

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica

Universitat de Barcelona

DEVELOPMENT OF AN ANDROID APP FOR
ESTABLISHMENT LISTING

Bernat del Santo Vilà

Director: Patricio Petruzzi
Realitzat a: Departament de
 Matemàtiques i Informàtica

Barcelona, 27 de juliol de 2018

Abstract

Mobile phones have become a powerful searching tool. New

recommendation engines have been perfecting parsing and displaying

large amount of relevant data that’s easily accessible. This vast flow

of information can overwhelm users which might lack means to save

and classify their own data.

Using real-time data streams and communication design, this

project is committed to creating a tool so that its users are able to

organize restaurants, bars or any kind of establishment fluidly.

Additionally, this tool aims to create a data network focused on valuing

personal user’s classification instead of a generalized evaluation of

establishments.

Resum

Els telèfons mòbils s’han convertit en una poderosa eina de cerca.

Els nous motors de recomanació han estat perfeccionant el

processament i la presentació de grans quantitats de dades rellevant,

que són fàcilment accessibles. Aquest ampli flux d’informació pot

saturar als usuaris que no tinguin les eines per classificar les seves

pròpies dades.

Fent ús de flux de dades a temps real i disseny de comunicació,

aquest projecte està compromès amb crear una eina perquè els seus

usuaris tinguin la capacitat d’organitzar restaurants, bars o qualsevol

establiment de forma fluida. Addicionalment, aquesta eina té com a

finalitat crear una xarxa de dades centrada en valorar la classificació

personal de cada usuari en comptes d’una avaluació generalitzada

d’establiments.

Resumen

Los teléfonos móviles se han convertido en una poderosa

herramienta de búsqueda. Los nuevos motores de recomendación han

estado perfeccionando el procesamiento y presentación de grandes

cantidades de datos relevantes, que son fácilmente accesibles. Este

extenso flujo de información puede saturar a los usuarios que no tengan

las herramientas para clasificar sus propios datos.

Utilizando flujo de datos a tiempo real i diseño de comunicación,

este proyecto está comprometido con crear una herramienta para que

sus usuarios tengan la capacidad de organizar restaurantes, bares o

cualquier establecimiento de manera fluida. Adicionalmente, esta

herramienta tiene como finalidad crear una red de datos centrada en

valorar la clasificación personal de cada usuario en vez de una

evaluación generada de establecimientos.

Contents

1 Preface ... 1

1.1 Introduction and Motivation .. 1

1.2 Objectives .. 3

1.3 Analysis of similar products in the market ... 4

1.4 Project schedule ... 6

2 Design .. 9

2.1 Functionality ... 9

2.2 Use Cases ... 10

2.3 User Interface design .. 11

2.4 Framework schematic ...13

3 Implementation ... 15

3.1 Tools .. 15

3.1.1 Device accessibility .. 15

3.1.2 Operating System .. 16

3.1.3 Establishment data .. 16

3.1.4 Establishment display .. 17

3.1.4 Database ... 18

3.2 Application development .. 19

3.2.1 Screen navigation .. 19

3.2.2 Places and Maps SDKs .. 22

3.2.3 Firebase ... 26

3.2.4 Asynchronous bi-directional data display using Adapters31

4 Conclusions and future directions ... 36

4.1 Conclusions .. 36

4.2 Future directions ... 37

5 References ... 39

 1

1 Preface

1.1 Introduction and Motivation

The market for restaurant recommendation is saturated with

platforms using user-generated content. In most cases, these platforms

normalize that content in order to offer a unified assessment on each

individual restaurant. Their objective is to propose a general evaluation

of that restaurant and to try to be as inclusive as possible. Only after

the user participates in generating content the platform is able to

personalize recommendations to be adjusted to the user’s needs and

tastes.

From a user’s perspective, this creates a problem. Diversity and

style are crucial when it comes to evaluating subjective experiences.

Especially in the restaurant industry, the user’s attributes like mood,

intentions or even time of the day greatly shift the list of places to be

considered relevant. This problem usually reaches the point where,

when accessing one platform to get a list of high-rated restaurants near

you, the user is left with content that might be very significant, but in

an entirely different context.

There is no easy solution to this. The platforms work on the premise

that if some information is now relevant to a user, it will also be

relevant in the future. The only characteristics of the user’s context to

be taken into consideration are information already available from the

platform like location or time of the day. There are some tools to try

 2

to make the user specify better their needs, for example, sorting by

types of restaurant. Being able to filter the data by food ethnicity or

price range certainly helps narrow down the possibilities of the user to

choose from but it’s a fair assumption that the user’s context is much

more complex and not easily divisible by generic categories.

