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Abstract

We present an ML approach to musical playlist recommendation. Using the algorithm

Word2Vec, a shallow two-layer neural network trained to reconstruct linguistic context

of words, we have created several embeddings using tracks and playlist titles as words

of an artificial vocabulary. Some experiments with different trade-offs between the di-

versity and the popularity of songs in playlists are analyzed and discussed. By means of

combining a tracks embedding and a titles embedding our recommender has reached 19

percent of accuracy. Our model has been created and trained using the MPD (million

playlists dataset) given by Spotify as part of the RecSys Challenge 2018.

Resum

En aquest treball presentem un recomanador de cançons per a llistes de música. Mit-

jançant l’algorisme Word2Vec, una red neuronal poc profunda habitualment utilitzada

per aprenetage de text, hem constrüıt diversos embeddings utilitzant cançons i t́ıtols

com a paraules d’un vocabulari inventat. Combinant un embedding de cançons i un

de t́ıtols de llistes de música, i a través de diversos experiements combinant distància

entre cançons i popularitat, hem arribat a aconseguir fins a un 19 per cent d’encert. El

nostre model ha estat creat i entrenat a partir de l’MPD (dataset d’un milió de llistes

de música) cedit per Spotify com a part del concurs RecSys Challange 2018.

Resumen

En este trabajo presentamos un recomendador de canciones para listas de música. Me-

diante el algoritmo Word2Vec, una red neuronal poco profunda habitualmente utilizada

para aprenetage de texto, hemos construido varios embeddings utilizando canciones y

t́ıtulos como palabras de un vocabulario inventado. Combinando un embedding de can-

ciones y uno de t́ıtulos de listas de música, y a través de varios experiements combinando

distancia entre canciones y popularidad, hemos llegado a alcanzar hasta un 19 por ciento

de acierto. Nuestro modelo ha sido creado y entrenado a partir del MPD (dataset de un

millón de listas de música) cedido por Spotify como parte del concurso RecSys Challange

2018.
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Chapter 1

Motivations

Deep learning has gained prominence in the last recent by out-performing traditional

machine learning problems such as image classification and speech recognition. It is also

noticeable that deep neural networks can be trained and experimented with by many,

and not just few researchers at big tech companies and academia. It is, in brief, a wide

open field and one of the most highly sought after skills nowadays. Considering the

little I know about it, and how powerful it seems to be, I have decided to use my final

degree project to learn as much as possible about this growing trend. My main goal is

to understand and get to work with neural networks.

Even though recommenders were not part of my original plans, the Recsys Challenge

2018 has appeared to be a magnificent opportunity for my purposes. On the one hand,

this challenge allows me to work with a clean dataset. It is large enough to make working

models and light enough to train it with an average computer. It has a clear structure

and different variables to take into account and to experiment. And most importantly,

it has never been explored before. Understanding, analyzing and working with a dataset

is also one of my goals.

On the other hand, the objective of this challenge is very clear: to recommend tracks

to playlists. Nevertheless, the ways to achieve this are countless. To do an exploratory

research of the state-of-the-art techniques regarding recommenders, and music recom-

mendation systems is another goal I set. As well as choosing one of the methods and

implementing it using my newly explored dataset.

Lastly, the fact that it is a challenge, makes this project all the more charming. Since

I am in the motivations section, I will take this opportunity to say that apart from

making a functioning music recommender based on machine learning, one of my strongest

motivations is to be in the top 10 by the end of the challenge.

1
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Introduction

With the apparition of the internet and its ever-growing worldwide access, music con-

sumption has taken a turn. On-line music listening platforms have emerged to be the

new music provider. Thanks to cloud-based service like Spotify, the consumer has now

instant on-demand access to millions of songs. In order to help users explore these large

collections of music, music recommender systems play an important role. In fact, re-

search in music recommender systems (MRS) has become a very popular topic in the

recent years. Personalization is attractive both for content providers, who can increase

sales or views, and for customers, who can find interesting content more easily.

2.1 The Problem

The problem that we are going to tackle, is the called task of playlist recommendation

(PR). But what is a playlist? It is defined as a list of recorded songs or pieces of music

chosen to be listened together. That means that there exists some kind of relation/s

among the tracks for them to appear in the same playlist. The PR task consists on

finding such relations and adding one or more tracks to a playlist in a way that fits the

same target characteristics as the original playlist. That is the goal we are going to try

to achieve in this work by means of understanding and using deep learning techniques

on the given dataset.

2
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2.2 Recsys 2018

The ACM Recommender Systems conference (RecSys) is the premier international forum

for the presentation and discussion of new research results, systems and techniques

in the broad field of recommender systems. Recommendation is a particular form of

information filtering, that exploits past behaviors and user similarities to generate a list

of information items that is personally tailored to an end-user’s preferences. As part of

the conference, Recsys organizes annually a competition.

This year’s challenge focuses on music recommendation, specifically the challenge of

automatic playlist continuation. It is organized by Spotify, an online music streaming

service with over 140 million active users and over 30 million tracks. One of its popular

features is the ability to create playlists, and the service currently hosts over 2 billion

playlists. As part of this challenge, Spotify will be releasing a public dataset of playlists,

consisting of a large number of playlist titles and associated track listings. The evaluation

set will contain a set of playlists from which a number of tracks have been withheld.

The task will be to predict the missing tracks in those playlists.

For more information about the challenge please refer to the RecSys Challenge 2018

website or to following paper recently published by the challenge organizers [1].
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The Dataset

As part of this challenge, Spotify has released the Million Playlist Dataset. It comprises

a set of 1.000.000 playlists that have been created by Spotify users from US, and includes

playlist titles, track listings and other metadata. In figure 3.1 we can see the overall

demographics of users contributing to the MPD by gender and by age.

The MPD however, does not contain any information realated to the users themselves,

so any kind of user oriented recommendation system is out of the table.

Figure 3.1: Demographics about Spotify users who originally made the MPD playlists.
Age on the left, gender on the right.

Data visualization is one of the core skills in data science. In order to start building

useful models, we need to understand the underlying dataset. We will try in the following

pages to have a clear idea of the most relevant variables and get a first impression of the

structure of the data.

