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Deciphering the evolution of 
Deception Island’s magmatic 
system
A. Geyer  1, A. M. Álvarez-Valero  2, G. Gisbert3, M. Aulinas4, D. Hernández-Barreña2, 
A. Lobo1 & J. Marti  1

Deception Island (South Shetland Islands) is one of the most active volcanoes in Antarctica, with more 
than 20 explosive eruptive events registered over the past two centuries. Recent eruptions (1967, 1969, 
and 1970) and the volcanic unrest episodes that happened in 1992, 1999, and 2014–2015 demonstrate 
that the occurrence of future volcanic activity is a valid and pressing concern for scientists, technical and 
logistic personnel, and tourists, that are visiting or working on or near the island. We present a unifying 
evolutionary model of the magmatic system beneath Deception Island by integrating new petrologic 
and geochemical results with an exhaustive database of previous studies in the region. Our results 
reveal the existence of a complex plumbing system composed of several shallow magma chambers 
(≤10 km depth) fed by magmas raised directly from the mantle, or from a magma accumulation zone 
located at the crust-mantle boundary (15–20 km depth). Understanding the current state of the island’s 
magmatic system, and its potential evolution in the future, is fundamental to increase the effectiveness 
of interpreting monitoring data during volcanic unrest periods and hence, for future eruption 
forecasting.

Deception Island (DI), discovered in 1820, is amongst the most active volcanoes in Antarctica with a record of 
over 20 explosive eruptions in the last two centuries1–3. Located in the South Shetland Islands at the spreading 
centre of the Bransfield Strait marginal basin (Fig. 1a), the island currently hosts two scientific stations operating 
yearly during the austral summer season and is one of the most popular touristic destinations in Antarctica with 
over 15,000 visitors per year (IAATO, International Association of Antarctica Tour Operators, 2018).

Deception Island’s historic volcanic events, generally small in volume (e.g., < 0.1 km3), have been concen-
trated in periods of great activity (e.g., 1906–1912, 1818–1828), followed by decades of dormancy (e.g., 1912–
1967)3. However, the usual presence of DI tephras in distal (> 500 km distance) marine sediments4 and ice cores5,6 
hints that several past eruptions may have been significantly larger and more violent (VEI > 4–5). The recorded 
historical volcanic activity, the recently experienced eruptions (1967, 1969, and 1970) and the unrest episodes 
happened in 1992, 19997, and 2014–20158 categorise DI as a very active volcano. Therefore, the occurrence of 
future volcanic activity would become a serious cause for concern for scientists (see for instance the destruction 
of the recent Chilean and British scientific bases), technical and logistic personnel, and tourists, staying on the 
island or nearby.

To a much greater extent, results of numerical simulations using meteorological and atmospheric transport 
models estimate that volcanic ash emitted by even a moderate eruption occurring today in DI could potentially 
encircle the southern hemisphere, leading to significant economic losses and consequences for global aviation 
safety9. Indeed, results obtained indicate that the volcanic ash clouds could reach up to tropical latitudes, such 
as the Atlantic coast of South America, South Africa and/or Oceania. In general, the highest ash concentrations 
in the atmosphere (> 100 g /m2) would be mainly found over the Atlantic Ocean, the Scotia and the Weddell 
seas during the first 48 h after the eruption start9. However, a residual small amount of ash (0.1–1 g /m2) may 
potentially remain in the atmosphere up to over a week after the eruption onset. Ash concentrations above the 
flight safety thresholds (0.2–2 mg /m3) may be observed over South Africa and, in some cases, also over southern 
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Australia or even over austral Patagonia, affecting international and domestic flying routes, in addition to flights 
connecting Africa with South America and Australia9.

Important efforts have been made to understand the magmatic and volcanic evolution of DI, the nature of 
the underlying magmatic sources, and their relation to the geodynamic setting (e.g.,3,10–27). However, a detailed 
evolutionary model of the island’s magma plumbing system has never been provided. As a consequence, even if 
an eruption on DI is certain to occur in the near future, the timescale and characteristics of that volcanic activity 

Figure 1. (a) Simplified regional tectonic map and location of the South Shetland Islands (modified from Marti 
et al.36). HFZ Hero Fracture Zone, SFZ Shetland Fracture Zone. (b) Deception Island orthophotomap (data 
obtained from Spatial Data Infrastructure for Deception Island SIMAC, Torrecillas et al.81) where active and 
destroyed scientific stations, post-caldera volcanic craters (orange lines) and the sites of the most recent volcanic 
eruptions (colored stars) are indicated. BAD Argentinian Base “Decepción”; BEGC Spanish Base “Gabriel 
de Castilla”; BS British Base (destroyed); CS Chilean Base (destroyed). This figure was generated with QGIS 
software version 2.18 Las Palmas (available at: www.qgis.org). Final layout was obtained with Adobe Illustrator 
CC 2015.3.1 (Copyright © 1987–2016 Adobe Systems Incorporated and its licensors).

http://www.qgis.org
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still remain unclear3. During volcanic unrest periods, this lack of knowledge considerably diminishes the effec-
tiveness of interpreting recorded monitoring data. This reduces the capacity of envisaging the potential outcome 
scenarios, which may also include new eruptions.

In this paper, we propose a new and all-encompassing evolutionary model of DI’s magmatic system following 
an interdisciplinary approach that combines petrological and geochemical data (Supplementary Materials 1–6) 
with geophysical observations (Supplementary Material 7), detailed Pressure-Temperature (P-T) estimates, and 
fractional crystallization modelling (Supplementary Material 8). For this purpose, we have created a comprehen-
sive geochemical database of DI’s rock samples including new analytical results (Supplementary Material 1) and 
an exhaustive review of published data (e.g.,3,13–15,27–30) (Supplementary Materials 2 and 3). Finally, we assessed 
the major element concentrations through Linear Discriminant Analysis (LDA)31,32 to gain extra support for the 
proposed model (Supplementary Material 8). The conclusions are crucial to comprehending the past, present, 
and future states of the magmatic system of DI, as well as post-caldera activity of other restless volcanic caldera 
systems with similar characteristics. This will significantly improve the capacity for decoding monitoring data 
recorded during a volcanic crisis and hence, will serve to inform future eruption forecasts.

Deception Island: Geological overview
DI is a composite volcano with a basal diameter of 30 km and rising 1,400 m from the seafloor to a maximum 
height of 540 m above sea level33. The emerged part of the volcano leads to a horseshoe-shaped 15-km-diameter 
island, whose central part is occupied by a sea-flooded volcanic collapse caldera (Port Foster) with dimensions of 
about 6 × 10 km, and a maximum water depth of 190 m (Fig. 1). The normal magnetic polarity of all DI’s exposed 
rocks indicates that these are younger than 0.75 Ma34, and K-Ar data35 suggest that most of the subaerial part of 
the island was built in the last 0.2 Ma. The correlation between DI’s in situ deposits and its tephra layers found 
elsewhere in the region implies that exposed rocks appear to be younger than 100 ka3,36.

DI is located near the intersection between the extension of the Hero Fracture Zone and the south-western end 
of the Bransfield Strait (BS). The latter consists of a NE–SW oriented, 500-km-long and 100-km-wide, extensional 
basin that separates the South Shetland continental microplate from the Bransfield Platform37–39 (Fig. 1a). The 
formation of the Bransfield Rift, a Late Cenozoic extensional structure (15–20 km wide)40, has been interpreted 
to be the consequence of back-arc extension linked to subduction of the Phoenix Plate beneath the Antarctic 
Plate41. Today, slab subduction is still on-going at the South Shetland trench, as indicated by seismicity42, but 
at very low velocities (estimated convergence rates range between 2.5 and 7.5 mm/a for the last 2 Ma43). This 
complex regional geodynamics, a combination of subduction and back-arc spreading processes, has conditioned 
timing and composition of magmatism in the region29,44,45 (Supplementary Material 6). Quaternary magmatism, 
strongly connected to rifting and back-arc basin formation, is mostly concentrated at Deception, Penguin, and 
Bridgeman Islands45–47.

