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61Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore, Italy and INFN, I-56127 Pisa, Italy
62Prairie View A & M University, Prairie View, Texas 77446, USA

63Princeton University, Princeton, New Jersey 08544, USA
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76Università di Trieste, Dipartimento di Fisica, Italy and INFN, I-34127 Trieste, Italy
77IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

78University of Victoria, Victoria, British Columbia, Canada V8W 3P6
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We report a study of the processes e�e� ! �� and e�e� ! �0� at a center-of-mass energy of
10.58 GeV, using a 232 fb�1 data sample collected with the BABAR detector at the PEP-II collider at
SLAC. We observe 20�6

�5�� and 50�8
�7�

0� events over small backgrounds, and measure the cross sections
��e�e� ! ��� � 4:5�1:2

�1:1 � 0:3 fb and ��e�e� ! �0�� � 5:4� 0:8� 0:3 fb. The corresponding tran-
sition form factors at q2 � 112 GeV2 are q2jF��q2�j � 0:229� 0:030� 0:008 GeV, and q2jF�0 �q2�j �
0:251� 0:019� 0:008 GeV, respectively.

DOI: 10.1103/PhysRevD.74.012002 PACS numbers: 13.66.Bc, 14.40.Aq, 13.40.Gp

I. INTRODUCTION

The cross section for the reaction e�e� ! �� ! P�,
where P is a pseudoscalar meson, is given, for energies
large compared with the P mass mP, by

 

d�e�e�!P��s; �
�
��

d cos���
�
�2�3

4
jFP�s�j

2�1� cos2����; (1)

where
���
s
p

is the e�e� center-of-mass (c.m.) energy, ��� is
the angle between the outgoing photon and the incoming
electron in the e�e� c.m. frame, and � is the fine structure
constant. The form factor FP�q2� describes the effect of the
strong interaction on the �� ! �P transition as a function
of the four-momentum q of the virtual photon; here q2 � s.

These transition form factors can be calculated using
perturbative quantum chromodynamics (QCD) in the
asymptotic limit, q2 � m2

P [1,2]:

 � q2FP�q2� �
���
2
p
fP

�
1�

5

3

�s�q
2�

�

�
; (2)

where fP is the pseudoscalar meson decay constant, and�s
is the strong coupling. The �-meson decay constant is
known from leptonic � decays to be about 131 MeV. The
effective � and �0 decay constants depend on the mixing
between the two states, which must be calculated from
other data [3–8]; for example, the scheme in Ref. [3] gives
f� 	 f� and f�0 	 1:6f� [9]. At lower q2, however, the
form factor can only be estimated phenomenologically.
Currently, measurements of e�e� ! �� cover only the
energy region below

���
s
p
� 1:4 GeV [10,11], where decays

of ��770�, !�782�, and ��1020� dominate. There are also
measurements from J= ! �� and from �, J= ,
 �2S� ! �0� decays [12]. Spacelike ��0�� transition
form factors have been measured in two-photon reactions
��� ! ��0� [13–17] up to q2 	 20 GeV2. These q2 values
are not in the asymptotic region, and measurements at
higher q2 are needed both to establish the asymptotic value
and to test phenomenological models.

In this article we present measurements of the reaction
e�e� ! ��0�� at an average e�e� c.m. energy of
10.58 GeV, corresponding to q2 � 112 GeV2. We recon-
struct the � in the �����0 decay mode, and the �0 in the

����� decay mode, where the intermediate � state de-
cays to either �� or �����0. From Eqs. (1) and (2) and
the fP values given above, we expect cross sections of

 ��e�e� ! ��� 	 2:1 fb; ��e�e� ! �0�� 	 5:5 fb;

(3)

which are much smaller than those of many hadronic
processes, so we must consider other sources of such
events, as well as backgrounds, carefully. About 20% of
the hadronic events in our data are from decays of the
	�4S� resonance; its branching fraction into ��0�� has not
been measured, but can be estimated using the relation

 

��	�4S� ! ��0���

��	�1S� ! ��0���
	

��	�4S� ! e�e��
��	�1S� ! e�e��

: (4)

From the upper limit on the branching fraction B�	�1S� !
��0���< 2:1�1:6� 
 10�5 at 90% CL [12], we obtain
B�	�4S� ! ��0���< 2:5�1:9� 
 10�8 and a cross section,
��e�e� ! 	�4S� ! ��0���< 0:026�0:020� fb, well be-
low the values expected for the mechanism under study.
Radiative return, e�e� ! �ISRe�e� ! �ISR��0�, in which
there is a high energy photon �ISR from initial-state radia-
tion (ISR) off the initial electron or positron, is forbidden in
single-photon annihilation of the resulting e�e� pair.
Double-photon exchange is estimated to have a cross sec-
tion much smaller than in Eqs. (3) [18]. We therefore
assume all the true e�e� ! ��0�� events in the data are
due to the processes under study.