4
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3.1 Stats

First of all, we need to know what is the exact information we have and with how much

information we are dealing with. From here, we will determine which attributes appear

to be useful, and which irrelevant, and see if we do not have enough information and we

need to create more (by crossing and mixing different attributes for instance), or maybe

we have too much information, and some threshold needs to be applied to ignore part of

it. A general summary of some relevant data can be found in table 3.1 where we can see

that there are near 2.2 million unique tracks. Not any model can be this big, specially

when it comes to neural networks. In some cases large datasets allow better training

results, other times it just slows them down, but sometimes, too big of a dataset makes

a problem impossible to solve. In any case, it might be worth considering only the tracks

appearing more than n times to see what are our options. We can see what the impact

of ignoring unpopular songs would be in figure 3.2.

number of tracks 66346428
number of unique tracks 2262292
number of unique albums 734684
number of unique artists 295860
number of unique titles 92944
number of playlists with descriptions 18760
number of unique normalized titles 15876
avg playlist length 66

Table 3.1: MPD stats.

Figure 3.2: MPD percentage left when considering tracks appearing at least n times.

3.2 Playlist Features

As a matter of fact, the playlists have been selected to follow some criteria such as to

have a minimum of 5 tracks and no more than 250, 3 different artist, 2 unique albums
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and at least one follower. Within this gap, let us have a look at the most common

features of the playlists. Looking at figures 3.3, we can tell that there is a clear tendency

for playlists to have around 40 tracks, 15 albums, 10 artist and last about 2 hours. Not

much information seem to carry the number of followers.

Figure 3.3: MPD histograms of number tracks, albums, followers and playlists dura-
tion in hours.

3.3 Popular Items

Looking at the popularity of tracks and playlists titles 3.4 (same happens with artists

and albums), we can notice the so called “long tail structure”, which means that there is

a portion of the distribution having a large number of occurrences far from the ”head”

or central part of the distribution.

Figure 3.4: MPD tracks and playlist titles number of apparitions in the MPD.
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3.4 Order

Lastly, having a look at the average position of tracks on the playlist they appear, and

plotting it against their popularity, no relevant conclusion can be guessed, as we can see

in figure 3.5. The order of the tracks seems to be random, at least for now.

Figure 3.5: Tracks popularity vs average position on the playlists they appear.
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State of the Art

As exposed on the paper [2], there are different ways to approach the music recommen-

dation problem, which depend mostly on two factors. First, the kind of information used

to determine whether a playlist and its tracks satisfy the target characteristics. This

information can be classified in the following categories: the audio signal, metadata,

social web data, and usage data. And second, the strategy for playlist recommendation.

In the next pages, we will review these strategies to have a solid background on the

possible techniques to use later on in our own work.

4.1 Collaborative Filtering

Collaborative filtering, is a user oriented recommendation system that filters information

by using the recommendations of other people. It is based on the idea that people who

agreed in their evaluation of certain items in the past are likely to agree again in the

future. In the neighborhood-based approach a number of users is selected based on their

similarity to the active user. A prediction for the active user is made by calculating a

weighted average of the ratings of the selected users. However, in our case we do not

have users. But by taking each playlist as a user, and its tracks as items the ”user” likes,

we could apply this approach and recommend items to a playlist by looking to similar

playlists [3, 4].

8
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Figure 4.1: Collavorative filtering recommends items to a user based on its similar
peers’ items.

4.2 Similarity Based Algorithms

These methods rely on the intrinsic features of tracks (the audio signal) rather than any

data relation between users or playlist characteristics. Using acoustic-based similarity

measure, a metric space is created. The dimensions of the tracks correspond to different

features such as tempo or tone. A possible way to recommend is by making a model

for each playlist and looking for the closest tracks in the space [5]. One of the benefits

of this system, is that it is possible to measure some playlists features. For example,

in [6], the authors measured the diversity of a playlist by calculating the volume of the

playlists associated all-tracks-enclosing-ellipsoid in the space.

Figure 4.2: Audio signal comparison of two songs.
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4.3 Statistical Models

Similarly to similarity based algorithms, statistical model tries to create a vector space

out of the given items. In this case, however, we do not use the characteristics of each

item, but the way it is related to the rest of items. There are several techniques to as-

sociate coordinates to an item by looking at its context. For instance in [7], the authors

take each playlist as a list of strings belonging to some unknown language, and try to

predict the next song as if it was a sentence they were trying to complete. In [8, 9],

each track receives its coordinates by using a likelihood maximization heuristic. And

in [10], the models select tracks based on distributions over tracks using latent clusters

that were obtained by applying latent Dirichlet allocation.

4.4 Case Based Reasoning

The general idea of case-based reasoning techniques is to exploit information about

problem settings (cases) encountered in the past to solve new problems. We can find

an example of that in the article [11]. The case base in their scenario consists of a set

of playlists created by a user community. Within these playlists, frequent subsequences

(patterns) are identified. In contrast to typical case-based reasoning approaches, the

goal of their work is not to find the most similar playlists given some seed track, but to

find those considered to be the most “useful,” for example, in terms of diversity. The

elements of the retrieved playlists are then combined to generate a new playlist for a

given seed track.

4.5 Frequent Pattern Mining

The search of association rules are often applied for shopping basket analysis problems

and have the following form: considering A and B to be sets of items, the rule we are

looking for are “whenever A was bought, also the items in B were” [12]. This method

applied to our problem, would consist on finding global patterns on the co-occurrence

of tracks in a playlist. We can find two examples of frequent patter mining techniques

applied to playlist recommendation in [8], where Markov chains are used, and in [13],

where n-grams are used.
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4.6 Discrete Optimization

Given a set of tracks, their characteristics, and a set of explicitly specified constraints

capturing the desired characteristics, the goal is to create one arbitrary or an optimal

sequence of tracks that satisfies the constraints. In the paper [14] the task is taken as a

constraint satisfaction problem (CSP) and apply the existing search algorithms to select

sequences of tracks that satisfy various constraints, in that case from a comparably small

catalogue. [15, 16] the problem is modeled as an integer linear program.

