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1. ABSTRACT 54 

Plastic scintillation foils of polystyrene and polycarbonate with a thickness between 45 and 200 µm, 55 

have been produced using the solvent evaporation method. PSfoils presented a reproducible 56 

thickness (10-20%). PSfoils were characterized by the measurement of 36Cl or 241Am. For 36Cl 57 

spectrum is located at medium energies since not all energy is deposited in the scintillator and not 58 

all betas interact with the foils. For 241Am the efficiency values are very high and spectrum is a 59 

sharp peak located at high energies. 222Rn absorption (LD and K) and desorption capacities of the 60 

PSfoils have been also evaluated.  61 

 62 

2. INTRODUCTION 63 

There is general concern about radioactivity widespread as a consequence of different nuclear 64 

activities. Those activities are mainly related to energy production, research, medical applications 65 

and waste management. The variety of scenarios in which radioactivity can be generated or released 66 

has led to this heightened concern and consequently to an increase in the analysis required to 67 

monitor its distribution. Therefore, there is also a demand for simpler, quicker and cheaper 68 

analytical protocols that can determine alpha and beta radiation under field conditions. Such 69 

protocols have to overcome, at least partially, the limitations that are imposed when samples have to 70 

be transported to the laboratory and subjected to the successive steps involved in dissolution, 71 

separation and measurement. Those steps introduce an important delay between sampling and the 72 

relevant information becoming available, and require significant amounts of resources in terms of 73 

human labour, reagents and dealing with the waste produced [1]. 74 

 Plastic scintillators (PS) are a good option to explore in this situation because they are solids and 75 

sensitive to alpha and beta emissions. The use of PS as a tool for the measurement of radioactive 76 

particles was discovered in the 1950s [2, 3], at the same time as that of other types of organic 77 

scintillators [4]. Since then, many studies have been performed with the aim of increasing our 78 
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understanding of their interaction with the different radioactive particles (gamma rays, x rays, beta 79 

particles, alpha particles, neutrinos, etc.), as well as to define their scintillation mechanism and to 80 

develop applications based on them [5, 6]. PS have several advantages over other means of 81 

detection of radioactivity: they are cheap, they can be prepared in different shapes and sizes, and 82 

they have low toxicity. Several research activities are currently in progress focused on the 83 

preparation of new formulations of PS that are tailor made for different applications [7]. These new 84 

formulations are oriented towards the production of innovative PS shapes, the use of novel 85 

monomers and the inclusion of additives to enhance the detection of particles or improve the 86 

scintillation signals obtained. The new scintillators are designed for applications such as the 87 

detection of neutrons [8] or dosimetry [9, 10], and to be used as veto detectors for cosmic and 88 

gamma rays, in the analysis of alpha- and beta-emitting radionuclides [11][12][13], or in 89 

scintillation proximity assay [14], among other practices.  90 

One of the shapes that PS can be prepared as is foils: sheets just a few tens or hundreds of 91 

micrometres thick (PSfoils). This form is especially convenient to detect alpha- and beta-emitting 92 

radionuclides because, in spite of the minimal amount of PS involved, the nature of such particles 93 

produces an efficient interaction. This format constitutes an interesting approach to overcome the 94 

limitations mentioned above associated with the analysis of alpha and beta radionuclides in the 95 

laboratory by alpha spectrometry and liquid scintillation, respectively [15]. Moreover, PSfoils 96 

represent a new tool that can be used in the design of analysis protocols that are capable of fast 97 

and/or field determinations of alpha and beta emitters.  98 

Preparation of PS in the form of foils is described in the bibliography, through polymerization, by 99 

cutting thin slices off a block of PS and by solvent evaporation [16][17]. Previous work of ours with 100 

PS microspheres [18] suggests that solvent evaporation is a simple and cheap method to prepare PS 101 

materials that could be used in the preparation of PSfoils. Thus, PSfoils could then be used directly 102 

or as a platform for selective strategies, such as those employing PSresins [19], to produce selective 103 

scintillating dipsticks, for fast analysis of liquid solutions; or as scintillating wipes, for screening 104 

analysis of solid contaminated surfaces [20]. Another interesting potential application of  PSfoils is 105 

related to the determination of 222Rn in field or laboratory conditions by using  polycarbonate or 106 

polystyrene. The usage of polycarbonate foils as 222Rn samplers combined with liquid scintillation 107 

counting  is shown to be very useful for 222Rn measurements [21]. There is, however, significant 108 

potential for improvement of the usage of polymer materials for 222Rn measurements, namely in 109 

creating scintillating polymers which absorb and concentrate 222Rn from the environment. Such 110 

studies have been performed previously with PS in format of microspheres with promising results, 111 

which are not totally understood [22]. 112 

The objective of the current research is therefore to establish a synthesis procedure for PSfoils and 113 

to evaluate the influence of each variable on their morphology and capacity to detect alpha- and 114 

beta-emitting radionuclides. The variables considered are related to the composition and conditions 115 

of synthesis when the solvent evaporation method is applied. 116 

 117 
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3. EXPERIMENTAL 118 

 119 

3.1. Reagents and materials 120 

Polystyrene (PS_SA) (molecular weight: 260,000 g mol-1) was purchased from Acros Organics 121 