The radiative processes e�e� ! �ISR�
����0 and

e�e� ! �ISR�
���� produce final states identical to

those for the signals. However, the �����0 and
����� mass distributions for these processes do not
show peaks at the � or �0 masses, and we include this
background in the fits to the mass distributions. Other
sources of nonpeaking background, such as higher multi-
plicity ISR events with missing particles and e�e� !
hadrons events with a high energy �0 faking a hard pho-
ton, are reduced to low levels in the selection process.

Background that peaks in the ��0� mass region arises
mainly from the ISR processes e�e� ! �ISRV !
�ISR��0��, where V is a vector meson, such as �, !, �,
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J= , or 	. If the photon from the vector meson decay has
low energy in the laboratory frame and is lost, the event
cannot be distinguished from the signal. Additional peak-
ing background can arise from e�e� ! VP! ��0��0�,
with or without an ISR photon, where V is a vector meson
decaying into �0�, ��, or �0�, and P is a �0, �, or �0.
These backgrounds are estimated from Monte Carlo (MC)
simulation and data, and are subtracted from the number of
observed ��0�� events.

II. THE BABAR DETECTOR AND DATA SAMPLES

Here we analyze a data sample of 232 fb�1 collected
with the BABAR detector [19] at the PEP-II facility, where
9.0 GeV electrons collide with 3.1 GeV positrons at a c.m.
energy of 10.54–10.58 GeV. Charged-particle tracking is
provided by the five-layer silicon vertex tracker (SVT) and
the 40-layer drift chamber (DCH), operating in a 1.5 T
axial magnetic field. The transverse momentum resolution
is 0.47% at 1 GeV=c. Energies of photons and electrons are
measured with a CsI(Tl) electromagnetic calorimeter
(EMC) with a resolution of 3% at 1 GeV. Charged-particle
identification is provided by ionization measurements in
the SVT and DCH, and by an internally reflecting ring-
imaging Cherenkov detector (DIRC). Full detector cover-
age is available over the polar angle range 30� < �� <
140� in the c.m. frame.

We simulate the signal processes using a MC generator
based on Eq. (1). The simulation of ISR background pro-
cesses uses two methods: the Bonneau-Martin formula
[20] for e�e� ! �ISRV, with V � �;!;�; J= ! ��0��,
and e�e� ! �ISR!�

�0�, with !! �0�; and the more
accurate approach developed in Ref. [21] where the hadron
angular distributions are important, for e�e� ! �ISR3�,
e�e� ! �ISR�

����, and e�e� ! �ISR4�. Since the
polar angle distribution of the ISR photon peaks near 0�

and 180�, we generate events only over the range 20� <
��� < 160�, except for e�e� ! �ISR	�nS�, where the ISR
photon is generated over the full polar angle range. We also
simulate non-ISR events of the type e�e� ! !��0� with
!! �0�. We simulate extra soft-photon radiation from
the initial state in all cases using the structure function
method of Ref. [22], with the extra photon energy re-
stricted such that the invariant mass of the hadronic (plus
ISR photon) system must exceed 8 GeV=c2 for non-ISR
(ISR) processes. We study backgrounds from e�e� ! q �q
using the JETSET [23] package.

We simulate the detector response, including interac-
tions of the generated particles with the detector material,
using the GEANT4 [24] package, taking into account the
variation of the detector operating conditions with time.
We simulate the beam-induced background, which may
lead to the appearance of extra photons and tracks in the
events of interest, by overlaying the raw data from a
random trigger event on each generated event.