DI’s volcanic evolution is marked by a caldera collapse, which took place between 8,300 and ∼3,980 years 
BC48,49. The pre-caldera evolutionary stage was characterized by the formation of multiple coalesced shoaling 
seamounts and a subaerial volcanic shield3 (Figs. 2a and 3). The main syn-caldera depositional unit, known as 
the Outer Coast Tuff Formation (OCTF), mainly corresponds to pyroclastic density current deposits (including 
mostly basaltic-andesitic ignimbrites and surges) that are several tens of meters thick (Fig. 3c). The morphologi-
cal features of DI (e.g., the existence of a depression in the centre of the island, the apparent circular shape of the 
caldera rim, the location of post-caldera vents along the edge of the depression, etc.) support a piston-like collapse 
model, either along ring faults or a series of regionally induced intersecting faults, following a major eruption36 
(Fig. 2b). Indeed, it has been estimated that over 60 km3 of magma erupted during the caldera event, classifying 
DI as a medium-sized caldera with similar dimensions as Krakatoa or Santorini50.

The post-caldera phase, which includes the recent historical eruptions (1829–1970), comprises at least 70 
scattered eruptive vents inside the caldera, except one located along the structural borders of the caldera itself 3,36 
(Figs. 1 and 2c). Recent post-caldera volcanic activity on DI mostly consists of small volume eruptions (e.g., <0.1 
km3)3,24,36 with variable degrees of explosivity depending on the water amount and source (i.e., aquifer, sea, ice 
melting, etc.) that interacted with the rising or erupting magma3,15,51,52.

Deception Island’s magmatic system: A unifying evolutionary model
Numerous studies have been carried out seeking full comprehension of DI’s magmatic picture (e.g.,22,24,28,53–55). 
We present the first interdisciplinary approach to outline a unifying evolutionary model of the island’s magma 
plumbing system by combining petrological, geochemical, and geophysical data.

Geochemical data show that DI’s magmas range from basaltic to trachydacitic and rhyolitic compositions 
defining a distinctive alkalinity-increasing differentiation trend produced by unusually high Na2O contents 
(between 2–8 wt.% Na2O) (Fig. 4a, Supplementary Materials 5 and 6). Compositionally, this feature forces DI 
magmas to deviate from the normal active arc andesite-rhyolite associations in the circum-Pacific areas10, rather 
having Na/K ratios similar to mid-oceanic ridge basalts3 (Supplementary Material 6). As revealed by regional 
geochemical data, DI’s magma signature indicates a mantle source similar to the one feeding the Bransfield Rift 
areas of subalkaline composition and with little subduction influence (i.e., depleted N-MORB mantle with minor 
subduction component contribution; Supplementary Material 6). Its higher alkalinity and incompatible trace 
element enrichment (i.e., higher Nb/Zr ratios) compared to those of the Bransfield Rift may suggest a lower par-
tial melting contribution (Supplementary Material 6). This in turn is consistent with the marginal location of DI 
relative to both the rift (lower extension/decompression in DI) and the subduction-dominated arc (lower water 
content in the mantle source of DI magmas).

Pre-caldera magmas are among the less evolved on DI, with compositions ranging from basaltic to 
basaltic-andesitic and basaltic-trachyandesitic (Fig. 4a, Supplementary Material 5). Pressure estimates on the 
pre-caldera samples (e.g., DI-12, DI-50) indicate that, during this stage, some of these magmas ascended directly 
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from pressures >6.5 kbar (i.e., depths ≥ 25 km, assuming an average crust density of 2650 kg/m3), which suggests 
a mantle origin (Moho depth beneath DI is between 15 and 20 km deep56). The estimated stagnation depths of 
further evolved pre-caldera magmas (between 15 and 20 km depth, P ∼ 4–5 kbar) reveal the accumulation of 
magmatic material at the crust-mantle boundary (R1, Figs. S8–2) (e.g., DI-23, DI-48), similar to other volcanic 
areas57–60.

Magmas erupted during the caldera-forming event (i.e., syn-caldera magmas, OCTF samples) group 
into (Figs. 4b,c, Supplementary Material 5 and 8): (i) a main compositional cluster that comprises most of the 
samples that deviate from the principal chemical DI trends and that corresponds to the “second magma series” 
proposed by Smellie et al.3, and ii) within the main DI geochemical trends at < 55 wt.% SiO2. Pressure estimates 
of OCTF samples reveal a syn-caldera magma provenance depth from 11 to 19 km (Fig. 5). This depth range 
correlates to the main cluster samples, whose mineral assemblage either (i) equilibrated at ∼3 kbar (e.g., DI-31, 
DI-68), or; ii) incompletely equilibrated—because of a later arrival—at ∼3.5–5 kbar (e.g., DI-35, DI-36) prior to 
eruption.

Considering this, we assert that rocks included in the main compositional cluster correspond to magmas 
stagnated in a shallow magma reservoir (R2, ∼10–11 km depth, P ∼ 3 kbar), which was directly responsible for 
the caldera-forming event. The accumulation depth of this shallower R2 reservoir was most likely promoted by 
the contact between the upper and middle crust located within the same depth range (Fig. 5, Supplementary 
Materials 7 and 8). The loading stress related to the growing basaltic shield structure may have also favored the 
ascending basaltic magmas to stop at shallower depths (e.g.,61). Comparable magma stagnation pressures have 
been estimated for other well-known volcanic calderas (e.g., Aira, Japan62).

The more basic OCTF samples falling outside the main cluster (though still along the main DI differentiation 
trend), would correspond to magmas coming from deeper sources (i.e., R1). The arrival of these hotter and more 
primitive magmas into reservoir R2 may have triggered the explosive eruption leading to the caldera formation63,64  
as already suggested by Smellie et al.3. In line with other examples of caldera-forming events, all eruptible mate-
rial would have been extruded from the magma chamber during collapse, fully or partially destroying R265–68.  
Note that under the term “eruptible magma”, we understand that magma capable of being withdrawn during an 
eruptive event including69–71: (i) crystal-poor magma (< 15% crystals), (ii) crystal-rich magma (15–45% crystals); 
and (iii) crystal mush (barely eruptible, up to 50–60% crystals).

Caldera collapse stage
Outer Coast Formation

Post-caldera stage
Various formations

Pre-caldera stage
Basaltic Shield Formation

Post-caldera deposits

Syn-caldera deposits

Pre-caldera deposits

Geology

a) b)

c)

Figure 2. Simplified sketch illustrating the different stages of Deception Island’s evolution (modified from Martí 
et al.36). This figure was generated with QGIS software version 2.18 Las Palmas (available at: www.qgis.org). Final 
layout was obtained with Adobe Illustrator CC 2015.3.1 (Copyright © 1987–2016 Adobe Systems Incorporated 
and its licensors).

http://www.qgis.org
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Magmas that erupted after the caldera collapse outline a well-defined evolutionary trend, showing the wid-
est compositional range on DI, from basalts to rhyolites. Overall, major and trace element compositions of 
post-caldera magmas define a tholeiitic trend with initial TiO2 and FeOt enrichment related to delayed Fe-Ti 
oxide crystallization and fractionation3,15.