(Geel, Belgium). Makrofol DE polycarbonate (PC_MAKD) was obtained from Bayer AG 122 

(Leverkusen, Germany). 2’5-Diphenyloxazol (PPO) (scintillation quality), dichloromethane, 123 

toluene and ethyl acetate (liquid chromatography solvent, 99.9% purity) were purchased from 124 

Merck (Darmstadt, Germany). 2’6-Diisopropylnaphthalene (DIN) (synthesis quality) was supplied 125 

by TCI (Zwijndrecht, Belgium). 1’4-Bis-(5-phenyloxazol-2-yl) benzene (POPOP) (scintillation 126 

quality) was supplied by the Montedison Group, Chimica Division (Milan, Italy).  127 

A toluene-based home-made liquid scintillation (LS) cocktail was used for the measurement of the 128 
222Rn activity absorbed in the foils. The composition of the cocktail is: 10 g of PPO, 1 g of Bis-129 

MSB in 1 L of toluene. All components are from SigmaAldrich, scintillation grade. 130 

The stock solutions used were: 36Cl active stock solution of 0.571(7) kBq g-1, which was prepared 131 

from a standard that contained 38.40(48) kBq g-1 of 36Cl (from CERCA/LEA (Pierrelate cedex, 132 

France)) in a water solution at a concentration of 65 µg L-1 of NaCl; and 241Am solution (Am3+) of 133 

185(2) Bq g-1 prepared from a standard of 924(9) kBq g-1 supplied by GE-Healthcare-Amersham 134 

International (Buckinghamshire, England) in 0.5 M HCl and deionized water. 135 

3.2. Equipment 136 

The radioactive samples were determined using a 1220 QUANTULUS liquid scintillation 137 

spectrometer (Perkin Elmer, Whaltman, USA) equipped with logarithmic amplification, a 138 

multichannel analyser (4096 channels distributed between four segments of 1024 channels each), 139 

pulse shape discrimination and background reduction through an active guard detector.  140 

Scanning electron microscopy (SEM) images were obtained using a “JSM-7100F Field Emission” 141 

scanning electron microscope at the Scientific and Technological Centres of the University of 142 

Barcelona (CCiTUB). The samples were anchored using double-sided adhesive tape and coated with 143 

carbon using a sputter coater. 144 

The measurements of 222Rn absorbed in the PSfoils were performed with a Rackbeta1219 LS 145 

spectrometer (Wallac, Finland). The measurements of the reference radon-in-air concentrations 146 

during the exposure of the PSfoils are performed with an AlphaGuard RnTn Pro radon monitor 147 

(Saphymo, Germany).   148 

An FT-IR Nicolet IN10 MX (Thermo Fisher Scientific, Waltham, MA, USA) at the CCiTUB was 149 

used for the infrared spectroscopy mapping measurements. The spectrum range available with this 150 

equipment is 4000-715 cm-1 with a spectral resolution of 4 cm-1. An area of 2.5 mm was mapped with 151 

a sampling rate of 25 micrometres per second. The OMNIC Picta software (Thermo Scientific, 152 

Waltman, MA, USA) was used to treat the spectra and generate the images.  153 
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The PSfoil thickness was determined with an MDC-25SX micrometer (Mitutoyo, Kanagawa, Japan) 154 

 155 

3.3. Procedures 156 

3.3.1. Preparation of PSfoils 157 

PSfoils were prepared using the solvent evaporation method. A solution composed of a certain 158 

amount of the polymer, diisopropylnaphthalene (20% m/m of the polymer), PPO (2% m/m of the 159 

polymer), and POPOP (0.05% m/m of the polymer) in an organic solvent was poured into a glass 160 

Petri dish of 12 cm diameter containing 9 pieces of glass (5 cm in length, 0.52 cm in width and 0.18 161 

cm in height). Once the solvent evaporated, the PSfoils deposited on the surface of the pieces of 162 

glass were recovered using water.  163 

Five different types of PSfoils were prepared: only polystyrene (100/0 PS/PC), only polycarbonate 164 