4.7 Hybrid Techniques

Hybridization is often used to combine the advantages of different techniques and at the

same time avoid the drawbacks of individual techniques. There are different combination

methods such as classification, [17], weighted hybridization [7] or multicriteria kNN-

based collaborative filtering.
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Neural Networks

As we have seen, there are many ways to tackle the playlist recommendation problem.

But let us remember that the original purpose of this work was no to solve this challenge,

but rather to learn about neural networks. And that is what we are going to do before

getting into detail on the practical solution of our problem (which is -spoiler alert- a

practical application of a neural network).

5.1 Biological Neuron

The human brain is a highly complicated machine capable of solving very complex

problems. Although we have a good understanding of some of the basic operations that

drive the brain, we are still far from understanding everything there is to know about

it. A neural network (NN) is a network consisting of connected neurons that can fire

electric pulses through one another. These connections are possible thanks to the brain

cell’s four main parts (see in figure 5.2):

1. Dendrites: accept inputs (electric impulses).

2. Soma: processes the inputs.

3. Axon: Turn the processed inputs into a form that can be accepted by the next

neuron i.e. converts processed inputs into output.

4. Synapses: The electrochemical contact between neurons. Using synapses, a neuron

can transfer the outputs of that neuron to the inputs of the next neuron.

12
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Figure 5.1: Structure of a biological neuron.

When a neuron receives enough electric pulses through its dendrites, it activates and

fires a pulse through its axon, which is then received by other neurons. In this way

information can propagate through the NN. The connections change throughout the

lifetime of a neuron and the amount of incoming pulses needed to activate a neuron (the

threshold) also change. This behaviour allows the NN to learn.

5.2 Artifical Neuron

It is not possible (at the moment) to make an artificial brain, but it is possible to make

simplified artificial neurons and simplified artificial neural networks (ANN) by creating

a similar data processing structure. ANNs are not intelligent, but they are good for

recognizing patterns and making simple rules for complex problem. For instance, an

ANN trained on images of different animals is able to predict whether an animal outside

the original set is a cat or not. This is a very desirable feature of ANNs, because you

do not need to know the characteristics defining a cat, the ANN will find out by itself

(in this work, we will only consider supervised learning).

Artificial neurons are extremely simplified versions of biological neurons. The signal

at a connection between artificial neurons is a real number, instead of an electric pulse,

represented by xi. Each input is “processed” i.e., multiplied by some weight wi, and all

wixi products are added. After that, the processed input is passed through a function,

known as the “activation function”, which converts the processed input to output. So,

following the analogy, the artificial neuron four main parts are (see in figure 5.2):
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1. Inputs: numerical values (xi).

2. Weights: changing numerical attributes of a neuron (wi). This changing is deter-

mined by the learning algorithm, which we will study later on.

3. Activation function: transforms the input into an output. Different functions serve

different purposes, we will look at them in a subsequent section.

4. Output: becomes the input of another neuron.

Figure 5.2: Structure of an artificial neuron.

5.3 Activation Functions

The general mathematical definition of an implemented neural neuron is, as briefly men-

tioned above:

y(x) = g(

∞∑
n=1

wixi)

The activation function g weights how powerful the output (if any) should be from the

neuron, based on the sum of the input. There are several kinds of activation functions

which serve different purposes. It s a very importnat, when making a network, to choose

the right function. In table 5.3 we can see several examples of functions, as well as its

derivatives. For reasons we will explain later, it is important that an activation function

is differnetiable.
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Figure 5.3: Activation function examples.

5.4 The Network Topology

Artificial neurons are aggregated into layers and the union of several layers make a neural

network. The connections among neurons within a layer, and the connections between

layers configure the topology of the network. Different layers may perform different

kinds of transformations on their inputs. Signals travel from the first layer (the input

layer), to the last layer (the output layer), possibly after traversing the layers multiple

times.

Many characteristics of the network will depend on these connections, so it is important

to know the different kinds and their implications. These are the most relevant features:

1. Layer dimensions: from input to output, each layer’s dimension can range from one

to thousands, usually changing from one layer to the next one. Whether from one

layer to another the dimension increases, decreases, stays the same, or increases

and decreases (auto enconder) it is important, to respect the changing proportion

in order for the network to work properly (usually following a logarithmic scale).

2. Number of layers: Adding more layers (usually) increases the accuracy of the

network, but it also increases the cost, and if there are too many, some of them

might become useless.
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3. Connectivity: layers can be fully connected (all the neurons in each layer are

connected to all the neurons in the next layer) which is the usual case, as well as

the most cost effective. Layers can also be partially connected. Also, layers can

be connected in a chronological order, or go back and forward, or skipping layers

in some cases in order to avoid over-fitting (over-fitting is giving precise results for

the training data, but incorrect results for all other data).

Figure 5.4: Neural network different structures.

5.5 The Working of Neural Networks

We have briefly mentioned that an ANN learns by changing the weights. But how does

this changing affect the results? I like to think of the it as a kind of Galton machine ( see

5.5), in the sense that the input is a piece of data (blue ball), that after going through

neurons with well-adjusted weights (orange dots) ends up in the right output category.

Figure 5.5: Galton machine.
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But before the neural network can accurately predict the output, it needs to be trained

on some data, usually consisting of input-output pairs. We wish to adjust the weights

in the ANN, to make the ANN give the same outputs as seen in the training data. The

“training” phase starts by randomly initializing all weights (i.e. weights associated with

each artificial neuron). Then, inputs are fed to the network, activations of all nodes in

layers are calculated, and finally, we get the neural network output. This output can

then be evaluated by comparing it to the expected output, and the error calculated. The

function that measures the error is known as the “cost function”. Hence the training

process can be seen as an optimization problem where the aim is to adjust the weights

in order to minimize this cost function.

It is worth mentioning that there are different cost functions, and the choice for each

case depends on various factors such as the activation function. Clearly a multiclass clas-

sification network should be evaluated differently than a binary classification network.

The technique used to minimize the cost function is called “gradient descent”.

5.6 Gradient Descent

The idea is that we make small steps in the direction of the gradient, and we hope that

eventually, we’ll be at the global minima. However, that would be the case only if the

plot is convex. Usually, the plot is not perfectly convex, resulting in a few local minima

(5.6. For now, we’ll assume that the local minima are good approximations of the global

minimum (which is usually the case). So, we make small updates on the weights, each

time moving them in the direction of the gradient. We multiply the updates with a

parameter, known as “learning rate”.