Figure 3. (a) Simplified geological map of Deception Island (modified from Martí et al.36) and location of 
the analysed samples. Synthetic stratigraphic section of Deception Island indicating the divisions proposed 
in previous studies at the sides of the stratigraphic log (on the left). Photographic view of (c) Cathedral Crags 
(looking SE), (d) Vapour Cole (looking S) and (e) inland craters of the 1970 eruption (looking NW). Data 
obtained from Spatial Data Infrastructure for Deception Island SIMAC, Torrecillas et al.81. This figure was 
generated with QGIS software version 2.18 Las Palmas (available at: www.qgis.org). Final layout was obtained 
with Adobe Illustrator CC 2015.3.1 (Copyright © 1987–2016 Adobe Systems Incorporated and its licensors).

http://www.qgis.org
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P-T estimates of the first magmas erupted after the caldera-forming event (P > 7.5 kbar, > 28.5 km), which 
are among the most primitive analysed in this suite (Supplementary Materials 5 and 8), suggest a direct ascent 
from the mantle magma source (Fig. 5). The time span between the deposition of the syn-caldera deposits and 
the eruption of these magmas is still uncertain, hindering the full understanding of their genesis. These magmas 
could be: (i) coeval to the end of the caldera-forming event, representing either the most primitive of the deeper 
basic magmas that triggered the caldera-forming eruption, or unrelated magmas whose ascent and eruption was 
favoured by the opening and depressurization of the plumbing system during the caldera-forming event; (ii) mag-
mas emitted after a significant time, which would imply a direct magma ascent without stagnation at intermediate 

Figure 4. (a) Total Alkali vs. Silica diagram (TAS)82 for the rock samples considered in this work (see 
Supplementary Materials 1–2 for details on composition and exact latitude-longitude coordinates of the rock 
samples). Major elements normalized to 100% (anhydrous) with Fe distributed from FeO to Fe2O3 following 
Middlemost83. Grey dashed line discriminates between the alkaline and subalkaline fields84. TiO2 (b) and 
FeOt (c) vs. SiO2 content Harker Diagrams for the rock samples considered in this work. See Supplementary 
Materials 1–2 for details on composition and exact latitude-longitude coordinates of the rock samples). This 
figure was generated with RStudio Version 1.0.143 (https://www.rstudio.com/) using ggplot2 package Version 
2.1.9000 (http://www.ggplot2.org)85, a plotting system for R. Final layout of this figure was achieved using 
Adobe Illustrator CC 2015.3.1 (Copyright © 1987–2016 Adobe Systems Incorporated and its licensors).

https://www.rstudio.com/
http://www.ggplot2.org
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depths through the formation of new ascent paths outside the reservoir areas, or that ascend through inactive 
reservoirs (e.g., reservoirs that collapsed during caldera formation or were significantly solidified).

Magma compositions and P-T estimates of juvenile samples from the late post-caldera stage, including his-
torical eruptions, hint that erupted magma can be either directly supplied by the magma accumulation zone at 
the crust-mantle boundary R1 or by diverse magma batches located at distinct shallow (< 10 km) depths (R3–
R6) (Fig. 5). Pressure estimates from recent post-caldera juvenile samples from Crater Lake area (e.g., DI-1INF, 
DI-4SUP) (Fig. 3), point to the existence of a magma source located at similar depths, such as the presumably 
destroyed reservoir R2. This may indicate that, since the collapse event, new pulses of fresh magma coming from 
R1 or directly from the mantle, would have created new chambers at comparable depths (R2′).

Figure 5. Conceptual model of the magmatic system of Deception Island based on P-T estimates. See text for 
more details. CH Cross Hill eruption; KL Kroner Lake eruption; LS Lago Escondido eruption.  This figure was 
generated with Adobe Illustrator CC 2015.3.1 (Copyright © 1987–2016 Adobe Systems Incorporated and its 
licensors).
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The compositional variability of the 1967 and 1970 eruptive products, which depict approximately linear 
trends in binary diagrams, have been interpreted as related to mingling and mixing processes, as well as strat-
ification of the magma reservoir15 (named R4, Supplementary Materials 5 and 8). In contrast to the wide com-
positional range of the 1967 and 1970 eruptions feeding reservoir, some eruptive cones emitted compositionally 
very restricted magmas3,52, indicating that more homogeneous magma reservoirs are also present in the system 
(e.g., Kroner Lake eruption, reservoir R3)(Fig. 5). Additionally, glass compositions of 1970 samples (e.g., DEI-
2013-3-A1) are coherent with stagnation depths equivalent to the R1 and R2′ reservoirs (Fig. 5), suggesting that 
the latter would have fed shallower (P < 2 kbar), and likely smaller chambers responsible for the supply of the 
several recent eruptions across the island (Supplementary Materials 5 and 8). In this sense, magma stagnation in 
shallower reservoirs (P < 1 kbar) within a cooler country rock (e.g., R5 or R6) promotes faster and larger differen-
tiation, thus generating the most evolved magma compositions in the DI system (e.g., Cross Hill eruption samples 
DI-39OBS, DI-41) (Fig. 5). This might be similar to the caldera-collapse event, in which the arrival of fresh and 
hotter magma from the deeper reservoirs could have acted as an eruption trigger for the case of the recent erup-
tions (see glass mixing evidence in compositional figures of Supplementary Materials 5 and 8).

Thermodynamical modelling with rhyolite-MELTS software v.1.2.072–74, performed to test the consistency of 
trends observed in the DI suite with magma differentiation through fractional crystallization processes, has also 
provided information on the most likely H2O content, P, and fO2 conditions under which magmas evolved. Our 
thermodynamic estimates suggest that small differences in H2O content and/or fO2 conditions during the paren-
tal magma evolution are enough to account for the compositional trend difference between pre- and post-caldera 
magmas since no large major element compositional change in the parental magma is required. Our results indi-
cate that DI magmas form through fractional crystallization of basaltic melts with an initial 0.5–0.75 wt.% H2O 
under fO2 conditions of 0–1 log units above Quartz-Fayalite-Magnetite (QFM) buffer at pressures from 2 to 5 
kbar, which are in accordance with the proposed model (Supplementary Material 8). The modelled fractionating 
mineral assemblage consists of: (i) Cpx, Pl, and Spl for the first part of the differentiation trend (from 52.3 to 55.8 
wt.% SiO2), and (ii) Cpx, Pl, rhombohedral oxides, Spl, and late Apt and Ol (Fa) for the second part of the differ-
entiation trend (55.8–66.6 wt.% SiO2).

Finally, Linear Discriminant Analysis (LDA)31,32 results present evidence for the general consistency of the 
proposed model of magma reservoirs in terms of major element geochemistry (Fig. 6). All suggested reservoirs 
with the exception of R3 have distinct major element compositions and are ordinated from Mantle to R6 along the 
major LD axis. R5 samples have the most distinct composition, with sample DI-24 (R6) being closer, yet clearly 
unclustered. This provides solid evidence for the actual existence of the proposed R6 reservoir.

The compositional similarity (in major element geochemistry) between R3 (i.e., the Kroner Lake eruption) 
and R4 (i.e., the 1967 and 1970 eruptions) is highlighted by the LDA results. Samples initially assumed to belong 
to R3 are actually classified as either R2′ (presumably, the reservoir that feeds R3 and R4) or R4, and most of them 
are intermediate between the core of the R4 and R2′ groups. The wide compositional ranges of the 1967 and 1970 
eruptive materials (all assigned to R4), which are interpreted as related to magma mingling and mixing, and to 
reservoir stratification15 (Supplementary Material 5), when compared to the compositional homogeneity of the 
R3 samples, allows assuming the existence of at least two distinct reservoirs at similar depths.

Discussion: Implications for volcano monitoring and volcanic hazard assessment
Our new evolutionary model for DI’s plumbing system is key to improve—and correlate—the interpretation 
of current geophysical data, such as monitoring signals recorded during volcanic crises. At DI, the geophysical 
anomalies of physical properties observed between 2 and up to 6–10 km depth (e.g., low resistivity values75, strong 
seismic velocity variations53,54, a very low density anomaly in both magnetic and gravity anomaly maps76) have 
been traditionally interpreted as evidence for the presence of partially melted rock/material beneath the island 
(e.g.,53–55,75,76) (Supplementary Material 7). Our results strengthen this idea and corroborate that magmas feeding 
DI post-caldera eruptions, including historic events, are raised mainly from an ~2–10 km depth range. We also 
confirm that erupted magmas did not belong to a single magma batch as had been previously suggested (e.g.,53,54), 
but instead to a complex network of individual, potentially interconnected, shallow reservoirs of variable size, 
volume and composition (R2′–R6). Magmas feeding the shallowest part of DI’s plumbing system (Fig. 5) would 
ascend directly from the mantle or the magma stored at the crust-mantle boundary (i.e., 15–20 km depth; R1). 
The described geochemical data and P-T estimates indicating the existence of melted material accumulated at the 
Moho discontinuity is in agreement with the low P-wave velocities registered in the upper mantle beneath DI, 
which are already interpreted as being due to the presence of partially melted material at depth56.