(0/100 PS/PC) and mixtures of polystyrene and polycarbonate (75/25 PS/PC, 50/50 PS/PC and 165 

25/75 PS/PC). In all cases proportions of polystyrene and polycarbonate are in mass. 166 

Three different solvents were used: dichloromethane, ethyl acetate and toluene.  167 

Five different concentrations (m/m %) of polystyrene in dichloromethane were tested: 1.5%, 2.25%, 168 

3%, 3.75% and 4.45%. 169 

The effect of the amount of polymer solution poured into the Petri dish was also tested. The 170 

amounts studied were: 30 g, 34 g, 40 g, 45 g, 50 g and 60 g.   171 

Three replicate procedures were performed for each set of preparation conditions (i.e., a maximum 172 

of 27 PSfoils, 3 Petri dishes and 9 glass pieces in each Petri dish, were obtained).   173 

3.3.2. Radiometric Characterization 174 

Samples for radiometric characterization were prepared by adding 10 microlitres of the corresponding 175 

radioactive solution at three equidistant positions on the surface of the PSfoil. The solution was added 176 

with the help of a 100 microlitre micropipette and the PSfoil was weighed before and after the addition 177 

of the 30 microlitres of radioactive solution to determine the exact amount added. After addition of 178 

the solution, the PSfoils were dried in an oven at 40ºC overnight to ensure evaporation of the solution. 179 

Finally, each PSfoil was placed in a 20 mL polyethylene vial (from PerkinElmer, Waltham, MA, 180 

USA) and measured. The activity added to the PSfoils was around 15 Bq for 36Cl and 11 Bq for 241Am.  181 

Five samples were prepared for each radionuclide, 36Cl and 241Am, and type of PSfoil. Three of the 182 

samples were prepared using PSfoils from the same Petri dish and two more were prepared using one 183 

PSfoil from each of the other two Petri dishes. Three blank samples were also prepared for each type 184 

of PSfoil, each one from a different Petri dish, containing double-deionized water instead of the 185 

radioactive solution.  186 

Each sample was analyzed in the Quantulus detector for 10 min in the pulse shape analysis (PSA) 187 

configuration using the ‘low’ coincident-bias option, and at PSA values of: 1, 30, 60, 90, 120, 150 188 
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and 180. PSA is a parameter of the Quantulus detector that can vary from 1 to 250 (at unity 189 

intervals). The user defines the PSA value before counting and then the alpha/beta discrimination is 190 

performed through the comparison between this value and the ratio between the total area of the 191 

pulse to the area of the tail of the pulse. Shorter events are classified as beta (in the first half of the 192 

first MCA) and longer ones as alpha (in the second half of the first MCA). As a result, two spectra 193 

(i.e., a beta spectrum and an alpha spectrum) are obtained. In addition, the spectrum produced by 194 

the Compton electrons produced by the external standard gamma source (152Eu) was obtained after 195 

10 min of measuring when PSA was 1. In all cases, the measurement vials were stored in the dark 196 

for at least 2 h before counting.  197 

From the results obtained, three parameters were calculated: the detection efficiency; the quenching 198 

parameter, SQP(E); and misclassification. Detection efficiency corresponds to the mean value of the 199 

ratio between the net count rate measured at each PSA and the activity added to the PSfoil. SQP(E) 200 

was calculated by the detector and corresponds to the end-point channel that limits 99.75% of the 201 

total counts of the spectrum generated when the sample is irradiated by the external gamma-ray 202 

source: 152Eu. Misclassification corresponds to the percentage of pulses not correctly classified as 203 

beta for 36Cl and alpha for 241Am. In the case of beta-emitting radionuclides (i.e. 36Cl), it is 204 

calculated as the ratio between the net count rate in the alpha spectrum and sum of net count rate in 205 

the beta and the alpha spectra; whereas for alpha-emitting radionuclides (i.e. 241Am), it is calculated 206 

as the ratio between the net count rate in the beta spectrum and sum of net count rate in the beta and 207 

the alpha spectra.  208 

3.3.3 Radon absorption characterization  209 

The radon (222Rn) absorption in thin polymer foils can be described by the one-dimensional diffusion 210 

equation, taking into account the radioactive decay [23]: 211 
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where V and L are the volume and the thickness of the foil, 
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exposure was to constant radon activity concentration then AV0 is the 222Rn activity concentration in 219 

the air and  λ* = 0. If the foil was exposed to  222Rn concentration decaying with the radon half-life 220 