To compute the gradient of the loss function with respect to the weights in the ANN,

an algorithm called Backpropagation is used.

Figure 5.6: The plot of cost function vs weight is more or less convex and looks
something like this. In black we can see the steps towards the local minima.
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5.7 Backpropagation

The backpropagation algorithm works in much the same way as the name suggests:

After propagating an input through the network, the error is calculated and the error is

propagated back through the network while the weights are adjusted in order to make

the error smaller. Although we want to minimize the mean square error for all the

training data, the most efficient way of doing this with the backpropagation algorithm,

is to train on data sequentially one input at a time, instead of training on the combined

data.

First the input is propagated through the ANN to the output. After this, the error ek

on a single output neuron k can be calculated as:

ek = dk − yk

Where yk is the calculated output and dk is the desired output of neuron k. This error

value is used to calculate a σk value, which is again used for adjusting the weights. The

σk value is calculated by:

σk = ekg
′(yk)

Where g′ is the derived activation function. The need for calculating the derived acti-

vation function was why we expressed the need for a differentiable activation function

earlier.

When the σk value is calculated, we can calculate the σj values for preceding layers.

The σj values of the previous layer is calculated from the σk values of this layer. By the

following equation:

σj = ηg′(yk)
K∑
k=0

σkwjk

Where K is the number of neurons in this layer and η is the learning rate parameter,

which determines how much the weight should be adjusted. The more advanced gradient

descent algorithms does not use a learning rate, but a set of more advanced parameters

that makes a more qualified guess to how much the weight should be adjusted.

Using these σ values, the ∆w values that the weights should be adjusted by, can be

calculated by:
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∆wjk = σjyk

The ∆wjk value is used to adjust the weight wjk , by wjk = wjk + ∆wjk and the

backpropagation algorithm moves on to the next input and adjusts the weights according

to the output. This process goes on until a certain stop criteria is reached. The stop

criteria is typically determined by measuring the mean square error of the training data

while training with the data, when this mean square error reaches a certain limit, the

training is stopped. More advanced stopping criteria involving both training and testing

data are also used.
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Word2vec

Once given the notion of what a neural network is, let us focus on the specific kind that

has been used in this work. Word2vec is a shallow two-layer neural network trained to

reconstruct linguistic context of words. In fact, it is a clear example that trading com-

plexity for efficiency can produce great results, since a simpler model gains the ability

to learn from much bigger datasets.

But what does word2vec do? Given a large corpus of text, this method produces a

vector space, typically of hundreds of dimensions, with each unique word in the corpus

being assigned a corresponding vector in the space. The idea is that words sharing

common contexts in the corpus are located close to one another in the space.

6.1 The idea

Word2Vec uses a trick very common in machine learning, and the basis of auto-encoders.

As seen in figure 6.1 the autoencoder’s structure is focused on compressing and decom-

pressing the input data. By training the network to recompose the input from a lower

dimension, it aims to extract the relevant data features in a much-reduced piece of data.

Figure 6.1: Autoencoder schematic functioning.
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Word2vec trains a simple neural network with a single hidden layer to perform a certain

task but ends up not using the network for this task. Instead, the goal is actually just

to learn the weights of the hidden layer which will be the “word vectors” that it aims to

learn.

6.2 The Network Task

What the network is trained to do is the following: given a specific word in the middle

of a sentence (the input word), look at the words nearby and pick one at random. The

network is going to tell us the probability for every word in the vocabulary of being

the chosen “nearby word”. The output probabilities are going to relate to how likely it

is to find each vocabulary word nearby our input word. For example, given the word

“mathematics”, the output probabilities should be much higher for words like “algebra”

and “probabilities” than unrelated words like “lipstick”. The network is fed word pairs

found in the corpus to train. The way these pairs are taken is shown in the example

below, 6.2. The network is going to learn the statistics from the number of times each

pairing shows up.

Figure 6.2: Word pairs taken from a sentence using a window size of 2. The word
highlighted in blue is the input word.

6.3 Model Details

But what exactly are the input and the output of the network? Words cannot be fed

just as a text string, it must be numerical, all same sized data. So, what is done, is to
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convert each word into a one-hot vector (which is a vector with a single 1 and the rest

of the values to 0) of size the length of the vocabulary (let’s say 10.000). The output

of the network is a single vector (also with 10,000 components) containing, for every

word in our vocabulary, the probability that a randomly selected nearby word is that

vocabulary word. Here’s the architecture of our neural network.

Figure 6.3: Neural network with one-hot vector input word and one-hot vector output.
But when evaluated on an input word, the output vector will actually be a probability

distribution (i.e., a bunch of floating point values, not a one-hot vector).

There is no activation function on the hidden layer neurons, but there is on the output

neurons, and this function is called softmax. We’ll come back to this later.

6.4 The Hidden Layer

Let us consider word vectors with 300 features. The hidden layer is going to be rep-

resented by a weight matrix with 10,000 rows (one for every word in our vocabulary)

and 300 columns (one for every hidden neuron). These are actually what will be the

word vectors. Hence, the end goal of all of this is really just to learn this hidden layer

weight matrix – the output layer we’ll just toss when we’re done. Let it be noticed that

by using one-hot vectors as an input, each word training will effectively just select the

matrix row corresponding to the “1”. Here’s a small example to give you a visual.
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Figure 6.4: Example of how the output is only affected by the corresponding part of
the hidden layer - or a simple matrix multiplication.

This means that the hidden layer of this model is really just operating as a lookup table.

The output of the hidden layer is just the “word vector” for the input word.

6.5 The Output Layer

The output layer is a softmax regression classifier. Briefly explained, it means that the

output neuron will produce an output between 0 and 1, and the sum of all these output

values will add up to 1. Specifically, each output neuron has a weight vector which it

multiplies against the word vector from the hidden layer, then it applies the function

exp(x) to the result. Finally, in order to get the outputs to sum up to 1, we divide this

result by the sum of the results from all 10,000 output nodes. Here’s an illustration of

calculating the output of the output neuron for the word “car”.