III. EVENT SELECTION

The initial selection of events requires the presence of a
high energy photon with momentum roughly opposite to
the vector sum of the good-quality charged tracks and other
photons. The hard photon must have energy in the c.m.
frame E�� > 3 GeV; charged tracks must extrapolate to the
interaction region, have a momentum transverse to the
beam direction above 100 MeV=c, and have a polar angle
in the laboratory frame in the region 23� < �< 140�

(38� < �� < 154� in the c.m. frame).
We study the e�e� ! �� and e�e� ! �0� reactions in

the ����3� and ��������3� final states, i.e. we use
the �! �����0 decay mode for the former and the
�0 ! ����� mode, with �! �� and �! �����0,
for the latter. Since a significant fraction of the events
contain beam-generated spurious tracks and photon candi-
dates, we select events with at least two (four) tracks and at
least three photons with energies above 100 MeV
(50 MeV) for the 2�3� (4�3�) final state.

We assume the photon with the highest E�� is the recoil
photon, and consider only the set of two or four tracks with
zero total charge that has the smallest sum of distances
from the interaction point in the azimuthal plane. We fit a
vertex to this set of tracks, which is used as the point of
origin to calculate all photon angles. We accept pairs of
other photons as �0 or � candidates if their invariant mass
is in the range 0:07–0:20 GeV=c2 or 0:45–0:65 GeV=c2,
respectively. For each such candidate, we perform a kine-
matic fit to the selected tracks and photons that imposes
energy and momentum conservation and constrains the
candidate �0 or � invariant mass. We use the 
2 of the
kinematic fit (
2

2��0�
, 
2

2���, or 
2
4��0�

) to discriminate

signal from background. The simulation does not repro-
duce the shape of the photon energy resolution function,
especially at high energy. Since this distorts the 
2 distri-
butions, only the measured direction of the recoil photon is
used in the fit; its energy is a free parameter. For events
with more than one �0 and/or � candidate, the one giving
the lowest 
2 is retained. The distribution of 
2

2��0�
for

simulated e�e� ! �� events is shown in Fig. 1(a). There
are four effective degrees of freedom, and the distribution
shows a long tail due to higher-order photon radiation. We
also perform the kinematic fit without the mass constraint,
calculate 
2

2�3�, and use the 
2 difference (
2
2��0� �


2
2�3�, or 
2

2��� � 

2
2�3�) as a measure of the �0 or �

reconstruction quality.
To suppress backgrounds in the e�e� ! �� sample

from events containing kaons and events from multipar-
ticle ISR, QED, and e�e� ! q �q processes, while main-
taining high signal efficiency, we consider events with
exactly one pair of selected tracks and no more than one
additional track. Considering the selected pair, we require
that: (i) neither track is identified as a kaon;
(ii) �E1=p1� � �E2=p2�< 1:5, where Ei is the EMC energy
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deposition associated with the ith track and pi is its mea-
sured momentum; (iii) 
2

2��0�
� 
2

2�3� < 5; and (iv) the

invariant mass of the two charged tracks M2� <
415 MeV=c2. Requirement (ii) suppresses dielectron
events; requirement (iv) only suppresses background
events with a �����0 mass M3� > 0:6 GeV=c2, but it
facilitates the extrapolation of the background under the �
peak.

We show scatter plots of 
2
2��0�

versus M3� for the

selected candidates in the data and the e�e� ! �� signal
simulation in Figs. 1(b) and 1(c). A cluster of data events is
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FIG. 1. Distribution (left) of 
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2��0� for simulated e�e� ! ��! �����0� signal events. Scatter plots of 
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2��0� versus the
�����0 invariant mass for the selected events in data (center) and signal simulation (right).
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the result of the fit described in the text.
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evident near the �mass at small values of 
2
2��0�. Figure 2

shows the M3� distribution for data events with 
2
2��0�

<

20. In order to determine the number of events containing a
true � we perform a binned maximum likelihood fit to the
M3� spectrum over the range 450–650 MeV=c2 with a sum
of signal and background distributions. We describe the
signal by a sum of three Gaussian functions with parame-
ters obtained from the simulation, convolved with an
additional Gaussian smearing function of width �G �
1:3�0:6
�1:0 MeV=c2 determined from high-statistics !!

�����0 data (see Sec. V). The background is a second
order polynomial. The line on Fig. 2 represents the result of
the fit. The fitted number of events is N� � 22:7�5:6

�4:9 � 0:6,
where the first error is statistical and the second is the
systematic arising from the uncertainty on �G, variation
of the background parameters, and using a first or third
order polynomial background.