then  AV0 is the 222Rn activity concentration in the beginning of the exposure and λ* = λ. The 221 
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partition coefficienf K (or solubility) in Eq.  (2)  is defined as the ratio of the inside to the outside  222 
222Rn concentration at the surface of the polymer [23] : 223 

out

in

c

c
K =         (3) 224 

The diffusion length LD gives the mean distance travelled by the 222Rn atoms in the material before 225 

their decay. It is defined as [23]:     226 

λ
D

LD =         (4) 227 

The diffusion length (LD) and the partition coefficient (K) are the two physical parameters which fully 228 

characterize the radon absorption properties of a given polymer foil. That is why we have performed 229 

dedicated experiments in order to determine the LD and K of the newly synthesized   PSfoils.  The LD 230 

and K determination was performed according to the methodology described in [23].  This 231 

methodology requires exposure of the PSfoils to known radon activity concentration and follow up 232 

of the activity in the foils during desorption in radon-free air. An advantageous feature of the 233 

experiments performed in this work is the usage of  LS counting together with dissolution of the foils 234 

in the LS cocktail in order to determine the 222Rn activity in each foil. This type of measurement 235 

allows precise timing (the end of the desorption is the moment when a foil is placed in the cocktail) 236 

and accurate determination of the 222Rn activity in the vials (see [21] for details).   237 

The experimental procedure is as follows: a set containing several same PSfoils of each kind was 238 

exposed to reference  222Rn-in-air concentration for ts=95.72h. During the exposure, the 222Rn 239 

activity in the air decreased with the 222Rn half-life. The initial 222Rn activity in the air was  AV0= 240 

1.604(87) MBq/m3 and was measured with reference radon monitor AlphaGuard 2000 RnTnPro. 241 

After the exposure the foils are left to desorb in radon-free air and periodically in different moments 242 

a foil is placed in high performance glass vials, fully filled with home-made toluene-based LS 243 

cocktail. The vial is closed tightly and shaken by hand for few minutes while the foil is dissolved in 244 

the cocktail. The samples were measured on the RackBeta 1219 LS spectrometer 5 hours after their 245 

closing, in order to achieve secular equilibrium between 222Rn and its short-lived progeny. The LD 246 

and K are then determined from the desorption curves according to the methodology described in 247 

[23].  248 

4. RESULTS 249 

The results presented in this section show the influence of polymer composition, the amount of 250 

polymer and the solvent on the morphology and radiometric capacities of PSfoils obtained by the 251 

solvent evaporation method. 252 

4.1. Influence of synthesis conditions on PSfoil morphology 253 

 254 

4.1.1. Effect of composition: transparency and porosity 255 
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PSfoils with five different polystyrene/polycarbonate compositions (100/0; 75/25; 50/50; 25/75 and 256 

0/100 w/w %) were prepared using the evaporation/deposition method. The PSfoils made of 257 

polystyrene (100/0 w/w %) were always transparent with no visual differences between the side of 258 

the foils in contact with the air and the side in contact with the glass (Figure 1). In contrast, the 259 

PSfoils composed of polycarbonate (0/100 w/w %), or mixtures of polystyrene and polycarbonate, 260 

were opaque to a greater or lesser degree, but still there was no visual difference between the side of 261 

the foil in contact with the air and the side in contact with the glass. 262 

SEM images obtained (Figure 1) show that only the 100/0 PS/PC PSfoil presents a smooth surface 263 

on the side of the PSfoil that was in contact with the air. All the other foils present cavities to a 264 

greater (75/25 proportion) or lesser extent (50/50 proportion).  In all cases, the side of the PSfoils 265 

which was in contact with the glass pieces had a smooth surface, although some holes and small 266 

pores are observed in the 75/25 and 0/100 proportion PSfoils.  267 

It can be concluded that opacity or transparency is related to the presence of pores in the surface of 268 

the PSfoils. The formation of pores can be attributed to the condensation of microdrops of water 269 

during evaporation of the solvent and to the immiscibility of the components. When the solvent is 270 

evaporated, there is a reduction of the temperature at the liquid/air interface that can cause the 271 

condensation of water vapour in the form of very small droplets. When the polymer is still soft the 272 

presence of such microdrops may modify the final structure of the solid surface. This behaviour is 273 

enhanced by ambient humidity and also by the polarity of the polymer, as in the case of 274 

polycarbonate. In the case of pure polystyrene, pores are only formed under conditions of very high 275 

humidity.  276 

Regarding the effect of polymer immiscibility, Figure 2 shows the infrared mapping of the PSfoils 277 

containing 50/50 % w/w proportions of polystyrene and polycarbonate, at two characteristic bands: 278 