At DI, the lack of information regarding residence times of post-caldera magmas hinders a proper assessment 
of the time elapsed between the reservoir’s formation and its complete cooling, i.e., crystallization. As a conse-
quence, estimating the average lifetime of the individual shallow chambers (R2′–R6) as a source of eruptible 
magma remains an important challenge. This is crucial to accurately understand and evaluate: (i) what geophysi-
cal methods today can image beneath the island, and (ii) the volume of eruptible magma under DI. Accordingly, 
the island’s eruptive potential in the near future is difficult to assess. For this purpose, and to seek a first order 
approximation of the potential average lifetime of the individual reservoirs that feed post-caldera eruptions, we 
have conducted magma chamber cooling models, which solve the heat transfer equation using the Finite Element 
(FE) method (Supplementary Material 9). For the sake of simplicity, we only consider heat transfer by conduction 
and discard episodes of magma chamber replenishment77,78. Since internal convection and injections of fresh and 
hotter magmas tend to delay any magma cooling process, the present numerical simulations provide a minimum 
estimate of the required crystallization times77,78.

Our results highlight the reservoir’s geometry, volume (V), and depth as the primary factors, which control 
the timing of the cooling process; shallow, small and sill-shaped magma pockets being the fastest to cool down 
(e.g.,77,78, Supplementary Material 9). A sill-shaped chamber of similar size to the volume of material emitted 
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during the last DI eruption in 197051 (i.e., V = 0.1 km3) located at 2 kbar pressure (i.e., similar to R3 reservoir 
stagnation pressure) would have hosted crystal-poor eruptible magma (i.e., magma crystal content < 15%) for at 
least 50 years, fully crystallizing only after a few hundred years (Fig. 7a). However, a nearly spherical reservoir of 
the same size and at identical depth, would contain potentially eruptible magma (i.e., crystal content < 45%) dur-
ing several hundred years (Fig. 7b), similar to a sill-like reservoir of a much larger volume (V = 1 km3) (Fig. 7c). 
Smaller intrusions (V = 0.01 km3) are capable of retaining some eruptible magma for only few years if no further 
injections of fresh (and hotter) material take place (Fig. 7d). This time range can be extended for up to a few tens 
of years if the reservoir’s geometry is close to spheroidal (Supplementary Material 9).

Considering the depth estimated for R2 (~ 10–11 km), the caldera diameter (~ 6 × 10 km) and the general 
assumption that collapse calderas tend to be similar in diameter to the magma chambers responsible for the 
caldera-forming eruption (e.g.,79), we obtain a roof aspect ratio R (R = magma chamber depth/magma chamber 
diameter) for DI’s caldera in the range of 1.1–1.7. In this case, results of analogue experiments indicate that, at 
least, 40 to 55% (depending on R) of the magma contained in the chamber needs to be withdrawn to induce the 
caldera collapse80. If the ∼ 60 km3 of erupted magma estimated for the OCTF36 can be assumed to correspond 
to between 60–100% of the initial magma volume contained in R2 before the caldera-forming eruption, this 
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reservoir may have still hosted up to ∼ 40 km3 of (non-eruptible) magma after the caldera collapse. Such an 
amount of material, with a crystal content between 60% and 100%, would take tens of thousands of years to cool 
and fully crystallize (Supplementary Material 9).

Our results lead us to interpret that the magma imaged by geophysical studies54,75 beneath DI corresponds to a 
combination of: (i) non-eruptible magma residues of the reservoir responsible for the caldera-forming event; (ii) 
magma remnants stagnated in chambers that developed during the post-caldera stage; and (iii) possible magma 
batches newly intruded in the last decades as suggested by the monitoring data recorded during the volcanic 
unrest episodes that happened in 1992, 1999, and 2014–2015 (e.g.,7,8,39). Indeed, magma plumbing systems of 
similar configuration have been described for other calderas worldwide such as Santorini (Greece)68. In these 

Figure 7. Crystal content (%) along a horizontal profile A-A′ for those models considering a magma reservoir 
of V = 0.01, 0.1, or 1 km3, R = 0.8 or 0.1, and located at different stagnation pressures P = 2 kbar. Distance 
r along the profile is normalized to the magma chamber width w, i.e., r/w = 1 corresponding to the contact 
between the magma chamber center and the host rock. This figure was generated with RStudio Version 1.0.143 
(https://www.rstudio.com/) using ggplot2 package Version 2.1.9000 (http://www.ggplot2.org)85, a plotting 
system for R. Final layout of this figure was achieved using Adobe Illustrator CC 2015.3.1 (Copyright © 1987–
2016 Adobe Systems Incorporated and its licensors).
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cases, shallow post-collapse dyke-fed intrusions may form laccoliths, sills, or small reservoirs, for which emplace-
ment may drive variable amounts of reactivation of regional/local faults or caldera collapse-controlling faults 
(e.g. Kumano caldera, Japan)68. All this considered, we do not rule out the potential presence of a geothermal 
system as already suggested by other authors (e.g.,36), which may also contribute to some present-day geophysical 
observations up to 6 km depth.

The total amount of eruptible material beneath DI is difficult to assess due to the incapability of present 
geophysical techniques to identify individual magma batches but rather, only the whole picture of the island’s 
plumbing system. The shallow reservoirs formed after the caldera’s collapse, particularly those feeding the historic 
eruptions (i.e., 1820 onwards), can still host amounts of eruptible magma depending on their original size and 
geometry (Fig. 7). This implies that fresh and hotter magmas intruding into one of the existing chambers could 
easily trigger a new eruption without the requisite of creating a new magma reservoir. Hence, an eruption occur-
ring in the future at DI may exceed the small-magma volumes of the eruptive events experienced in historical 
times. This highlights the necessity to perform more detailed geophysical studies on the island and its surround-
ings in order to improve the volcanic hazard assessment. In addition, it is important to remark that not only 
H2O as the main volatile, but also CO2 endowment of the magma could be a controlling factor of the past (hence 
future) volcanic eruption’s style and that future work should be carried out to better define the volatile budget of 
emitted magmas. Our conclusions reinforce the perception of DI as a very active and candidate volcano for a new 
eruption in the near future.

Methodology
Geochemistry. Geochemical data were collected from our own analytical results (Supplementary 
Material 9), published research works and the GEOROC database (Geochemistry of Rocks of the Oceans and 
Continents, http://georoc.mpch-mainz.gwdg.de/georoc/) (Supplementary Materials 2 and 3). The first data cor-
respond to a total of 71 rock samples (Fig. 3) of different natures (incl. pyroclasts, lava flows, etc.) collected 
during two Antarctic campaigns carried out in the austral summers of 2010–2011 and 2012–2013 as part of 
the RECALDEC and PEVOLDEC projects, respectively. Major and trace elements were analysed by X-Ray 
Fluorescence (XRF) and Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) in the GeoAnalytical Lab of 
at Washington State University (WSU). Additionally, major elements of mineral phases and the groundmass were 
analysed with an Electron Microprobe (EMP) at the Scientific and Technological Centre of Barcelona University 
(CCiTUB). Sr isotopic ratios were measured on twelve selected samples (Supplementary Material 1) using an 
IsotopX Phoenix Thermal Ionization Mass Spectrometer (TIMS) at the Centro de Geocronología y Geoquímica 
Isotópica, Universidad Complutense de Madrid, Spain). Analytical techniques and data processing are detailed 
in Supplementary Materials 5 and 6.