For the e�e� ! �0� reaction in the����3� final state,
we apply the criteria (i)–(ii) above, the analog of (iii)

2

2��� � 

2
2�3� < 5, and a slightly different requirement

on the two-track mass of M2� < 410 MeV=c2, the kine-
matic limit for the two pions from an �0 ! ����� decay.
Figure 3 shows scatter plots of 
2

2��� versus M2�� for
selected candidates in the data and the e�e� ! �0� signal
simulation; a cluster of data events is evident near the �0

mass at small values of 
2
2���. We show the M2�� spec-

trum for data events with 
2
2��� < 20 in Fig. 4, and deter-

mine the number of events containing an�0 with a fit to this
spectrum similar to that used for the � signal, but over the
range 900–1000 MeV=c2. The line on Fig. 4 represents the

result of the fit and the fitted number of events is N�0 �
38:1�6:8

�6:2 � 1:0.
For the e�e� ! �0� reaction in the 4��0� final state

we require 
2
4��0� < 25 and that none of the four charged

tracks is identified as a kaon. We then search for events in
which three of the pions are consistent with an � decay.
Figure 5 shows the distribution of the �����0 invariant
mass (4 combinations per event) for selected candidates in
the data and e�e� ! �0� signal simulation, with the addi-
tional requirement that M5� < 1 GeV=c2. Peaks at the �
mass are evident over a modest combinatorial background.
We select events with at least one combination in the range
0:535<M3� < 0:56 GeV=c2; no event in the data or
simulation has more than one. We fit the 5� invariant
mass spectrum for the selected data events as for the other
modes, over the range 900–1000 MeV=c2, and show the
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FIG. 4. The ����� invariant mass distribution for the
e�e� ! �0� candidates in the data with �0 ! �����, �!
��. The curve represents the result of the fit described in the
text.
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distribution and fit result in Fig. 6. The fitted number of
events containing a true �0 is 12:0�3:9

�3:4 � 0:3.

IV. BACKGROUND

A. e�e� ! ��

We consider both nonpeaking and peaking backgrounds,
where the latter arise from other processes producing true
� mesons or other mesons whose decays reflect or feed
down into the � mass region. Figure 2 shows that the
nonpeaking background is small in the � mass region,
but increases sharply toward the upper edge of the plot.
This is due primarily to the low-mass tail of the ! reso-
nance in the ISR processes e�e� ! �ISR�����0, and
e�e� ! �ISR�����0�0. Our simulation of these pro-
cesses is tuned to existing data [12], and predicts an M3�
spectrum consistent with our selected data both inside
(excluding the � peak) and outside the range of Fig. 2.
The simulated contributions of other ISR and e�e� ! q �q
processes to the nonpeaking background are negligible.

The primary source of peaking background is the set of
ISR processes e�e� ! �ISR��, where the �� comes from
a �, !, �, or J= decay, all of which have been measured.
We calculate the number of background events using a
simulation based on the vector meson dominance model
that includes �, !, and � amplitudes with PDG resonance
parameters [12] and phases of 0�, 0�, and 180�, respec-
tively, and describes the existing data on the e�e� ! ��
reaction in the �-!-�mass region [10,11]. The model also
includes J= production, and predicts a total peaking
background of 2:6� 0:5 events.

The simulation does not include other contributions such
as decays of excited �, !, or � states, as they are unmeas-
ured and expected to be small. As a check, we select
e�e� ! �ISR�� events explicitly from our data, by sub-
jecting any event with an additional photon to a kinematic
fit to the 3��� hypothesis. Figure 7 shows a scatter plot of
the 
2 of this fit (
2

3���) versus the 3� invariant mass, and
Fig. 8 shows the M3� spectrum for events with 
2

3��� <
25; a strong � signal is present. We estimate the number of
e�e� ! �ISR�� events by counting the events in the
signal region indicated in Fig. 8 and subtracting the num-
ber in the two sidebands. The resulting number of events,
274� 22, is consistent with the 261� 5� 9 expected
from the simulation, where the systematic error in the latter
is due to experimental uncertainties on the input parame-
ters to the simulation. Repeating this exercise in several
different ranges of the �� invariant mass, we obtain the
results listed in Table I; data and simulation are consistent.