1425-1475 cm-1 for polystyrene (caused by the aromatic C-C bonds stretching vibration); and 1740-279 

1800 cm-1 for polycarbonate (caused by the C=O stretching vibration). It can be observed that the 280 

PSfoils are in fact a heterogeneous mixture of the two polymers, where polystyrene is in the form of 281 

spherical agglomerations. The modification of the PS/PC proportion led to different equilibrium 282 

states, which probably also affect the formation of different sized pores in the surface of the foil.   283 

4.1.2.  Effect of the amount of polymer: thickness 284 

The thickness of the foils can be modified either by increasing the amount of solution added to the 285 

Petri dish or by increasing the concentration of polymer in the solution. 286 

 PSfoils formed by deposition of 30 to 60 g of the polymer solution were prepared for the five 287 

different polymer compositions. The values of thickness obtained are presented in Figure 3.It can be 288 

seen how the thickness of the PSfoil increases with the amount of polymer solution and also 289 

depends on the composition of the foil. Pure PSfoils are the thinnest; whereas mixtures are thicker. 290 

This could be attributed to the porous surface of the PSfoils made from a mixture of polymers. 291 
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Regarding the variability it varies between 0 and 20%, it does not depend on the polymer 292 

composition and decreases when the amount of solution increases (from 19% to 13%).  293 

The effect of polymer concentration was evaluated for polystyrene PSfoils(Table 1). The thickness 294 

increases with the increase in the concentration of polymer, and PSfoils between 40 and 100 µm 295 

thick can be produced successfully. With regard to the thickness variability, it decreases with 296 

increasing concentration of polymer solution (lower than 10%  for PSfoils of 100 µm).  297 

Our results demonstrate that control of the PSfoil thickness between 50 and 100 µm can be 298 

achieved through the amount of polymer solution deposited.  299 

4.1.3. Effect of solvent: density (packaging) 300 

Three solvents with different polarities and boiling points were used to prepare the polymer 301 

solutions: dichloromethane (boiling point: 39.6 ºC; logP: 1.5), ethyl acetate (boiling point: 77.1 ºC; 302 

logP: 0.7) and toluene (boiling point: 110.6 ºC; logP: 2.7). Comparison was restricted to polystyrene 303 

PSfoils, since the polycarbonate Markrofol D was not soluble in ethyl acetate.  304 

The PSfoils made in toluene were thin; whereas those with ethyl acetate were the thickest (Table 2). 305 

In spite of the uncertainty associated with determination of thickness, the differences between 306 

toluene and the other two solvents are significant. Observation of the PSfoil surfaces via SEM does 307 

not reveal significant differences between the foils, which are smooth in all cases. Since the PSfoils 308 

were prepared by adding the same amount of polymer, we can conclude that the solvent has an 309 

effect on the polymer packing during the formation of the polymer and thus the resultant polymers 310 

present different densities.  311 

4.2. Influence of synthesis conditions on the radiometric capacities of PSfoils. 312 

 313 

A beta emitter (36Cl) and an alpha emitter (241Am) were used to perform the radiometric 314 

characterization of the PSfoils.. The influence of the synthesis conditions is discussed in terms of 315 

their effects on spectra and detection efficiencies.  316 

 317 

4.2.1. Effect of composition. 318 

Figure 4 shows the spectra obtained when 36Cl and 241Am were measured with the PSfoils made of 319 

polystyrene, polycarbonate and mixtures of the two. PSfoils made of polystyrene present a peak at 320 

the 700-800 channels in the case of 241Am and a band with the maximum at channel 400 in the case 321 

of 36Cl. When the amount of polycarbonate was increased, the maximum of the 36Cl band shifted to 322 

channel 300, and a second peak appeared at lower energies (the 600-700 channels) in the case of 323 
241Am. From these results, we can conclude that polycarbonate is a worse scintillating polymer than 324 

polystyrene, probably due to the chemical quenching caused by the ester moiety of the former 325 

structure.  326 
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Moreover, the different behaviour observed for 241Am and 36Cl also confirms the heterogeneity of 327 

the foils in terms of composition. On one hand, the beta particles from 36Cl with a range greater than 328 

the thickness of the foil, interact with both the polystyrene and polycarbonate irrespective where the 329 

disintegration takes place. Therefore, all the beta particles emitted by 36Cl interact with polystyrene 330 

and polycarbonate, and the spectrum moves to lower energies as the amount of polycarbonate 331 

increases.  332 

On the other hand, the alpha particles from 241Am, with a range of around 40 micrometres, mostly 333 

interact with the polymer in the surroundings of where the particle is emitted. As consequence, 334 

alpha particles can interact with polystyrene or polycarbonate or both, resulting in two peaks: one 335 

for each polymer, and a band that links the two signals as a consequence of the intermediate 336 

situations. The intensity of each peak depends, in this case, on the polymer proportions.  337 