My approach to this problem is not to perfect the user’s ability to

express their situation in a more precise manner, but to give the user

a tool to organize their information however they see fit. No one knows

how to classify context by groups better than the user themselves.

The process that arises when someone construes the value of a

certain restaurant recommendation involves the knowledge and trust

this person has of the agency that recommends. It’s likely that someone

might find themselves thinking that the user-generated content of a

platform defines a style that that isn’t aligned with themselves. For

example, TripAdvisor is a cross-platform application that provides

restaurant reviews, recommendations, and other travel-related content.

It makes sense that a tourist is likely to be aligned with the

recommendations of this platform as it has developed around their

interests. However, for the same reason, those recommendations are

less likely to be relevant to locals. That process, on which an agency’s

provided information is relativized, is based on our understanding of

the agency’s tendencies and is done naturally with our friends. When

a friend recommends you something, you automatically use an already-

existing network to know how to relate that information to your tastes.

The shift from focusing on the establishments to focusing the lists

empowers the users to decide which friends to trust and which not to.

 3

Hence, the effort to remove centralized recommendations that are

subjective in favour of a system where it’s left for the users to create

their network is also a motivation for the development of this

application.

1.2 Objectives

This project encompasses developing an application to allow the

user to organize their restaurants. The goal is to lower the burden

generated by the intense amount of information of already visited

establishments as well as the ones you are interested to try out. For

this reason, it’s crucial that the app is simple, fast, visual and fluid as

those attributes directly correlate to easing user experience. This

application hopes to accomplish it by giving the user the possibility to

create and edit their own lists of establishments, the scope of which

they define using their own criteria.

Furthermore, the central point of value of this application is the

lists themselves. To capitalize on that the app will incorporate a way

to make use of lists created by other users. Doing that encourages

people to look for trustworthy users or friends and incorporate their

saved lists to their map.

 4

1.3 Analysis of similar products in the market

The following is a summary of an analysis of the current market for

applications that share characteristics. The result of this study is

grossly depicted in Table 1.

Placest1: This app is centred around place “recommendations” and

connecting with specific friends from other social networks. Its follow-

based networking creates a feed that shows two types of lists from your

friends: “wishlist” and “recommend”. The map can be filtered by your

friends or even by a particular person. However, the versatility of your

own restaurants is lacking as you can only categorize your restaurants

into two types which is identical to the feature Google Maps already

has with additional limitations. It has a very elemental

recommendation engine as it only displays events from your friends.

Foodfriends: Theoretically, its functionality coincides with this

project’s since it advertises a simple tool to share your findings and

listings with your friends. However, the current build has an abundance

of bugs and errors to the point that it’s not functional.

Synchrolife: Synchrolife is a community-centred restaurant app. Its

main focus is to develop a global feed based on every user’s input. User

location doesn’t interfere in the process more than as a filter for the

restaurant display as this app has no map option. Even most of the

different kind of feeds are international which translates in this case to

mainly Japanese.

1 As of June 2018 this app has been discontinued from Google Play Store.

 5

Friendsyfood: Even though superficially this app has all the features

this project intends to develop, its implementation differs from the

project’s intended purpose. In the map exploration, you see all the

possible restaurants mixed up with no possible filter. Therefore, it’s

not possible for you just to focus on your information. Not only does

this make the app cluttered with markers, but also translates to a

vulnerability to the user experience as anyone can influence completely

every user’s map. The friend list requires invitation and approval

which adds little value to the community features. A more updated

version of this friend list is found on other apps which are influenced

by Twitter, developing a feed based on people who you follow. In this

case, every user’s information is public so the only extra functionality

to be had by connecting with friends is to have their information

appear on your feed. In general, this app points towards the direction

of this project, albeit opposed methodology.

TripAdvisor: The approach of this app isn’t the same as the others on

this list but it’s impactful and relevant in the industry. Their intent is

to rank restaurants using a 5-star system and customer reviews. With

that information, they are able to provide recommendations taking into

account your location. It’s a straightforward system but highly

impersonalized. While this app thrives in environments where there is

no context or communities by default for the user, it lacks the nuances

between recommendations in a more established community.