Figure 6.5: Word2vec processing of a word.

6.6 Contexts

If two different words have very similar “contexts”, then our model needs to output

very similar results for these two words. And one way for the network to output similar

context predictions for these two words is if the word vectors are similar. So, if two

words have similar contexts, then our network is motivated to learn similar word vectors

for these two words. And what does it mean for two words to have similar contexts? I

think you could expect that synonyms like “intelligent” and “smart” would have very

similar contexts. Or that words that are related, like “engine” and “transmission”, would
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probably have similar contexts as well. This can also handle stemming for you – the

network will likely learn similar word vectors for the words “ant” and “ants” because

these should have similar contexts.

6.7 Improvements

Skip-gram neural network contains a huge number of weights. Considering 300 features

and a vocab of 10,000 words, that’s 3M weights in the hidden layer and output layer

each. Training this on a large dataset would be prohibitive, so the word2vec authors

introduced a number of tweaks to make training feasible. These improvements do not

only reduce the compute burden of the training process, but also improved the quality

of their resulting word vectors as well. These three innovations, presented in [18] are:

1. Treating common word pairs or phrases as single “words” in their model. For example

“Boston Globe” (a newspaper) has a much different meaning than the individual words

“Boston” and “Globe”. So it makes sense to treat “Boston Globe”, wherever it occurs

in the text, as a single word with its own word vector representation.

2. Subsampling frequent words to decrease the number of training examples. Words

such as “the” appear in the context of pretty much every word. Word2Vec implements

a “subsampling” scheme to address this. For each word we encounter in our training

text, there is a chance that we will effectively delete it from the text. The probability

that the word is cut is related to the word’s frequency.

3. Modifying the optimization objective with a technique they called “Negative Sam-

pling”, which causes each training sample to update only a small percentage of the

model’s weights. This avoids adjusting all of the neurons for each training example.

For the most detailed and accurate explanation of word2vec check [19, 20], read the

word2vec authors paper [21] or a simplified version [22].
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Tracks Embedding

Once observed the different techniques to approach the playlist recommendation prob-

lem, and now that we know what neural networks are and how Word2vec works, we

can proceed to explain our method. You might have been wondering what does a text

recommender like word2vec have to do with music, but the fact is that word2vec is not

solely applied to text corpus. It has been successfully applied to biological sequences,

and in our case, to music playlists.

Considering each track as a word, and each sequence of tracks (playlist) as a sentence,

one can build a vocabulary made of songs. In this way, if two tracks appear in very sim-

ilar contexts (for example Christmas songs usually appear all together), then the model

will output very close vectors in the space. That is the idea behind our recommendation

system.

7.1 Model Characteristics

As mentioned above, the vocabulary used for this model are tracks, and the way they

have been grouped are by playlists. All tracks have been given a numeric id, sorting

them by popularity. So number 1 corresponds to the most popular track in the MPD,

2 to the second most popular, and so on. Only tracks appearing 5 times or more in the

MPD have been taken into account in this specific model, so the vocabulary contains

nearly 600.000 words.

The word2vec architecture selected is skip-gram. This model uses the current word to

predict the surrounding window of context words. There is another possible word2vec

structure named CBOW, which predicts the current word from a window of surrounding

25
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context words. Even though CBOW is a faster model, Skip-gram has shown to produce

better results in the long term. The dimension of the vectors created is 300, and the

window size for training is 5.

The complete training corpus is 1.000.000 sentences (one for each playlist of the MPD),

and for each training iteration, all tracks of each sentence have been shuffled. This

serves the purpose of letting each track be related to every other track in the playlist by

appearing close to it in some of the shuffled iterations. By doing that, we are tossing any

possible relation of order between songs, but our hypothesis is that the order in which

the tracks are ordered is rather irrelevant.

In figure 7.1 we can see an example of how a playlist is selected and transformed before

it is fed into our model to train. This process is done for all the 1.000.0000 playlists of

our dataset.

Figure 7.1: Converting playlists to sentences to train our word2vec model.
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7.2 Assessing the quality of the model

It is logical to think that rap songs do not usually appear together with classical music

songs. And the same should happen with different genres of music. So, one could expect

some clusters should easily appear in our embedding space, and that would mean that

our model is working properly.

To plot our 300 dimensional space embedding, we have reduced it down to 20 dimensions

using PCA and plot it in 2 dimensions by means of T-SNE [23] which is an algorithm

specialized on plotting high dimensional spaces, keeping its most important character-

istics.

Also, in order to have track samples of different music genres, we have selected the

100 most common tracks within playlists of a specific title. For example, out of playlists

named “Christmas”, the most times appearing songs are All I Want for Christmas Is

You and It’s Beginning To Look A Lot Like Christmas. In this way, we have selected 7

categories and plot them among other 2000 random tracks. We can see in figure 7.2 how

each category forms a cluster. These clusters are good indicator that our embedding is

working.

Figure 7.2: Word2vec tracks embedding t-SNE representation. 100 tracks per cate-
gory + 2000 random tracks. Perplexity = 150. Learning rate = 30.
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Changing the number of random tracks appearing in the plot, or modifying t-SNE

paramters such as the perplexity do not affect the clusters formation as seen in 7.3. So,

even though the t-SNE is an approximation of the real 300 dimensional space, it gives

us a good idea of how the real space is and tells us there is a very high possibility that

the embedding will serve our purposes.

Figure 7.3: 100 tracks per category + 1500 tracks and 3500 tracks respectively.
Perplexity=150. Learning rate = 30.

Even though these plots are very promising, it is not enough to be certain that the

embedding is working and, needless to say, it does not tell us how good a result it would

produce. Let us remember that our aim is to predict tracks for incomplete playlists.

More specifically, we need to recommend 500 tacks to each playlist of the challange

set. The challange set consists of 10.000 playlists with the following chracteristics:

Number of
playlists

Tracks per
playlist

Titles Tracks posi-
tion

1000 0 Yes -
1000 1 Yes First
1000 5 Yes First
1000 5 No First
1000 10 Yes First
1000 10 No First
1000 25 Yes First
1000 25 Yes Random
1000 100 Yes First
1000 100 Yes Random

Table 7.1: Challange set playlists features.