Apart from the peaks at high energies, there are also bands at low energies in both cases. For 36Cl, 338 

the band at low energies (100-250 channels) could be attributed to those beta particles that have 339 

interact very little with the polymer, due to their angle of emission and to the Cerenkov radiation 340 

from those beta particles emitted in the opposite direction to that of the polymer. In the case of 341 
241Am, several factors can cause the bands at 100-200 and 300-400 channels: gamma rays that are 342 

detected when alpha particles are not detected; air luminescence caused by alpha particles; and 343 

scintillation of the walls of the polyethylene vials. 344 

Regarding the detection efficiencies (Table 3), unlike the behaviour observed in the spectra, there is 345 

no clear correlation between detection efficiency and the proportion of polycarbonate. This could be 346 

attributed to the fact that both radionuclides are energetic enough to produce a signal in all 347 

circumstances but also to variability on sample preparation, which could also contribute to this lack 348 

of trend. In this scenario, all 36Cl values seem equivalent, around 70%, which corresponds to the 349 

sum of the scintillating signal of beta particles emitted in the direction of the foil and the Cerenkov 350 

signals from those emitted in the opposite direction. The only slightly lower value is that for 100% 351 

polystyrene, which corresponds to the only PSfoil that is smooth with less room from active 352 

residue. 241Am detection efficiencies were higher, probably because to the alpha particles detected 353 

by scintillation we have to add the gamma radiation detected in non-coincidence, the scintillation by 354 

the polyethylene walls and air luminescence.  355 

 356 

4.2.2. Effect of the amount of polymer. 357 

Figure 5 shows the spectra obtained when PSfoils of different thickness are used in the 358 

measurement of alpha- and beta-emitting radionuclides. It can be seen that for 36Cl measurements, 359 

the increase on the thickness causes a shift of the spectrum to higher energies, since more 360 

scintillating material interacts with the beta particles emitted by 36Cl, which were capable of 361 

crossing all the PSfoils. This behaviour was not observed for 241Am, since the alpha particles 362 

emitted in the direction of the foil were almost all stopped in the PSfoils and only slight broadening 363 

of the spectrum is observed for the three thinnest PSfoils. The values of detection efficiency (Table 364 
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4) do not follow any tendency and the differences observed can be attributed to the variability in 365 

sample preparation and measurement. 366 

4.2.3. Effect of the solvent 367 

The last variable we evaluated was the solvent used for the preparation of the foils. The 36Cl spectra 368 

follow the same tendency as that shown previously, with a shift of the spectra to lower energies 369 

correlated with the decrease in thickness. In the case of 241Am, again it is observed that the thinnest 370 

PSfoils (i.e. toluene) present a broader peak than the thicker ones (i.e. ethyl acetate). Regarding the 371 

detection efficiency values, these are of the same order as those obtained previously: 50%-65% for 372 
36Cl and around 90% for 241Am, with no significant differences between solvents. Taking into 373 

account that some of the solvents can cause quenching, these results suggest that the solvents are 374 

effectively removed during the evaporation process.  375 

4.3. Sandwich PSfoil configuration 376 

The measurements reported so far correspond to the use of a single PSfoil, and this configuration 377 

leads to a certain proportion of the beta or alpha particles emitted not interacting with the 378 

scintillator. In order to overcome this drawback, we tested a new configuration consisting of two 379 

PSfoils, coupled face to face, with the radionuclide in between (sandwich). To assure that the 380 

PSfoils were firmly attached, hot air was applied to the sandwich until a compact foil was obtained.  381 

Figure 6 shows the spectra of the coupled PSfoils, compared to those obtained using only one foil. 382 

It can be seen that in the case of 36Cl, the band at low energies generated by the Cerenkov emission 383 

disappears and the spectrum moves to higher energies, since more photons are detected for each 384 

disintegration. In the case of 241Am, the situation is similar and the peaks at low energies disappear; 385 

furthermore, all the signals appear at higher energies in a single peak. In a similar fashion, the 386 

detection efficiency increases in both cases to values close to 100%, 95(4) for 36Cl and 100(5) for 387 
241Am, which indicates that all the particles interact with the PSfoils and are detected.  388 