 6

App Name Restaurant Lists Map Follow list Recommendation

Placest Very limited Yes Yes Very limited

Yelp No Yes Yes Yes

Synchrolife Very limited No Yes Very limited

Friendsyfood Yes Yes Yes Yes

TripAdvisor Yes Yes No Yes

Table 1 Market functionality summary

1.4 Project schedule

This Gantt chart illustrates the completed project’s time

management. Start and finish dates of summary elements of the project

are specified in Table 2 while shown visually on Figure 1.

The functionality of the project is noticeably divided into four

independent parts. Consequently, testing and debugging has been able

to do throughout the entire development stage, albeit sporadically. For

this reason, the chart only depicts full-time involvement.

 7

Task Name Start Date End Date Duration

Defining the project 07/02/2018 21/02/2018 14

Relevance of the idea in the market 23/02/2018 05/03/2018 10

Functionalities 03/03/2018 21/03/2018 18

Analyzing and determining tools 18/03/2018 27/03/2018 9

App architecture and UI 23/03/2018 12/04/2018 20

Google Maps+Places API 04/04/2018 09/05/2018 35

Firebase 27/04/2018 30/05/2018 33

Synchronous Data Display 03/05/2018 12/06/2018 40

Test and debugging 05/06/2018 20/06/2018 15

R
es

ea
rc

h
Im

p
le

m
en

ta
ti

o
n

Table 2 Gantt table

 8

Figure 1 Gantt chart

 9

2 Design

In this section, the application’s form and capabilities will be

defined. To do that, we must convert our objectives into features,

designing a functionality and the interaction between user and

interface. Finally, a framework schematic will be represented using a

wireframe diagram.

2.1 Functionality

First of all, it’s important to keep in mind one of the key objectives

of this application is not to feel cluttered and avoid overwhelming the

user. Following that principle, its functionality should be optimized to

reduce the user cases down to an essential level. If a user has different

ways to interact with the app that do similar things, that creates

unnecessary complexity directly against the main objective of

effortlessly unloading your information. On the other hand, the display

should also be clean and precise. Altogether, the strain and complexity

should be derived to both the design and backend aspects of

development.

To begin with, the user should have the option to register, log in

and log out accounts. Once the user is logged in, they should be

 10

presented with a visual map that displays all the lists of establishments

they have been gathering

From that point, the app will offer different tools that ultimately

allow the user to expand their collection by editing their lists and

searching for other user’s lists.

2.2 Use Cases

A use case diagram lists the possible interactions between the user

and the conceptual systems. Figure 2 In order to simplify it, the use

Modify your lists includes the system’s ability to add places to a list,

remove them or remove the list entirely.

Figure 2 Use case diagram

 11

2.3 User Interface design

Google’s Material Design [1] has been gaining popularity, especially

in small apps. It introduces a set of guidelines that help developers get

a sense of good praxis when it comes to design. In most cases, Android

developers are not well-versed in design, therefore, the idea to be able

to quickly adopt protocols that generate better interfaces is especially

alluring for a sole developer. The benefits from Google’s work, however,

aren’t limited to aesthetics.

Their design offers an intuitive visual language. From a user’s

perspective, it efficiently conveys information on how to navigate the

app and what does each element of the app do. From a developer’s

perspective, it gives insight into what interface structures you should

strive to accomplish and, more so, which ones you should avoid

completely.

Android constantly introduces new libraries, objects, icons and

components that follow these criteria and give you the options to

customize it to a great degree. Google successfully tries to smooth

implementation of those features which makes it easier for the

developer to embrace their tools.

Another objective of Material Design is to unify user experience

across multiple platforms. As a result of designing a flexible and easy

to apply interface, it can be found in a considerable range of apps,

including WhatsApp. This widened scope allows apps to take part in

a shared environment with other Google Apps, most of which also use

Material Design. Even though it this has its weaknesses, one important

strength is that it immediately feels familiar.

 12

For all of these reasons, Material Design has been chosen as a

central point to create the user interface and architecture around.

Notable elements of the app that are components of Material Design

that could be relevant for implementation include:

Navigation Drawer [2]: Navigation Drawer is the main component

that sets the flow of the app’s navigation. It is a point of reference

from which the user can hastily change between the core

functionalities.

Floating action button [3]: It’s an immediate visual message that

lets the user know they can add an element. Material Design’s goal is

to concentrate all possible inputs from the user on that sole floating

button.

Toolbar: A newer adaptation of the common known Android’s

Action Bar. Even though most toolbars remain unchanging throughout

most of the apps where it’s implemented, represents a highly

customizable component. The purpose of this element is to act as a

container of items that display information of the main component or

perform actions on it.