Pressure-Temperature (P-T) estimates. They were calculated using (i) X-Ray Fluorescence (XRF) and 
Electron Microprobe (EMP) data from our own samples (Supplementary Material 1) and (ii) rhyolite-MELTS 
software v.1.2.072–74 to analyse the thermodynamic database(http://melts.ofm-research.org/). The latter accounts 
for the phases and residual glass(es) involved in equilibrium crystallization during magma cooling. The range of 
water content we applied to the input compositions varies from 0.1 to 2%. Further methodological details on P-T 
condition estimates can be found in Supplementary Material 5.

Linear Discriminant Analysis. LDA is a supervised classification method that uses expert-defined groups 
(i.e., the magmatic sources defined in this study: M, R1–R6) in a sub-set of cases (“training subset”) to calculate 
a linear transformation of the descriptors in order to maximize discrimination among groups. This transform is 
subsequently applied to all data, which are then classified into the groups. As a machine-learning method, LDA 
is very sensitive to the correctness and typicality of group adscriptions in the training phase and we have used 
this characteristic to check the consistency of our conceptual grouping. A first run of LDA can be used to point 
out incorrectly ascribed or atypical samples within their respective groups. Once user-defined adscriptions in the 
training set are certain, LDA can be used to assess whether the grouping defined by the training set is consistent 
in terms of the descriptor variables for the rest of the samples. Further methodological details on the performed 
LDA can be found in Supplementary Material 8.

Fractional crystallization models. Modelling with rhyolite-MELTS software v.1.2.072–74 was performed to 
test the consistency of DI’s compositional trends for magma differentiation through the fractional crystallization 
processes. Differentiation by fractional crystallization of starting compositions in the mafic (e.g., B.751.5a from 
Smellie et al.3) and intermediate (e.g., DI-4SUP) compositional areas of the studied magmas was modelled. This 
was done for different ranges of initial H2O content (0–1.25 wt.%), pressures (1–5 kbar), and both fO2 condi-
tions—0 to 2 fixed log units above the Quartz-Fayalite-Magnetite (QFM) buffer). Modelling was performed with 
fO2 conditions both fixed and free relative to the QFM buffer during calculations. Starting compositions, which 
were consistent with all major elements (no outlier positions for any element) were chosen among those in the 
mafic and intermediate areas within the differentiation trends. Further methodological details on the performed 
fractional crystallization models can be found in Supplementary Material 8.

Magma chamber cooling models. The internal temperature distribution of the magma chamber is cal-
culated using the Finite Element (FE) method, by solving the heat transfer equation by conduction, assuming as 
negligible the effect of viscous heating and pressure-volume work. The geometric modelling, mesh discretization 
and numerical computations were carried out with COMSOL Multiphysics v5.2a software package (http://www.
comsol.com). The performed FE models are axisymmetric and were constructed over a cylindrical coordinate 
system with positive z values related to altitudes above sea level. The magma chamber geometry is oblate in 
shape with height h and width w. The selected starting magmatic compositions for the numerical simulations 
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correspond to the sample DI-4SUP). The melt (θ) and solid (φ) fractions, as well as the thermal properties of the 
crystallizing magmas, are determined using the rhyolite-MELTS software v.1.2.072–74. Further methodological 
details on the performed magma chamber cooling models can be found in Supplementary Material 8.

References
 1. Orheim, O. A 200-year record of glacier mass balance at Deception Island, southwest Atlantic Ocean, and its bearing on models of 

global climate change. 118 pp. (Institute of PolarStudies, Ohio State University, 1972).
 2. Roobol, M. J. The volcanic hazard at Deception Island, South Shetland Islands. British Antarctic Survey Bulletin 51, 237–245 (1982).
 3. Smellie, J. L. et al. Geology and geomorphology of Deception Island. BAS GEOMAP Series, Sheets 6-A and 6-B, 1:25 000,78pp. with 

accompanying maps, (British Antarctic Survey, Cambridge, 2002).
 4. Delmas, R. J., Kirchner, S., Palais, J. M. & Petit, J.-R. 1000 years of explosive volcanism recorded at the South Pole. Tellus B 44, 

335–350, https://doi.org/10.1034/j.1600-0889.1992.00011.x (1992).
 5. Moreton, S. G. & Smellie, J. L. Identification and correlation of distal tephra layers in deep-sea sediment cores, Scotia Sea, Antarctica. 

Annals of Glaciology 27, 285–289, https://doi.org/10.3189/1998AoG27-1-285-289 (1998).
 6. Fretzdorff, S. & Smellie, J. L. Electron microprobe characterization of ash layers in sediments from the central Bransfield basin 

(Antarctic Peninsula): evidence for at least two volcanic sources. Antarctic Science 14, 412–421, https://doi.org/10.1017/
S0954102002000214 (2002).

 7. Ibáñez, J. M., Almendros, J., Carmona, E., Martínez-Arévalo, C. & Abril, M. The recent seismo-volcanic activity at Deception Island 
volcano. Deep Sea Research Part II: Topical Studies in Oceanography 50, 1611–1629, https://doi.org/10.1016/S0967-0645(03)00082-1 
(2003).

 8. Almendros, J., Carmona, E., Jiménez, V., Díaz‐Moreno, A. & Lorenzo, F. Volcano‐Tectonic Activity at Deception Island Volcano 
Following a Seismic Swarm in the Bransfield Rift (2014–2015). Geophysical Research Letters 45, 4788–4798, https://doi.
org/10.1029/2018GL077490 (2018).

 9. Geyer, A., Marti, A., Giralt, S. & Folch, A. Potential ash impact from Antarctic volcanoes: Insights from Deception Island’s most 
recent eruption. Scientific Reports 7, 16534, https://doi.org/10.1038/s41598-017-16630-9 (2017).

 10. Hawkes, D. D. The geology of the South Shetland Islands: II. The geology and petrology of Deception Island. Falkland Islands 
Dependencies Survey Scientific Reports 27, 43 (1961).

 11. Baker, P. E., Davies, T. G. & Roobol, M. J. Volcanic activity at Deception Island in 1967 and 1969. Nature 224, 553–560, https://doi.
org/10.1038/224553a0 (1969).

 12. Baker, P. E. Investigations of the 1967 and 1969 volcanic eruptions on Deception Island, South Shetland Islands. Polar Record 14, 
823–827, https://doi.org/10.1017/S003224740006544X (1969).

 13. Baker, P. E. & McReath, I. 1970 Volcanic Eruption at Deception Island. Nature physical science 231, 5–9, https://doi.org/10.1038/
physci231005a0 (1971).

 14. González-Ferrán, O., Munizaga, F. & Moreno, R. H. 1970 eruption at Deception island: distribution and chemical features of ejected 
materials. Antarctic Journal of the United States 6, 87–89 (1971).

 15. Baker, P. E., McReath, I., Harvey, M. R., Roobol, M. J. & Davies, T. G. The geology of the south Shetland islands: Volcanic evolution 
of Deception island. British Antarctic Survey Scientific Reports 78, 81 pp. (1975).

 16. Roobol, M. J. A model for the eruptive mechanism of Deception Island from 1820 to 1970. British Antarctic Survey Bulletin 49, 
137–156 (1980).

 17. Smellie, J. L., Pankhurst, R. J., Thomson, M. R. A. & Davies, R. E. S. The geology of the south Shetland Islands: VI.stratigraphy,geochemistry 
and evolution. British Antarctic Survey Scientific reports 87, 2–83 (1984).

 18. Smellie, J. L. Recent observations on the volcanic history of Deception Island, South Shetland Islands. British Antarctic Survey 
Bulletin 81, 83–85 (1988).

 19. Marti, J. & Baraldo, A. Pre-caldera pyroclastic deposits of Deception Island (South Shetland Islands). Antarctic Science 2, 345–352, 
https://doi.org/10.1017/S0954102090000475 (1990).