In order to test our recommendations we created a fake challange set (the fake set) with

the same characteristics as the challange set. We made it by taking playlists of the MPD

and erasing some of its tracks/titles. This way we can compare the recommendation

tracks with the original tracks and evaluate how many tracks we guessed right.
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It is important to notice, that our models were trained with the whole MPD instead

of splitting it into train and test as it is usually done. That is due to the fact that

we consider the MPD the train set and the challange set the test set. But we do not

know the real solution of the challange set, and only one submission can be evaluated

every day. That narrows down our number of tests, and that is why we created the fake

set. But by creating it out of playlists of the MPD (the train set), the results will be

irremediably better than they actually are. That is not really a problem by itself, since

it will affect all playlists equally, but it is important to keep it in mind.

7.3 Recommendation Algorithm

Once we have a metric space, it is fairly easy to make recommendations. There are sev-

eral possible ways to approach the probem. One of the most used ones, and as effective

as it is simple, is to use the average position of a playlist and recommend the closest 500

tracks. This procedure can be seen in 7.4, where in red we have higlighted all the tracks

of a playlist in our space. The average position of these tracks is computed (in yellow),

and the cloeses 500 tracks to this point are selected (in green).

We have tried other euristics such as clusterizing these playlist tracks into 3 groups

with K-Menas and reocommending the closest 170 tracks to each of the centroids, but

it produced worse results.

Figure 7.4: Process of recommending tracks to a playlist using the tracks embedding.
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It is no surprise that the method produces different results depending on how many

tracks the given playlist contains. We can see in the following table the accuracy of the

model evaluated on the fake set for different kinds of playlists.

number of seeds accuracy

1 32 %
5 43 %
10 45 %
25 44 %
100 38 %

Table 7.2: Rrecommending performance for different number of seeds playlists.
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Titles Embedding

A noticeably important feature of the MPD is the playlists title. There is a strong re-

lation between the tracks of a playlist and its title. It makes a lot of sense, because the

title is usually a very good summary of what kind of music the playlist contains. After

all, playlists are a way to organize music, and if a user wants to be able to navigate

through his library, he’ll need to label his playlists in a clear and logical way.

Looking at the playlists’ titles gives a very good idea on what users tend to group

their playlists by. Here are some examples of different features users most commonly

consider when creating a new playlist.

genre country rap classic
rock

hip hop achoustic

place gym library volleyball train beach
activity homework run

dance
sleep study yoga

emotional
state

happy calm chill inspiration nostalgy

special
event

party wedding baby
shower

birthday new year

specific
time

good
morning

cocktail
hour

christmas suumer
17

halloween

time peri-
ods

80’s oldies modern youth freshamn
year

region africa latin mexican korean ranchera
someone mom us family alex baby

Table 8.1: Features by which some playlists are made, and 5 examples of each.

So, it would be very interesting to be able to predict tracks, only using its title. The

first step towards that, and considering the title of this work, is to create an embedding

of titles.

31
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8.1 Model Characteristics

In this case, there is no such an obvious relation between the titles of playlists as there

was between tracks, however, all playlist titles have something in common: its tracks.

So, by putting upside down the previous relation, we will now consider all the playlists

a track appears in and call it a sentence.

It is worth mentioning, that titles have been grouped by after slightly normalizing them.

By lowering all letters, deleting irrelevant symbols and taking into account some writing

practices such as 2017 = 2k17, we have been able to narrow down the number of different

titles from 93.000 to 15.000. In table 8.2 we can see 5 examples of titles classified under

the same category.

countri christma run mom chil
not country CHRISTmas RUNNING moms Chilling.
not country Christmas Running Mom chilled
Country ¡3 C H R I S T M A S Run mom. chill?
country christmas;)))) run mom chill
C O U N T R Y christmas run2 For Mom CHILLLLL
Country 1 Christmas!!! Run. Your mom chilll
country It’s Christmas! RUN Moms chill
c o u n t r y Christmas Running Mom CHILLED
Country CHRISTMAS! *running Mom chilllll
Country Christmas Runnnn mom chilllllllll

Table 8.2: Playlist titles normalization examples.

For that reason, our embedding of titles has a vocabulary of 15.000 words approximately.

The corpus in this case, contains near 2.000.000 sentences, one for each unique track.

Shuffling is applied on the sentences after each iteration for in this case the order is

completely irrelevant. The window, just as before, is set to 5, and the minimum number

of appearances of a title is 1: we want all known titles to appear in our model. The

dimensions of the vectors has been set at a hundred due to the fact that the vocabulary

was significantly smaller than in the previous case, and less features need to be kept in

order create a functional embedding.

8.2 Assessing the quality of the model

In this case, as the items we are working with are very understandable and intuitive,

we can look at some examples to see if the model outputs make sense. In the following

tables 8.3 we can see nine playlist titles and its top 10 most similar titles, as well as their

similarity to the original title (how close in the embedding, vectors are from one another).
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Looking carefully to several hundred titles and their closest results, it gives a strong

impression the model works. It is able to notice features within the playlists such as the

above mentioned genre, emotional state, activity. . . but not only that, it can abstract

much more, as we will proceed to analyze.

Gender related titles such as reggeton, hip-hop or acoustic, present the highest resem-

blance with their neighbours. That is not shocking, since most songs do have a defined,

preset gender that the users has in mind in this case when making the playlist. Even

seasonal, or one-time events such as Christmas, Halloween or wedding perfect results are

not that surprising considering that a lot of these songs were created with the purpose

of being listened on these dates.

However, it is remarkable how the model is able to find relations in playlists named

after supposedly subjective titles such as Mom, or my favourites. It is in cases like these

ones that we can see how machine learning can outperform human action by finding re-

lations that escape to our capacities. What I mean, is that given rock songs, any person

who has a minimal musical culture, knows that they belong to rock genre. However,

given a set of tracks that we don’t know belong to a playlist called Mom, no one would

guess they are ”mum genre songs”. And here lies the pattern finding magic of big data.