 13

2.4 Framework schematic

The visual guide shown in Figure 3 depicts the layout arrangement

and flow and primitive interaction design.

Initially, the user will switch between Login and Register screens

until a successful login. Upon that, the user will be redirected to the

Discover screen where his lists will be displayed. From that point on,

the toolbar will allow toggling the navigation drawer giving easy access

to all four major screens Discover, MyLists, FollowingLists, and

SearchList from any of them. The relation between use cases and the

screen where the user can access them can be seen in Table 3.

 Use case Screen

Register Register

Log in Login

Log out NavigationDrawer

Create list CreateList

Delete list MyLists

Add a place to a list AddPlace

Remove place from a list MyLists

Follow list SearchList

Unfollow list FollowingLists

Display created and followed lists Discover

Table 3 Use cases by screen

 14

Figure 3 Wireframe diagram

 15

3 Implementation

The structure of the description of the implementation segment will

be divided into two parts. First, tools to accomplish the app’s

functionality and objectives will be proposed, exposing reasoning

behind why those specific tools have been chosen. Secondly, a detailed

explanation of how those tools were developed.

3.1 Tools

3.1.1 Device accessibility

Web apps have the benefit of being accessible by almost any device

with internet access. Since a primary objective is to be able to connect

with other users, this app should be reliant on internet access. While

the cross-device exposure constitutes a good case in favour of web

pages, it’s important to consider that this exposure comes to the cost

of design. Being able to unify the web layout so that it is as easy to

use from either tablet, smartphone or computer can be especially

complex if the app needs to be simple and clear.

Considering the dependency of geolocation inherent to the idea of

this app and the portability of mobiles, it follows prioritizing mobile

compatibility over any other device.

Following the arguments above, it is concluded for this app to be a

Native App.

 16

3.1.2 Operating System

To decide which Operating System is the best fit, a study has been

made that determines that Android is the OS with the most exposure,

mainly because of its universality and reach. Android is the most

popular smartphone OS [4] with approximately 75% of market share

while the second most popular is iOS at 19%. Google Play total app

downloads also double iOS’ despite Google Android having just under

two times the install base as iOS [5] which implies a slight edge on

downloads per user on Android.

Together with a more direct accessibility to tools commented below,

this makes Android the most suitable OS to develop in.

3.1.3 Establishment data

Technically, it’s possible to implement a system with a user-

generated establishment database. This model simplifies development

directly saving all the data necessary filled in by the user. From this

perspective, making use of external databases is not a necessity but

rather a choice favouring data consistency and greatly simplifying the

user case of saving an establishment.

Google Places API is a service that gives developers access to a

large amount of information compiled by google about establishments,

ubications or points of interest. This includes reviews, photos and price

 17

range. The variety of the information given by this API about places

enrichens the possible information to be shared with a user. In this

project, however, there is a point to shun from this user-generated

content that usually evaluates the place for the user. For this reason,

the only function of this API used has the objective grant the user

ways to search and retrieve places.

3.1.4 Establishment display

Maps are a powerful tool to quickly convey visual information. It’s

very hard to get valuable information fast from text lists since it’s

necessary to read every single element. Utilizing a map to display lists

of establishments allows developers to incorporate visual design

principles [6] more effectively.

Google Maps API is the most used map API [7] as well as one of

the most used APIs in general [8]. The degree of customization of the

map, including styles for a cleaner look and highly adjustable markers,

makes this a practical choice for the app

 18

3.1.5 Database

Having an internet-accessible database is essential to the project’s

objective to relate information between users. Making use of a backend

as service (BaaS) model will simplify development process as well as

give features otherwise too far-reaching for this project.

Firebase started as a Y Combinator (YC)2 start-up and grew to

become an app-development platform subsidiary of Google. The most

prominent feature of its database functionality is its real-time by

default datastore. In most databases, it’s a requirement to make calls

to get your data. For syncing, there wasn’t a way for you to know if

the data changed without refreshing it by reaching the database again.

Real-time databases, however, send you data as soon as it’s uploaded,

changed, or deleted. Using real-time databases inherently shifts the

focus from refreshing your data periodically to keep it updated to

connecting to firebase once and then tell the controller how to behave

whenever the connected data is changed. This allows for a smoother

transition of display since it provides which data has been changed as

well as a faster interaction between the user and the data.