 20. Birkenmajer, K. Volcanic succession at Deception Island, West Antarctica: a revised lithostratigraphic standard. Studia Geologica 
Polonica 101, 27–82 (1992).

 21. Smellie, J. L., Hofstetter, A. & Troll, G. Fluorine and boron geochemistry of an ensialic marginal basin volcano: Deception Island, 
Bransfield Strait, Antarctica. Journal of Volcanology and Geothermal Research 49, 255–267, https://doi.org/10.1016/0377-
0273(92)90017-8 (1992).

 22. Marti, J., Vila, J. & Rey, J. Deception Island (Bransfield Strait, Antarctica): An example of a volcanic caldera developed by extensional 
tectonics. Geological Society Special Publication 110, 253–265, https://doi.org/10.1144/GSL.SP.1996.110.01.20 (1996).

 23. Baraldo, A. & Rinaldi, C. A. Stratigraphy and structure of Deception Island, South Shetland Islands, Antarctica. Journal of South 
American Earth Sciences 13, 785–796, https://doi.org/10.1016/S0895-9811(00)00060-2 (2000).

 24. Smellie, J. L. Lithostratigraphy and volcanic evolution of deception island, South Shetland Islands. Antarctic Science 13, 188–209, 
https://doi.org/10.1017/S0954102001000281 (2001).

 25. Agusto, M., Caselli, A. T. & Poma, S. U. Estudio volcanológico del sector occidental de la Isla Decepción (Antártida): caracterización 
geoquímica y análisis evolutivo. Revista de la Asociación Geológica Argentina 62, 530–544 (2007).

 26. Ferreira, P. et al. Island arc-magmatism fingerprint in the geochemistry of tephras from Deception Island, Antarctica. Comunicações 
Geológicas 101, 99–104 (2014).

 27. Galé, C. et al. Vulcanismo cuaternario de la Isla Decepción (Antártida): una signatura relacionada con la subducción de la Fosa de 
las Shetland del Sur en el dominio de tras-arco de la Cuenca de Bransfield. Boletín Geológico y Minero 125, 31–52 (2014).

 28. De Rosa, R., Mazzuoli, R., Omarini, R. H., Ventura, G. & Viramonte, J. A Volcanological Model for the Historical Eruptions at 
Deception Island (Bransfield Strait, Antarctica). Terra Antarctica 2, 95–101 (1995).

 29. Kraus, S., Kurbatov, A. & Yates, M. Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes. Andean 
Geology 40, 1–40, https://doi.org/10.5027/andgeoV40n1-a01 (2013).

 30. Aparicio, A., Menegatti, N., Petrinovic, I., Risso, C. & Viramonte, J. G. El volcanismo de Isla Decepción (Península Antártida). 
Boletin Geológico y Minero 108, 235–258 (1997).

 31. James, G., Witten, D., Hastie, T. & Tibshirani., R. An Introduction to Statistical Learning with Applications in R. Springer Texts in 
Statistics,426 pp., (Springer-Verlag New York, 2013).

 32. Reimann, C., Filzmoser, P., Garrett, R. G. & Dutter, R. Statistical Data Analysis Explained: Applied Environmental Statistics with R. 
Statistical Data Analysis Explained, 343 pp., (John Wiley & Sons, Ltd, 2008).

 33. Luzón, F., Almendros, J. & García-Jerez, A. Shallow structure of Deception Island, Antarctica, from correlations of ambient seismic 
noise on a set of dense seismic arrays. Geophysical Journal International 185, 737–748, https://doi.org/10.1111/j.1365-246X.2011.04962.x 
(2011).

 34. Valencio, A., Mendía, E. & Vilas, J. Palaeomagnetism and K-Ar age of Mesozoic and Cenozoic igneous rocks from Antarctica. Earth 
and Planetary Science Letters 45, 61–68, https://doi.org/10.1016/0012-821X(79)90107-9 (1979).

 35. Keller, R. A., Fisk, M. R., White, W. M. & Birkenmajer, K. Isotopic and trace element constraints on mixing and melting models of 
marginal basin volcanism, Bransfield Strait, Antarctica. Earth and Planetary Science Letters 111, 287–303, https://doi.
org/10.1016/0012-821X(92)90185-X (1992).

http://dx.doi.org/10.1034/j.1600-0889.1992.00011.x
http://dx.doi.org/10.3189/1998AoG27-1-285-289
http://dx.doi.org/10.1017/S0954102002000214
http://dx.doi.org/10.1017/S0954102002000214
http://dx.doi.org/10.1016/S0967-0645(03)00082-1
http://dx.doi.org/10.1029/2018GL077490
http://dx.doi.org/10.1029/2018GL077490
http://dx.doi.org/10.1038/s41598-017-16630-9
http://dx.doi.org/10.1038/224553a0
http://dx.doi.org/10.1038/224553a0
http://dx.doi.org/10.1017/S003224740006544X
http://dx.doi.org/10.1038/physci231005a0
http://dx.doi.org/10.1038/physci231005a0
http://dx.doi.org/10.1017/S0954102090000475
http://dx.doi.org/10.1016/0377-0273(92)90017-8
http://dx.doi.org/10.1016/0377-0273(92)90017-8
http://dx.doi.org/10.1144/GSL.SP.1996.110.01.20
http://dx.doi.org/10.1016/S0895-9811(00)00060-2
http://dx.doi.org/10.1017/S0954102001000281
http://dx.doi.org/10.5027/andgeoV40n1-a01
http://dx.doi.org/10.1111/j.1365-246X.2011.04962.x
http://dx.doi.org/10.1016/0012-821X(79)90107-9
http://dx.doi.org/10.1016/0012-821X(92)90185-X
http://dx.doi.org/10.1016/0012-821X(92)90185-X


www.nature.com/scientificreports/

13Scientific RepoRtS |           (2019) 9:373  | DOI:10.1038/s41598-018-36188-4

 36. Martí, J., Geyer, A. & Aguirre-Diaz, G. Origin and evolution of the Deception Island caldera (South Shetland Islands, Antarctica). 
Bulletin of Volcanology 75, 1–18, https://doi.org/10.1007/s00445-013-0732-3 (2013).

 37. Grad, M., Guterch, A. & Sroda, P. Upper crustal structure of Deception Island area, Bransfield Strait, West Antarctica. Antarctic 
Science 4, 469–476, https://doi.org/10.1017/S0954102092000683 (1992).

 38. Catalán, M. et al. Initial stages of oceanic spreading in the Bransfield Rift from magnetic and gravity data analysis. Tectonophysics 
585, 102–112, https://doi.org/10.1016/j.tecto.2012.09.016 (2013).

 39. Catalán, M., Martos, Y. M., Galindo-Zaldívar, J. & Funaki, M. Monitoring the evolution of Deception Island volcano from magnetic 
anomaly data (South Shetland Islands, Antarctica). Global and Planetary Change 123(Part B), 199–212, https://doi.org/10.1016/j.
gloplacha.2014.07.018 (2014).

 40. Birkenmajer, K. Evolution of the Bransfield Basin and rift, West Antarctica, in Recent Progress in Antarctic Earth Sciences (eds 
Yoshida, Y. Kaminuma, K. & Shiraishi, K.) 405–410 (Terra Scientific Publishing Company, 1992).

 41. González-Ferrán, O. Volcanic and tectonic evolution of the northern Antarctic Peninsula -Late Cenozoic to Recent. Tectonophysics 
114, 389–409, https://doi.org/10.1016/0040-1951(85)90023-X (1985).

 42. Robertson Maurice, S. D., Wiens, D. A., Shore, P. J., Vera, E. & Dorman, L. M. Seismicity and tectonics of the South Shetland Islands 
and Bransfield Strait from a regional broadband seismograph deployment. Journal of Geophysical Research: Solid Earth 108, 2461, 
https://doi.org/10.1029/2003JB002416 (2003).