4.4. Potential applications. 389 

PSfoils have been developed as a new tool for use in analytical protocols that require fewer 390 

resources and could be applied under field conditions. Two potential applications are: the analysis 391 

of contaminated surfaces and the detection of 222Rn. 392 

4.4.1.  Analysis of contaminated surfaces 393 

One of the potential uses of PSfoils is as technique for the direct analysis of solid surfaces 394 

contaminated with radionuclides. In this scenario, the capacity to discriminate between alpha- and 395 

beta-emitting radionuclides is of paramount importance to define a simple and economic screening 396 

methodology or to take advantage of the very low background of the alpha spectrum. Figure 7 397 

shows the alpha/beta misclassification obtained using one PSfoil and coupled PSfoils.  398 
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It can be seen that the misclassification of beta particles is slightly greater when coupled foils are 399 

used, this is probably because the pulses are longer in time since more photons are produced. 400 

However, misclassification of alpha particles is greatly reduced when two foils are used, probably 401 

because all the low-energy signals that were previously classified as beta are more energetic in this 402 

configuration and their pulse shows a longer duration. Therefore, the crossing point of the alpha and 403 

beta misclassification curves shifts from 50 to 100 PSA units; and misclassification was reduced 404 

from 35% to 15%, which is a value similar to that found in liquid scintillation. This 405 

misclassification rate could also be improved to values lower than 5% if a proper selection of the 406 

regions of interest is performed.  407 

4.4.2. 222Rn determination 408 

The determined partition coefficients (K) and diffusion lengths (LD) for PS foils of different PS/PC 409 

compositions are shown in Tables 5 and 6, respectively. The results in Table 5 show that there is no 410 

significant difference between the partition coefficients of PS foils made of 100% polystyrene and 411 

100% polycarbonate. If we compare the partition coefficient for PS foils made of 100% Makrofol DE 412 

polycarbonate  determined in this work K=11.7(28)  to the partition coefficient of Makrofol DE 413 

polycarbonate grains of which the foils were produced K=26.2(25) [21], we observe more than two 414 

times difference. This implies that the partition coefficient depends not only on the material content, 415 

but also on the way the polymer was produced. This result is similar to what was obtained previously 416 

with plastic scintillating microspheres (PSm) [22] and implies that the way of production of the 417 

polymer is of paramount importance for the partition coefficient. The results for the partition 418 

coefficient of foils with mixed polystyrene/polycarbonate content seem to be lower than the others, 419 

but, as noted above, these have bubbles in their volume and these bubbles may cause bias in the 420 

determined K values.   421 

The inhomogeneity of the foils with mixed PS/PC content prevented us from determining the 222Rn 422 

diffusion lengths in them. Strictly speaking, in the determination of LD by the solution of the diffusion 423 

equation (Eq. 2) it is assumed that the material of the slab is homogeneous. This is clearly violated in 424 

the case of the foils with mixed content (see Figure 2) and consequently Eq. 2 cannot be applied in 425 

this case. Thus, the LD is determined only for the PS foils made of 100%  PS or 100% PC. The 426 

corresponding values are: LD=259(61) µm for 100% polystyrene foils and : LD=51(17) µm for 100% 427 

polycarbonate foils.  The diffusion length of the PC foil determined here 51(17) µm   is the same 428 

(within the estimated uncertainties) with the one determined previously for Makrofol DE 429 

polycrabonates  52.1(10) µm [21]. This implies that the diffusion length LD (and respectively the 430 

diffusion coefficient, D) depends mainly on the material content and is much less dependent on the 431 

way of production of the polymer, compared to the solubility K.  432 

The PSfoils synthesized in this work provide some advantageous features for 222Rn measurements. 433 

The small thickness (of the order of few tens micrometers) combined with the different diffusion 434 

lengths of the foils according to their material (PS or PC), result in very different time responses to 435 

the changes in the ambient 222Rn concentrations.  Thus it is possible to develop PS foils with pre-436 
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defined (or required) time response. To illustrate this functionality, Figure 8 shows the dynamics of 437 
222Rn sorption and desorption in polystyrene and polycarbonate PSfoils with dimensions 5cm x 0.5 438 

cm x 70 µm, when these are exposed to constant 222Rn-in-air  concentration (1 Bq/m3) and 439 

afterwards left to desorb in radon-free air. The absorbed activity is calculated from Eq. 2 using the 440 