In Firebase Realtime Database data remains saved locally so call-

back events are fired even if the device is offline at the time of the

occurrence, giving a more responsive experience for the user.

2 http://www.ycombinator.com/

 19

3.2 Application development

3.2.1 Screen navigation

Most of the application’s flow is dictated by a standard

NavigationDrawer [9] implementation, the structure of which can be

seen in Figure 4. The core part of the application only occurs in one

activity, MainActivity, seen on Figure 5. This activity’s root view is a

DrawerLayout including app_bar_main.xml and a NavigationView.

The app_bar_main.xml contains both the ActionBar and the content

displayed on the main screen. NavigationView controls the drawer

options and the general flow of the app.

 20

Figure 4 Application structure

Figure 6 app_bar_main.xml Figure 5 main_activity.xml

 21

MainActivity.java implements onNavigationViewItemSelected in

which there is a switch case that replaces mainLayout inside

app_bar_main.xml, depicted in Figure 6, with the fragment related to

the item on the menu.

Meanwhile, the Toolbar inside the ActionBar controls the home

button that toggles the drawer as well as other possible views from the

menu options such as SearchView.

Most of the Fragments used are straightforward with the exception

of DiscoverFragment. This fragment contains a SupportMapFragment,

the context of which is MapsActivity so that you can handle items in

the DiscoverFragment without referencing the MapsActivity itself.

That is, in particular, the FloatingActionButton to add a place to a

list.

DialogFragments are implemented in order to create a bounded

conversation between the app and the user. A simplification of this

implementation is shown on Figure 7, those dialogs send data back to

the targeted fragment by linking a custom Java interface, extending

the methods on the target fragment and calling it from the

DialogFragment once the process is done.

 22

public class AddPlaceDialogFragment

extends AppCompatDialogFragment {

 {...}

 public interface OnInputSelected{

 void sendInput(ArrayList<String> listsIds);

 }

 public OnInputSelected onInputSelected;

 {...}

}

public class DiscoverFragment extends Fragment

implements AddPlaceDialogFragment.OnInputSelected {

 {...}

 @Override

 public void sendInput(ArrayList<String> listsIds) {

 //Handle information recieved from dialog.

 }

}

Figure 7 Dialog communication

3.2.2 Places and Maps SDKs

Broadly, Google Places SDK’s purpose in this application is to

allow the user to easily select an establishment while Google Maps

SDK’s is to display the information provided by Places. This creates a

unidirectional link from user input, to Places and finally Maps. This

link is sustained by the widget PlaceAutocomplete that interacts with

the user and then by the Marker functionality of Google Maps.

 23

Places

PlaceAutocomplete [10] gives the tools to create a custom search

dialog widget with incorporated autocomplete functionality. This

functions similarly to a SearchView yet with a dynamic dropdown

menu displaying possible similar establishments to the user’s input.

Figure 8 PlaceAutocomplete full-screen widget example3

 By creating this widget programmatically, you can make use of

ways to enhance the functionality by giving it filters [11] and bounds

[12]. An activity is then executed, the result of which will be saved on

the static class PlaceAutocomplete. That result consists only of a single

3 https://developers.google.com/places/android-sdk/autocomplete

 24

Place with all the attributes provided by the API. Nonetheless, the

only attributes that are needed are the name, location and the id in

order to be able to access the place whenever it is required.

Maps

Markers are a visual cue identifying a location on a map. Creating

them only requires a location however they are highly versatile with a

wide range of customization. Once the Google Map is correctly

implemented [13] adding markers to it is straightforward (Figure 9).

private Marker addMarker(LatLng latLng,String title,float hue){

 MarkerOptions option = new MarkerOptions();

 BitmapDescriptor i =

BittmapDescriptorFactory.defaultMarker(hue);

 option.position(latLng).title(title).icon(i);

 return map.addMarker(option);

}

Figure 9 Marker customization

When retrieving the user’s data from the database, this method will

be called for each establishment. To make them discernible, each list

will have their own hue from a standard set in

BitmapDescriptorFactory.

 25

Figure 10 illustrates the resulting Discover screen as the user sees it

on the final app release.

Finally, a focusedMarker would be implemented representing the

place the user has selected as well as showing a marker with a distinct

colour to highlight its importance. When successfully querying Places

searching for a new establishment, focusedMarker will be updated with

a new Place and creating a new marker. Selecting other markers or

changing screens will remove focusedMarker.