 43. Henriet, J. P., Meissner, R., Miller, H. & The Grape, T. Active margin processes along the Antarctic Peninsula. Tectonophysics 201, 
229–253, https://doi.org/10.1016/0040-1951(92)90235-X (1992).

 44. Košler, J. et al. Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic 
Peninsula) and implications for back-arc magma formation. Chemical Geology 258, 207–218, https://doi.org/10.1016/j.
chemgeo.2008.10.006 (2009).

 45. Haase, K. M., Beier, C., Fretzdorff, S., Smellie, J. L. & Garbe-Schönberg, D. Magmatic evolution of the South Shetland Islands, 
Antarctica, and implications for continental crust formation. Contributions to Mineralogy and Petrology 163, 1103–1119, https://doi.
org/10.1007/s00410-012-0719-7 (2012).

 46. Birkenmajer, K., Soliani, E. & Kawashita, K. Reliability of potassium-argon dating of Cretaceous-Tertiary island-arc volcanic suites 
of King George Island, South Shetland Islands (West Antarctica). Zentralblatt fur Geologie und Palaöntologie 1, 127–140 (1990).

 47. Hole, M. J., Saunders, A. D., Rogers, G. & Sykes, M. A. The relationship between alkaline magmatism, lithospheric extension and 
slab window formation along continental destructive plate margins. Geological Society, London, Special Publications81, 265-285, 
https://doi.org/10.1144/gsl.sp.1994.081.01.15 (1994).

 48. Oliva-Urcia, B. et al. Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the 
interpretation of the volcanic evolution using a geomagnetic model. Int J Earth Sci (Geol Rundsch), 1-18, https://doi.org/10.1007/
s00531-015-1254-3 (2015).

 49. Antoniades, D. et al. The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica, Scientific Reports, 
8(1), 17279, https://doi.org/10.1038/s41598-018-35460-x (2018).

 50. Geyer, A. & Martí, J. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera 
processes. Journal of Volcanology and Geothermal Research 175, 334–354, https://doi.org/10.1016/j.jvolgeores.2008.03.017 (2008).

 51. Pedrazzi, D., Aguirre-Díaz, G., Bartolini, S., Martí, J. & Geyer, A. The 1970 eruption on Deception Island (Antarctica): eruptive 
dynamics and implications for volcanic hazards. Journal of the Geological Society 171, 765–778, https://doi.org/10.1144/jgs2014-015 
(2014).

 52. Pedrazzi, D. et al. Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards. Bulletin of 
Volcanology 80, 11, https://doi.org/10.1007/s00445-017-1186-9 (2018).

 53. Zandomeneghi, D. et al. Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic 
implications. Journal of Geophysical Research 114, B06310, https://doi.org/10.1029/2008jb006119 (2009).

 54. Ben-Zvi, T. et al. The P-wave velocity structure of Deception Island, Antarctica, from two-dimensional seismic tomography. Journal 
of Volcanology and Geothermal Research 180, 67–80, https://doi.org/10.1016/j.jvolgeores.2008.11.020 (2009).

 55. Prudencio, J. et al. The 3D Attenuation Structure of Deception Island (Antarctica). Surv Geophys 36, 371–390, https://doi.
org/10.1007/s10712-015-9322-6 (2015).

 56. Christeson, G. L., Barker, D. H. N., Austin, J. A. & Dalziel, I. W. D. Deep crustal structure of Bransfield Strait: Initiation of a back arc 
basin by rift reactivation and propagation. Journal of Geophysical Research: Solid Earth 108, https://doi.org/10.1029/2003JB002468 
(2003).

 57. Dañobeitia, J. J. & Canales, J. P. Magmatic underplating in the Canary Archipelago. Journal of Volcanology and Geothermal Research 
103, 27–41, https://doi.org/10.1016/S0377-0273(00)00214-6 (2000).

 58. Klügel, A., Hansteen, T. H. & Galipp, K. Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary 
Islands). Earth and Planetary Science Letters 236, 211–226 (2005).

 59. Lodge, A., Nippress, S. E. J., Rietbrock, A., García-Yeguas, A. & Ibáñez, J. M. Evidence for magmatic underplating and partial melt 
beneath the Canary Islands derived using teleseismic receiver functions. Physics of the Earth and Planetary Interiors 212–213, 44–54, 
https://doi.org/10.1016/j.pepi.2012.09.004 (2012).

 60. Martí, J., Villaseñor, A., Geyer, A., López, C. & Tryggvason, A. Stress barriers controlling lateral migration of magma revealed by 
seismic tomography. 7, 40757, https://doi.org/10.1038/srep40757 (2017).

 61. Muller, J. R., Ito, G. & Martel, S. J. Effects of volcano loading on dike propagation in an eastic half-space. Journal of Geophysical 
Research 106, 11101–11113, https://doi.org/10.1029/2000JB900461 (2001).

 62. Aramaki, S. Formation of the Aira caldera, southern Kyushu, 22.000 years ago. Journal of Geophysical Research 89, 8485–8501, 
https://doi.org/10.1029/JB089iB10p08485 (1984).

 63. Sparks, S. R. J., Sigurdsson, H. & Wilson, L. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267, 
315–318, https://doi.org/10.1038/267315a0 (1977).

 64. Pallister, J. S. et al. Magma mixing at Pinatubo volcano: petrographic and chemical evidence from the1991 deposits., in Fire and 
Mud: Eruptions and Lahars ofMount Pinatubo, Philippines(eds C.G. Newhall & R.S. Punongbayan)687–731 (PHIVOLCS, University 
of Washington Press, 1996).

 65. Folch, A., Codina, R. & Martí, J. Numerical modeling of magma withdrawal during explosive calder-forming eruptions. Journal of 
Geophysical Research 106, 16163–16175, https://doi.org/10.1029/2001JB000181 (2001).

 66. Martí, J., Folch, A., Macedonio, G. & Neri, A. Pressure evolution during caldera forming eruptions. Earth and Planetary Science 
Letters 175, 275–287, https://doi.org/10.1016/S0012-821X(99)00296-4 (2000).

 67. Folch, A. & Martí, J. Time-dependent chamber and vent conditions during explosive caldera-forming eruptions. Earth and Planetary 
Science Letters 280, 246–253, https://doi.org/10.1016/j.epsl.2009.01.035 (2009).

 68. Kennedy, B. M. et al. Magma plumbing beneath collapse caldera volcanic systems. Earth-Science Reviews 177, 404–424, https://doi.
org/10.1016/j.earscirev.2017.12.002 (2018).

 69. Marsh, B. D. Solidification fronts and magmatic evolution. Mineralogical Magazine 60, 5–40 (1996).
 70. Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contributions to Mineralogy and 

Petrology 78, 85–98, https://doi.org/10.1007/bf00371146 (1981).
 71. Miller, C. F. Eruptible magma. Proceedings of the National Academy of Sciences 113, 13941–13943, https://doi.org/10.1073/

pnas.1617105113 (2016).