Another important fact is that our model does not only produce good results for most

common, and highly appearing titles in the model. In tables 8.3, near the playlist

name we can find its ID, which also relates tot the title popularity (low number are

very frequent titles, high numbers are uncommon titles). Looking at the last tables, to

an uncommon title name such as flogging molly we can see how good the results are.

Flogging molly is an Irish pub music style, which matches very well with our model

recommendations.
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workout 4

workout music 0.77

workout1 0.74

work out 0.73

beast mode 0.72

gym tune 0.7

leg dai 0.7

kickbox 0.7

boot camp 0.7

0 .69

crossfit 0.69

spanish 53

spanish music 0.88

latino music 0.86

spanish jam 0.85

spanish hit 0.85

spanish vibe 0.84

cancion espanola 0.83

spanish playlist 0.82

latin hit 0.81

latin 0.81

hispan 0.81

summer 2015 99

march 2015 0.66

summer 15 0.66

2015 0.66

spring 2015 0.63

june 2015 0.63

septemb 2015 0.63

fall 2015 0.62

februari 2015 0.62

august 2015 0.61

2015 song 0.61

mom 115

mom music 0.66

mom dad 0.61

mom song 0.6

papa 0.59

wedd danc playlist 0.59

anniversari 0.59

mom playlist 0.58

great dai 0.58

mama 0.57

nora 0.56

my song 107

all song 0.51

my music 0.47

top song 0.46

fat 0.45

theme 0.45

new life 0.45

fav song 0.44

gab 0.44

my stuf 0.43

like these song 0.43

wedd ceremoni 800

ceremoni music 0.85

befor ceremoni 0.81

ceremoni 0.79

pre ceremoni 0.79

wedd music 0.74

ceremoni song 0.71

ludovico einaudi 0.71

wedd dinner 0.71

piano song 0.69

recept playlis 0.68

flogg molli 14004

irish song 0.87

irish pub 0.86

irish drink song 0.85

irish rock 0.85

st patrick dai 0.83

irish folk 0.82

irish 0.82

irish music 0.8

ireland 0.79

paddi 0.77

eagl 2800

roadtrip music 0.66

70 rock 0.66

rock.clas 0.65

billi joel 0.65

classic rock 0.65

70 0.64

old rock 0.64

no1 0.63

elo 0.63

easi rock 0.62

panti dropper 4000

sexi music 0.62

sex time 0.6

bedroom 0.59

slow jam 0.58

00 0.57

sweet love 0.57

babi make 0.57

sex music 0.56

bedroom jam 0.56

after hour 0.56

Table 8.3: 9 playlists titles, their ID, and its top 10 most similar playlist titles ac-
cording to the titles embedding.
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8.3 Recommendation Algorithm

Titles seem to relate nicely to one another, but, how is this useful to our tracks recom-

mendation task? We need to associate to each title the songs that usually go with it.

What we have done is the following: for each normalized title, we have selected all the

playlists with this title, and taken all its tracks. Sorting them by number of occurrences,

we have picked the most common 1000. In this way, we have built a list of titles and its

associated 1000 tracks.

The way of recommending tracks to a given title is by looking into this table. But

the point of the embedding is that we can relate a title with its most similar titles, so

when given the title spanish, instead of looking only to the 1000 tracks of spanish, we

will also look to spanish music and latino music among others. The number of playlists

taken into account depends on the case, and to select the best 500 tracks among all

these, we consider the total number of appearances and multiply each case with the

similarity to the original title.

Lastly, to test our recommendation results, we have created a special list of the most

common 1000 tracks per title, by only interating over 90 % of the MPD. None of the

playlists belonging to the challenge set have been taken into account in order to avoid

overfitting. Our fake set evaluation gives a 30% of success to our recommendations by

titles.
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Results

Considering the nature of this work, which is aimed to participate in the RecSys Chal-

lange 2018, it is fairly easy to evaluate the results of the project: by the rating success

given by the challange set. From now on we will focus on describing our challange set

recommendation properties and the results achieved with it.

9.1 Combining the models

We have explained in previous sections how we use our embeddings to predict tracks

given tracks, and predict tracks given titles. That is good for playlists that only have

title (1000) or for playlists that only have tracks (2000), but what about the other 7000?

We should take advantage of both features. After many experiments, and considering

the performance of our tracks recommender depending on the number of given seeds (as

seen in 7.2) we have decided to use the following percentages.

number of seeds recommended tracks
by tracks model

recommended tracks
by titles model

1 100 700
5 200 700
10 300 700
25 400 700
100 600 700

Table 9.1: Rrecommending performance for different number of seeds playlists.

Even though we only keep the first 500 tracks, we need more than 500 to start with.

After erasing the recommended seed tracks (if any) or the repetitions, we might end up

having less than 500.

36
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9.2 Other improvements

It is worth mentioning that we added two additional improvements:

1. Artist titles: Some playlist titles happen to be artist names, so in these cases,

before adding any other track recommendation, we recommend to the playlist all

the artist tracks.

2. Order: one of the 3 metrics of the Challenge is the number of clicks needed until

the first original track shows up, where each click refreshes 10 new tracks. By

sorting our tracks recommendation by order of popularity (so by ID), we have

been able to escalate many positions in this ranking.

Finally, we can see the recommendations process in the following diagram.

Figure 9.1: Tracks recommendation process.
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9.3 Ranking

It’s time to have a look at our performance during the last two months, since the Recsys

Challange 2018 started. In the following we can see data relative to our performance

improvement, submission frequency and relative position on the ranking table.

Figure 9.2: Precision of recommendations in percentage for all submissions.

Figure 9.3: Submissions by date
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As mentioned, there are three rankings depending on three metrics, that sum up to the

final classification: Accuracy (9.2), order and number of clicks until the first original

track. In figure 9.4 we can see the results of our submissions regarding order vs the

number of clicks. They appeare to be clearly related. So, by improving the accuracy,

the other two metrics imrpove as well.

Figure 9.4: order vs number of clicks accuracy

Even thought we have not stopped improving our recommender over time, so have too

the rest of the teams. It must be said that our current 28th position is not final, since

the Challange has not finished yet.

Figure 9.5: Number of teams participating over time, and our position in the ranking
table intrinsic and realtive.