Figure 10 Screenshot from app showing Discover

 26

3.2.3 Firebase

Data structure

Unlike relational databases that use SQL, Firebase’s data is stored

in JSON objects, therefore, all your data will be organized as a JSON

tree.

Each node entry has a key and a value where the value can be another

JSON entry. The keys can be set manually or given by using an already

defined method in the SDK.

The natural tree structure of the JSON makes the database tend

to be highly nested.

For example, consider having a user system in our app. Each user

has a set of attributes. Once a user creates a new list of establishments,

it seems like the logical step to follow is to add a list subordinated to

that user. Each list has attributes and a group of places saved. Each

place has attributes including coordinates and names. The resulting

database will be as Figure 11.

 27

{

 "users": {

 "user_1": {

 "name": "User1",

 { ... },

 "lists": {

 "list_1":{

 "name": "Mylist",

 { ... },

 "places": {

 "bar_1": location",

 { ... }

 }

 }

 }

 },

 "user_2": { ... },

 "user_3": { ... }

 }

}

Figure 11 Deeply nested JSON

Although this arrangement falls in line with JSON’s format, it can

generate some problems as explained below.

Consider trying to access a list creator by the list’s id. In this

example, the mobile would have to go through all the users and check

if they have a child with said ID. This is a time-consuming process,

especially which impacts greatly on the responsiveness of the real-time

factor of this user experience.

Additionally, when you fetch data from Firebase, you receive a

dataSnapshot that contains all the data from the child nodes from that

reference. That means that if you want to get a list of usernames, you

would have to download the entire database.

These problems arise from how deep the nesting is in this structure

and scale particularly poorly as the data grows. For this reason, it’s

generally considered as the best practice to try to design the database

as flat as possible.

 28

The alternative currently implemented on the app’s database can

be seen in Figure 12 and consists of two main JSONs, users and lists

that effectively reduces its depth by half.

{

 "users": {

 "user1_id": {

 "name": User1 ,

 { ... },

 "created_lists": {

 "list1_id": name {

 { ... },

 }

 }

 },

 "user_2": { ... },

 "user_3": { ... }

 }

 "lists": {

 "list1_id":{

 "name": MyList ,

 "creator": user1_id ,

 { ... },

 "places": {

 "bar_1": location",

 { ... }

 }

 }

 }

}

Figure 12 Correlated JSON entries

The communication between both lists is done by the elements

created_lists and creator that link unidirectionally to the reference on

the other JSON.

 29

Communication

Similar to a conventional database, in Firebase a reference is used

to transfer a request regarding your data. DatabaseReference is a class

that points towards a particular point of your database. Regardless,

contact between the app and Firebase is heavily influenced by real-

time being a by-default characteristic. Requesting data do be saved is

inherently a real-time process, consequently, it can be done by a simple

call to push() or setValue() methods included in DatabaseReference.

However, requesting data to be retrieved is done by attaching

asynchronous listeners to database references. Those listeners are

triggered once set and then asynchronously every time the data has

been modified. The implementation of those listeners, shown in Figure

13, includes cases for every kind of event involving your referenced

data.

 30

databaseReference.addChildEventListener(new ChildEventListener() {

 @Override

 public void onChildAdded(@NonNull DataSnapshot dataSnapshot,

@Nullable String s) {

 }

 @Override

 public void onChildChanged(@NonNull DataSnapshot dataSnapshot,

@Nullable String s){

 }

 @Override

 public void onChildRemoved(@NonNull DataSnapshot dataSnapshot) {

 }

 @Override

 public void onChildMoved(@NonNull DataSnapshot dataSnapshot,

@Nullable String s) {

 }

 @Override

 public void onCancelled(@NonNull DatabaseError databaseError) {

 }

});

Figure 13 DatabaseReference listener attachment

ChildEvenListener is one of the types of listeners you can attach to

a database reference. It is meant for references that point towards an

element which value is another JSON. The call-back onChildAdded is

triggered once for every child in that JSON and then every time a child

is added. The rest implemented methods onChildRemoved,

onChildChanged and onChildMoved are self-explanatory and are

triggered only when those pertinent events occur.

The parameter DataSnapshot contains the complete data branch

starting from the reference’s child on which the event took effect.

 Utilizing these methods, you can keep an always updated list of all

the data you need at any particular interface.

 31

3.2.4 Asynchronous bi-directional data display using

Adapters

Once your data is correctly real-time, a system is needed to relay

that information so that it can be displayed in specific Android Views.