http://dx.doi.org/10.1007/s00445-013-0732-3
http://dx.doi.org/10.1017/S0954102092000683
http://dx.doi.org/10.1016/j.tecto.2012.09.016
http://dx.doi.org/10.1016/j.gloplacha.2014.07.018
http://dx.doi.org/10.1016/j.gloplacha.2014.07.018
http://dx.doi.org/10.1016/0040-1951(85)90023-X
http://dx.doi.org/10.1029/2003JB002416
http://dx.doi.org/10.1016/0040-1951(92)90235-X
http://dx.doi.org/10.1016/j.chemgeo.2008.10.006
http://dx.doi.org/10.1016/j.chemgeo.2008.10.006
http://dx.doi.org/10.1007/s00410-012-0719-7
http://dx.doi.org/10.1007/s00410-012-0719-7
http://dx.doi.org/10.1144/gsl.sp.1994.081.01.15
http://dx.doi.org/10.1007/s00531-015-1254-3
http://dx.doi.org/10.1007/s00531-015-1254-3
http://dx.doi.org/10.1038/s41598-018-35460-x
http://dx.doi.org/10.1016/j.jvolgeores.2008.03.017
http://dx.doi.org/10.1144/jgs2014-015
http://dx.doi.org/10.1007/s00445-017-1186-9
http://dx.doi.org/10.1029/2008jb006119
http://dx.doi.org/10.1016/j.jvolgeores.2008.11.020
http://dx.doi.org/10.1007/s10712-015-9322-6
http://dx.doi.org/10.1007/s10712-015-9322-6
http://dx.doi.org/10.1029/2003JB002468
http://dx.doi.org/10.1016/S0377-0273(00)00214-6
http://dx.doi.org/10.1016/j.pepi.2012.09.004
http://dx.doi.org/10.1038/srep40757
http://dx.doi.org/10.1029/2000JB900461
http://dx.doi.org/10.1029/JB089iB10p08485
http://dx.doi.org/10.1038/267315a0
http://dx.doi.org/10.1029/2001JB000181
http://dx.doi.org/10.1016/S0012-821X(99)00296-4
http://dx.doi.org/10.1016/j.epsl.2009.01.035
http://dx.doi.org/10.1016/j.earscirev.2017.12.002
http://dx.doi.org/10.1016/j.earscirev.2017.12.002
http://dx.doi.org/10.1007/bf00371146
http://dx.doi.org/10.1073/pnas.1617105113
http://dx.doi.org/10.1073/pnas.1617105113


www.nature.com/scientificreports/

1 4Scientific RepoRtS |           (2019) 9:373  | DOI:10.1038/s41598-018-36188-4

 72. Ghiorso, M. S. & Sack, R. O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic 
model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. 
Contributions to Mineralogy and Petrology 119, 197–212, https://doi.org/10.1007/bf00307281 (1995).

 73. Asimow, P. D. & Ghiorso, M. S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American 
Mineralogist 83, 1127–1132, https://doi.org/10.2138/am-1998-9-1022 (1998).

 74. Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for 
Silica-rich, Fluid-bearing Magmatic Systems. Journal of Petrology, https://doi.org/10.1093/petrology/egr080 (2012).

 75. Pedrera, A. et al. The fracture system and the melt emplacement beneath the Deception Island active volcano, South Shetland 
Islands, Antarctica. Antarctic Science 24, 173–182, https://doi.org/10.1017/S0954102011000794 (2012).

 76. Muñoz-Martín, A., Catalán, M., Martín-Dávila, J. & Carbó, A. Upper crustal structure of Deception Island area (Bransfield Strait, 
Antarctica) from gravity and magnetic modelling. Antarctic Science 17, 213–224, https://doi.org/10.1017/S0954102005002622 
(2005).

 77. Douglas, M. M., Geyer, A., Álvarez-Valero, A. M. & Martí, J. Modeling magmatic accumulations in the upper crust: Metamorphic 
implications for the country rock. Journal of Volcanology and Geothermal Research 319, 78–92, https://doi.org/10.1016/j.
jvolgeores.2016.03.008 (2016).

 78. Rodríguez, C., Geyer, A., Castro, A. & Villaseñor, A. Natural equivalents of thermal gradient experiments. Journal of Volcanology and 
Geothermal Research 298, 47–58, https://doi.org/10.1016/j.jvolgeores.2015.03.021 (2015).

 79. Roche, O., Druitt, T. H. & Merle, O. Experimental study of caldera formation. Journal of Geophysical Research 105, 395–416, https://
doi.org/10.1029/1999JB900298 (2000).

 80. Geyer, A., Folch, A. & Martí, J. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach. 
Journal of Volcanology and Geothermal Research 157, 375–386, https://doi.org/10.1016/j.jvolgeores.2006.05.001 (2006).

 81. Torrecillas, C., Berrocoso, M. & García-García, A. The Multidisciplinary Scientific Information Support System (SIMAC) for 
Deception Island, in Antarctica (eds Dieter Karl Fütterer et al.) Ch. 50, 397–402 (Springer Berlin Heidelberg, 2006).

 82. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-
Silica Diagram. Journal of Petrology 27, 745–750, https://doi.org/10.1093/petrology/27.3.745 (1986).

 83. Middlemost, E. A. K. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology 77, 19–26, https://doi.
org/10.1016/0009-2541(89)90011-9 (1989).

 84. Irvine, T. N. & Baragar, W. R. A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth 
Sciences 8, 523–548, https://doi.org/10.1139/e71-055 (1971).

 85. Wickham, H. ggplot2: Elegant Graphics for Data Analysis.VIII, 213, (ISBN 978-3-319-24277-4. Springer-Verlag New York, 2016).

Acknowledgements
This research was supported by the MICINN grants RECALDEC (CTM2009–05919-E/ANT) and 
PEVOLDEC (CTM2011–13578-E/ANT), and the POSVOLDEC(CTM2016–79617-P)(AEI/FEDER, UE) and 
VOLCLIMA(CGL2015–72629-EXP)(AEI) projects. A.G. is grateful for her Ramón y Cajal contract (RYC-2012–
11024). Analyses of stable isotopes were funded by the grant Programa Propio I (Usal-2014) through A.M.A-V. 
We thank all the military staff of the Spanish Antarctic Base Gabriel de Castilla for their constant help and logistic 
support, without which this research would not have been possible.

Author Contributions
A.G., J.M. and A.M.A.-V. performed fieldwork on Deception Island. A.M.A.-V., M.A., G.G., A.G. and D.H.-B. 
contributed to the isotopic and geochemical analysis of bulk rock, minerals and volcanic glasses. A.M.A.-V. and 
G.G performed the P-T calculations and the fractional crystallization models, A.L. performed the LDA analysis 
and A.G. developed the magma chamber cooling models. The ideas in the manuscript were developed through 
group discussions and written up by A.G. with contributions from all authors.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-36188-4.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

http://dx.doi.org/10.1007/bf00307281
http://dx.doi.org/10.2138/am-1998-9-1022
http://dx.doi.org/10.1093/petrology/egr080
http://dx.doi.org/10.1017/S0954102011000794
http://dx.doi.org/10.1017/S0954102005002622
http://dx.doi.org/10.1016/j.jvolgeores.2016.03.008
http://dx.doi.org/10.1016/j.jvolgeores.2016.03.008
http://dx.doi.org/10.1016/j.jvolgeores.2015.03.021
http://dx.doi.org/10.1029/1999JB900298
http://dx.doi.org/10.1029/1999JB900298
http://dx.doi.org/10.1016/j.jvolgeores.2006.05.001
http://dx.doi.org/10.1093/petrology/27.3.745
http://dx.doi.org/10.1016/0009-2541(89)90011-9
http://dx.doi.org/10.1016/0009-2541(89)90011-9
http://dx.doi.org/10.1139/e71-055
http://dx.doi.org/10.1038/s41598-018-36188-4
http://creativecommons.org/licenses/by/4.0/

	Deciphering the evolution of Deception Island’s magmatic system
	Deception Island: Geological overview
	Deception Island’s magmatic system: A unifying evolutionary model
	Discussion: Implications for volcano monitoring and volcanic hazard assessment
	Methodology
	Geochemistry. 
	Pressure-Temperature (P-T) estimates. 
	Linear Discriminant Analysis. 
	Fractional crystallization models. 
	Magma chamber cooling models. 

	Acknowledgements
	Figure 1 (a) Simplified regional tectonic map and location of the South Shetland Islands (modified from Marti et al.
	Figure 2 Simplified sketch illustrating the different stages of Deception Island’s evolution (modified from Martí et al.
	Figure 3 (a) Simplified geological map of Deception Island (modified from Martí et al.
	Figure 4 (a) Total Alkali vs.
	Figure 5 Conceptual model of the magmatic system of Deception Island based on P-T estimates.
	Figure 6 Ordination of samples on the plane defined by the first two LD components.
	Figure 7 Crystal content (%) along a horizontal profile A-A′ for those models considering a magma reservoir of V = 0.




