9935 0.3990  𝑆3, 0.4526 4 

𝐴3 0.3435 0.4324 0.2756 0.6214 0.2952  𝑆2, 0.3243 5 

𝐴4 0.8283 0.1770 0.6261 0.9952 0.8289  𝑆4, 0.5969 1 

𝐴5 0.2955 0.4928 0.6261 0.7881 0.8273  𝑆3, 0.4672 3 

 
 
 

Table 9. Majority opinion and overall aggregated results based on QWSAM-
OWA 

 

   

𝐸𝑚𝑎𝑗 
  

 Overall 

Aggregation 

 

 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5  Ranking 

𝐴1 0.4510 0.5056 0.7470 0.5774 0.7688  𝑆3, 0.5458 1 

𝐴2 0.8282 0.7160 0.2011 0.9287 0.4166  𝑆3, 0.5232 3 

𝐴3 0.3639 0.5494 0.3931 0.5115 0.3089  𝑆2, 0.3971 5 

𝐴4 0.7157 0.2843 0.5299 0.8553 0.7248  𝑆3, 0.5365 2 

𝐴5 0.4176 0.4238 0.6422 0.6339 0.7668  𝑆3, 0.5072 4 

 
  
7. Conclusion 
 
In this paper, the aggregation operators based on the majority concept are 
discussed, specifically, the majority additive-OWA, the selective MA-OWA and 
the selective aggregated majority-OWA operators. Those aggregation operators 
are applicable only in the case of homogeneous GDM problems. The weighted 
SAM-OWA (WSAM-OWA) operator then is proposed as the extension of the 
SAM-OWA to deal with heterogeneous GDM problems. In particular, it is 
formulated with the inclusion of the reliability of information sources. By 
integrating with the linguistic quantifiers, the WSAM-OWA is extended to the 
quantified WSAM-OWA operator, mainly for the group fusion strategy. 
Moreover, the QWSAM-IOWA operator is introduced for the individual fusion 
strategy. The similarity between experts’ opinions as order inducing variables is 
included to present the majority under the semantics given for the linguistic 
quantifier. The multi-criteria GDM model under the linguistic domain then is 
developed where the proposed aggregation operators can be implemented as the 
group aggregator and the weighted OWA operator is applied to derive the final 
ranking of alternatives. The selection of investment problem is provided to 
demonstrate the applicability of the developed model. In general, the proposed 



model has offered greater flexibility in analyzing the decision alternatives with a 
tolerance in the aggregation processes. 
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