If your data is simple and your view is not mutable, it’s sufficient to

directly reference the view whenever your data is altered. For example,

if the only objective is to display an establishment list unidirectionally,

it is enough for to reference a ListView on the Firebase call-backs to

update it. Using this arrangement, there is no definite link between the

View and your data except the specific code that sends information to

the view through the interface. The problem arises when the view is

not only expected to display, but it contains elements that allow the

user to interact back with the data. If you want to implement a button

that deletes a list from your database in the same view that shows

your list then you need a precise association between that list and the

view.

This utility is provided by Adapters [14] which functions as a joint

between an AdapterView and your code. An Adapterview is a view

that includes a set of children items controlled by the adapter.

Adapters administer every aspect of the display as they include

indexation and inflation of the views.

In this app, RecyclerView’s [15] model (Figure 14) is used to contain

lists in views. A RecyclerView is a view similar to an AdapterView

where every child element of its list is an entire View. This allows us

 32

to create complex blocks of information that are connected inside the

child.

Each child is implemented modularly in the specific

RecyclerView.Adapter by using ViewHolders. As the name suggests,

these objects hold all the information regarding a list component,

including the views and identification keys. The adapter implements

ViewHolders by inflating views, binding holders and updating the list

of elements shown in the interface.

Figure 14 RecyclerView example4

4 https://developer.android.com/guide/topics/ui/layout/recyclerview

 33

Technically, these tools are applied by implementing your own

adapters and holders [16]. Once the custom RecyclerViewAdapter is

created to serve your purposes, Figure 15 shows how the adapters are

linked to the view.

recyclerView = view.findViewById(R.id.listsView);

ArrayList<PlaceList> yourLists = getListOfPlacelists();

CustomRecyclerviewAdapter adapter =

new CustomRecyclerviewAdapter(yourLists);

recyclerView.setAdapter(adapter);

recyclerView.setLayoutManager(new LinearLayoutManager(getContext()));

Figure 15 Adapter implementation example

The constructor’s parameter of your adapter usually contains a List

where every element represents an item to be shown. Since the adapters

make use of the list pointer, modifying it and notifying the adapter of

a change (Figure 16) dynamically changes the View’s appearance.

yourLists.remove(i)

adapter.notifyDataSetChanged();

Figure 16 Adapter data revising example

This structure functions effectively if you only want to show a flat

list. The app could have applied this principle generating one list of

lists, creating a pop-up dialog on each list to display the establishments

in it. Instead, bearing in mind the simplicity and visuality of the

objectives of this app, the goal is to present the user with a nested list

with all available information in the same place. For that reason, this

simpler version of RecyclerView is only implemented in one Fragment

 34

as it can’t be adapted into nested lists. When you are adding an

establishment to one of your lists, the name should suffice for the user

to acknowledge their own lists and to decide which one of them they

want to add it to.

In MyLists, however, it’s important for the user to see all your lists

and the establishments contained in them. Implementing this feature

is done using an external library called ExpandableRecyclerView by

Thoughtbot [17]. The library provides tools for the developer to create

their own ExpandableRecyclerViewAdapter with a combination of

GroupViewHolder (representing the parent element) and

ChildViewHolder (holder for the child element). Indexation, thread

management and most of the processes that a regular

RecyclerViewAdapter regulates are also taken care of by this

library. Hence, most of the code left for the developer to do customizing

he adapter relates to correctly relaying your data to the adapter and

binding it properly to each view holder.

 35

Figure 17 Screenshot from the app showing ExpandableRecyclerView

Comment: There is a bug found in the library. If a parent group is

expanded and you delete it from your List, the pointer of which is used

dynamically by the adapter, the indexation isn’t updated accordingly

resulting in an IndexOutOfBoundsException before you can notify

changes to the adapter. A work-around has been employed involving

manually modifying the adapter every time this occurs.

 36

4 Conclusions and future directions

4.1 Conclusions

In this project, we followed the development of an application from

its infancy to its completion.

Starting with defining our objectives, we transformed them into use

cases and later applied visual design guidelines outlining the final

result.

By understanding and employing Android fundamentals we

accomplished implementation a navigation drawer architecture, Google

Maps and Places SDK and user permission system.

 We subsequently used more contemporary and advanced

technology concerning data communication as real-data is one of the

major aspects of this product result. Its addition proved remarkably

significant by aligning with the project’s objective to convey fluidity

to the user’s experience.