K and LD values from Tables 5 and 6.  Figure 8 shows that the PSfoils made of PS have much faster 441 

response to the change of the external 222Rn concentration compared to the PC foils. The 442 

polystyrene foils need approximately 4h to equilibrate with the ambient 222Rn concentration, while 443 

the PC foils need more than 100h. The desorption is also very different. The polystyrene foils 444 

release the 222Rn absorbed in them for about 2.5 h, while the PC foils need about 100 h to desorb. It 445 

is evident that the PSfoils of polystyrene provide very fast time response, while the polycarbonate 446 

foils provide slow response and these differences are due to the different 222Rn diffusion lengths in 447 

the foils.     448 

 449 

5. CONCLUSIONS 450 

Here we have successfully developed a method to produce PSfoils based on solvent evaporation of 451 

a solution of a polymer over glass pieces. The method provides PSfoils of thickness between 40 and 452 

120 micrometres, depending on the following preparation parameters: amount of polymer solution 453 

and polymer concentration. The variability in the thickness is around 20% for the thinnest and just 454 

10% for the thickest.  455 

We prepared PSfoils of polystyrene, polycarbonate and mixtures of the two. Polystyrene PSfoils 456 

present a smooth surface, whereas PSfoils containing polycarbonate present pores in the surface. 457 

Polystyrene and polycarbonate are not miscible and when the solvent is removed, the polymers 458 

become separated in the final solid material.  459 

From the point of view of radioactivity measurements, polycarbonate and polystyrene present 460 

different scintillation properties and signals due to polycarbonate producing less energy due to a 461 

quenching effect caused by the ester functional group of its structure.  462 

 463 

For beta emitters, the signals registered (around 60% of the disintegrations) are a sum of the 464 

scintillating signals of the particles emitted in the direction of the foil and the Cerenkov signals of 465 

the particles emitted in the other directions. For alpha emitters, the signals registered (around 85%) 466 

are a sum of the scintillating signals of those alpha and gamma particles emitted in the direction of 467 

the foil, together with the air luminescence and wall scintillation signals of the particles emitted in 468 

the other directions.  469 

 470 

When the alpha and the beta particles are placed between coupled foils (in a sandwich 471 

configuration) almost all the particles are detected and in all cases due to a scintillation process with 472 

the foils. This leads to a simplification of the spectra shape and an improvement in the alpha/beta 473 

discrimination capacities of the scintillators which is then comparable to that of liquid scintillators.  474 
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 475 

The study of the 222Rn absorption properties of the developed PSfoils shows that they all concentrate 476 
222Rn from the air at their surface, as for all cases K>1. It appears that the 222Rn solubility (K) in the 477 

material of the foils does not depend too much on their composition (PS/PC content) and rather 478 

depends on the way of production of the foils. The diffusion length LD depends strongly on the 479 

material composition of the foils and is around 5 times higher for the polystyrene foils compared to 480 

the polycarbonate ones.  The PSfoils can be used for 222Rn measurements and provide an interesting 481 

functionality – based on their material composition and thickness their timing response to the change 482 

of the ambient 222Rn concentration  can be tuned – from very fast response (2-3 hours) to  a very slow 483 

response (2-3 days).  484 

 485 
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8. FIGURE CAPTIONS 547 

Figure 1: Example of PSfoils we prepared and SEM images of the PSfoils made of 100/0, 50/50 548 

and 0/100 polystyrene and polycarbonate proportions. Side in contact with the air. 549 

Figure 2: IR mapping of PSfoils made of 50/50 polystyrene/polycarbonate. Optical image and 550 

characteristic polystyrene (1425-1475 cm-1) and polycarbonate (1740-1800 cm-1) bands. 551 

Figure 3: Thickness of the PSfoils prepared with variable amounts of polymer solution in 552 

dichloromethane. The polymer solutions contain different proportions of polystyrene and 553 

polycarbonate as indicated. 554 

Figure 4: 36Cl and 241Am normalized detection efficiency spectra for PSfoils made of different 555 

proportions of polystyrene and polycarbonate (50 g of polymer solution in dichloromethane) 556 

Figure 5: 36Cl and 241Am normalized detection efficiency spectra of the PSfoils made using 557 

different concentrations of polymer solution in dichloromethane (40 g of polymer solution 100/0 558 

polystyrene/polycarbonate) 559 

Figure 6: 36Cl and 241Am normalized count rate spectra for one PSfoil and two PSfoils stuck 560 

together (50 g of 100/01 polystyrene/polycarbonate solution in dichloromethane) 561 

Figure 7: Pulse shape discrimination of 36Cl and 241Am with one PSfoil and two PSfoils stuck 562 

together (50 g of 100/01 polystyrene/polycarbonate solution in dichloromethane) 563 

Figure 8: Dynamics of the 222Rn sorption and desorption processes in 70 µm thick PSfoils made of 564 

PS_SA polystyrene (a) and PC_MAKD polycarbonate (b).   565 
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