In the appendice can be found a more complete table with the details of each submission.
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Conclusions

Thorough the course of this work, I have learned many different techniques I was hoping

to learn and many others that I did not know existed. Understanding the data and

geting to work with it was more or less as expected. The state-of-the-art research was

also very enriching and I got to learn new concepts such as Markov Chains or n-grams.

But the real challange for me was the practical part.

During a couple months, and with the guidance of my professors, I was trying different

approaches and none seemed to work. These failed attempts have not been included in

this project, because they have in no way been used for the final recommender. Nev-

erhteless, I believe it is part of the knowledge I acquiered and I would like to briefly

mention them:

1. Matrix factorization: I created a sparse matrix containing the number of occur-

rences of two tracks in the same playlist. The matrix was of size 600.000 x 600.000,

which is the number of unique tracks appearing more than 5 times in the MPD. It

had a sparisty 0f 99.7% .The matrix was then factorized using SVD reduction down

to a 100 dimensions (keeping 87,4% of its variance). Applying the k-MEANS algo-

rithm I hoped to find clusters, but no matter how many clusters I tried to make,

one of them always took 80% of the data. The same problem appeared with the

playlist-track matrix.

2. Apriori: applying this tecnique to a generic part of the MPD was either too slow,

or prdouced results only for famous tracks. I then applied it to groups of tracks

appearing to same title playlists and I obtained acceptable results, but it was too

specific and it had nothing to do with ML.
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3. Autoencoder: another possible way to compress the characteristics of our tracks

was by means of an autoencoder. However, the dimensions I was working with

were to big, and I could not get it to work.

4. Convolutional networks: after applying word2vec to the tracks, I spent some time

trying to build a network that would use the track vectors of a playlist to predict

another track in the playlist. But word2vec had been poorly trained and the

network produced random results.

In summary, I think it is save to say that I gained a lot of knowledge and I had the

chance to get familiarized with some deep learning techniques, which was my main goal

in the first place.

I also feel that the frustration I felt at some points during this work are a worth the

experience. The fact that problems do not always have a solution is a very logical and

well known fact. But it is different to know it than to experience it in your own inves-

tigation, in which you have spent many hours and have some expectations.

Lastly, participating in a contest of these characteristics is something I had never done

before. Working with a team of experts during these final weeks, meeting, talking, trying

new ideas and improving the results has resulted very thrilling and rewarding. It lets

me finish this demanding project with a very good feeling.



Appendix A

Appendix

DATE POSITION TEAMS ENCERT ORDRE CLICKS DETAILS
01/05/2018 8 8 0,22 0,86 47.22 embedding mean

close tracks
02/05/2018 5 12 3,48 10,07 13.51 500 most popular

tracks
04/05/2018 12 14 8,92 19,87 7.80 TITE popular

tracks/title, if no
title: 500 most
popular tracks

19/05/2018 22 53 13,03 26,90 3.70 model dim = 99
, mincount = 10,
no shuffle, titles
by popularity

21/05/2018 25 57 12,92 26,79 3.64 model dim = 101,
min count = 5,no
shuffle,10titles by
popularity

22/05/2018 19 60 14,21 29,74 3.14 model dim = 100,
min count = 5,
shuffle, 4titles by
popularity

23/05/2018 20 62 14,26 29,96 3.13 model = 100,
min= 5, shuf-
fle,by titles
similarity¿0.7

24/05/2018 46 65 4,80 11,66 13.59 model = 300,
min= 5, shuf-
fle,by titles
similarity¿0.7

Table A.1: Features by which some playlists are made, and 5 examples of each.
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26/05/2018 29 68 12,97 26,56 4.18 model = 300, min= 5, shuffle,by titles sim-
ilarity¿0.6 top 60

29/05/2018 22 70 14,41 29,67 3.31 model = 300, min= 5, shuffle,by titles only
best title

01/06/2018 24 71 13,01 28,80 3.04 1 track: model=100, else: model=300, by
titles only best title

02/06/2018 42 73 8,92 19,98 7.88 TITLE top 100 if similarity¿0.95, no title:
500 most popular tr.

03/06/2018 32 73 10,86 23,82 5.86 model 300, title top 60 if sim¿0.65 PROB-
LEM:SYMBOLS ERASED MODEL

04/06/2018 33 74 11,08 23,98 5.73 model 300, title top 60 if sim¿0.85 PROB-
LEM.

13/06/2018 25 85 17,68 31,46 2.96 model 300, title top 20 weighted, if
sim¿0.65

14/06/2018 26 88 17,74 31,48 2.95 model 300, title top 1 (if not enough, pop-
ular tracks)

17/06/2018 39 92 15,48 29,65 2.85 model 300, title top 10, sim¿0.7 artists,
order by pop (if not enough, mess)

18/06/2018 42 95 15,48 29,62 2.86 model 300, title top all sim¿0.95 artists,
order by pop (if not enough, mess)

20/06/2018 27 97 18,09 32,35 2.79 model 300, title top 10, sim¿0.95, no
artists, filtered by sigmas ¡ 0.1, (if not
enough, popular tracks)

21/06/2018 29 97 18,23 30,19 2.52 model 300, title top 10, sim¿0.95, no
artists, filtered by sigmas ¡ 0.1, (if not
enough, popular tracks). For playlist with
tracks mix similar songs with songs from
similar playlists

23/06/2018 42 98 16,43 30,10 2.84 model 300, title top 10, sim¿0.95, no
artists, filtered by sigmas ¡ 0.1, (if not
enough, popular tracks). For playlist with
tracks mix similar songs with songs from
similar playlists. For playlist with 5 or 10
songs, take songs close the given ones.

24/06/2018 48 98 18,43 32,57 2.47 model 300, title top 10, sim¿0.95, no
artists, filtered by sigmas ¡ 0.1, (if not
enough, popular tracks). For playlist with
tracks mix similar songs with songs from
similar playlists

25/06/2018 28 99 18,46 32,59 2.46 model 300, title top 10, sim¿0.95, artists,
filtered by sigmas ¡ 0.1, (if not enough, top
20). For playlist with tracks mix similar
songs with songs from similar playlists

Table A.2: Daily submission resultsto Recsys Challange 2018. Results and detailed
submission model.
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