Progress in applying display features introduced complexity

regarding the nesting of views. Since it wasn’t initially envisioned it

forced us to conceive new directions and paths to meet the

expectations.

Although a fruitful development, this work exposes new ideas and

room to grow not previously predicted left omitted.

 37

4.2 Future directions

While we accomplished the objective of this thesis, there is leeway

for improving functionality, particularly in a saturated market.

Commencing by shrinking the gap between the user and the storage

of relevant data, there are two proposals to accomplish a more

accessible storing process. Granting the user means to link his account

to Google’s and to manage which ones of his contact’s lists they want

to follow would vastly ease the introduction process for the user.

Likewise, the experience of adding a particular place to your lists is

excessively narrow as it can only be done by name. For this reason, a

next step towards expanding the functionality to this application

includes the choice to add an establishment to a list by clicking it on

the map.

In terms of social network, there is an argument to be made in

favour of fostering connections between users. Possibly making use of

Google’s accounts there can be a “friends” system using the “follow”

scheme implemented in Spotify. Once set up, having the ability to

display an entire user by composing all their lists on a map would help

other users get a better picture of what are the other’s stance and

significance. Additionally, being able to follow an entire user by

conjointly following all their lists would support building relationships

of trust between users and their tastes. It is only fitting since

establishment lists are conceived by users so the interest a particular

list could have stems from the user that realized it.

 38

Customisation is meaningful too, as it enrichens the user’s role and

participation in the activity. Thus, it’s valuable to considerate new

desirable modifications. The user’s identity can be augmented by

creating features such as profile picture, a small user description or

general user information like gender, location or hobbies. Furthermore,

extending the options while creating lists would provide the creator

with a sense of uniqueness to their contribution. This can be achieved

by letting the creator set a list colour, icon, or a description explaining

the author’s thought process and objective.

On the last note, it’s important to consider the inherent potential

in implementing a recommendation system particularly prone to using

machine learning. The base structure is simple and, with an accurate

establishment embedding, it could potentially propose genuinely

significant contributions.

 39

5 References

[1] Google. Material Design

https://material.io/design/

[2] Google. Navigation Drawer.

https://material.io/design/components/navigation-

drawer.html

[3] Google. Floating Action Button.

https://material.io/design/components/buttons-floating-

action-button.html

[4] StatCounter Browser Market Share Worldwide

http://gs.statcounter.com/os-market-share/mobile/worldwide

[5] Benedict Evans The (lack of) app store metrics.

https://www.ben-evans.com/benedictevans/2015/6/13/the-

lack-of-app-store-metrics

[6] Mullet, K. (1994). Designing Visual Interfaces. In K. Mullet,

Designing Visual Interfaces: Communication Oriented

Techniques.

[7] Janet Wagner Top 10 Mapping APIs: Google maps, Microsoft Bing

Maps and MapQuest.

https://www.programmableweb.com/news/top-10-mapping-

apis-google-maps-microsoft-bing-maps-and-

mapquest/analysis/2015/02/23

[8] Wendell Santos ProgrammableWeb’s Most Popular API’s of 2017

https://www.programmableweb.com/news/programmablewebs

-most-popular-apis-2017/research/2018/02/21

[9] Google. Create a Navigation Drawer.

https://developer.android.com/training/implementing-

navigation/nav-drawer#java

 40

[10] Google. Place Autocomplete.

https://developers.google.com/places/android-

sdk/autocomplete

[11] Google. AutocompleteFilter.Builder

https://developers.google.com/android/reference/com/google/

android/gms/location/places/AutocompleteFilter.Builder

[12] Google. PlaceAutocomplete.IntentBuilder

https://developers.google.com/android/reference/com/google/

android/gms/location/places/ui/PlaceAutocomplete.IntentBuil

der

[13] Google. Map Objects

https://developers.google.com/maps/documentation/android-

sdk/map

[14] Google. Adapters

https://developer.android.com/reference/android/widget/Ada

pter

[15] Google. Create a List with RecyclerView

https://developer.android.com/guide/topics/ui/layout/recycler

view

[16] Friedel, R. (2016, November 18). Android Fundamentals: Working

with the RecyclerView, Adapter, and ViewHolder Pattern.

 https://willowtreeapps.com/ideas/android-fundamentals-

working-with-the-recyclerview-adapter-and-viewholder-

pattern/

[17] Hill, A. (2016, August 31). Introducing ExpandableRecyclerView.

https://robots.thoughtbot.com/introducing-

expandablerecyclerview