Other possible sources of peaking background are the
processes e�e� ! VP! ��0�, where V denotes a vector
meson, �,!, or�, and P is a �0 or �. The CLEO and BES

experiments have measured these cross sections at
�����
q2

p
	

3:7 GeV [25,26]; assuming the 1=q4 dependence of VP
form factors predicted by perturbative QCD [27], we esti-
mate the e�e� ! ��0� cross section to be about 3 fb at
our c.m. energy. The simulated selection efficiency is very
low due to the additional �0, approximately 2
 10�4, so
we expect only 0.2 background events from this source.
The corresponding ISR process e�e� ! �ISRVP can also
contribute, and we estimate a cross section of about 13 fb,
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FIG. 6. The ����� invariant mass distribution for the
e�e� ! �0� candidates in the data with �0 ! �����, �!
�����0. The curve represents the result of the fit described in
the text.
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(for 20� < ��� < 160�), based on our studies of several ISR
final states with VP components [28,29], including 4�, 3�,
3��, 2��, 2K�0, and 2K�. This cross section is relatively
large, one-quarter of the e�e� ! �ISR�� cross section,
but the selection efficiency is less than 2
 10�5, so we
expect no more than 0.1 events from this source.

The e�e� ! �ISR��0� and e�e� ! ��0� events are
selected about 100 times more efficiently by the ���
criteria than by the �� criteria, and similar factors apply
to other types of events containing additional pions and/or
photons. We can therefore make another estimate of their
overall contribution from the difference between the ob-
served and expected numbers of e�e� ! �ISR�� candi-
dates of 13� 24 (Table I). Accounting for the �10%

uncertainty in relative selection efficiencies, we estimate
<0:6 such events in our signal peak at the 90% CL.

ISR production of an 	�1S�, 	�2S�, or 	�3S� resonance
could produce a peaking background if the 	 decays to
��, since the ISR photon is rather soft. From the upper
limit on B�	�1S� ! ��� of 2:1
 10�5 [12], we estimate
that the number of e�e� ! �ISR	�1S� ! ��� events in
our data does not exceed 100. Using the relation

 

��	�nS� ! ���
��	�1S� ! ���

	
��	�nS� ! e�e��
��	�1S� ! e�e��

; n � 2; 3

we obtain corresponding limits for 	�2S� and 	�3S� of 50
and 140, respectively. The selection efficiencies for the 1S,
2S, and 3S processes are below 0.01%, 0.02%, and 0.08%,
respectively, so the total 	 background does not exceed
0.13 events.

We search for peaking background in the e�e� ! q �q
process using the JETSET simulation. From 736
 106

simulated events (corresponding to about twice our inte-
grated luminosity) only two events pass the �� selection
criteria. Only one of them, a K0 �K0� final state, has a 3�
invariant mass close to the � mass. Since we do not expect
JETSET to predict rates for such rare events correctly, we
select e�e� ! K �K�, �! �� events from our data as a
check. We perform a kinematic fit to the K�K��� hy-
pothesis on all events with at least one charged track
identified as a kaon, and select events with 
2

2K�� < 10.
From the 2� 30 events found in the data and 312� 14
expected from the simulation, we conclude that JETSET
overestimates the yield and that this source of background
is negligible.

Taking the estimate of the number of peaking back-
ground events from e�e� ! �ISR��, and considering
the upper limits on all the other sources as additional
systematic errors, we estimate the total peaking back-
ground to be 2:6� 0:8 events. Subtracting this from the
number of observed events with a true �, we obtain the
number of detected e�e� ! �� events:

 N�� � 20:1�5:6
�4:9 � 1:0:

B. e�e� ! �0�

We estimate backgrounds in the e�e� ! �0� sample
using similar procedures. The nonpeaking background is
very small for both the �! �� (see Fig. 4) and �!
�����0 (see Fig. 6) modes. According to the simulations,
it is dominated by the ISR processes e�e� !
�ISR�����0 and e�e� ! �ISR�����0�0. As for the
e�e� ! �� process, the simulated nonpeaking back-
ground mass distributions are consistent with those ob-
served in data.

The largest source of peaking background in the simu-
lations is the ISR process e�e� ! �ISR�0�, where the �0�
comes mainly from � and J= decays. These have been
measured with about 10% accuracy, and we use a vector-

TABLE I. The number of selected e�e� ! �ISR�� events in
the data in several ranges of the �� invariant mass compared
with expectations from the simulation. The first error on each
expected number is statistical, the second systematic.

M�� (GeV=c2) Ndata Nexpect

0.55–0.95 25� 9 43� 3� 4
0.95–1.05 200� 15 192� 5� 4
1.05–3.05 18� 12 5� 1� 6
3.05–3.15 31� 6 21� 1� 2
3.15–6.50 0:0� 1:4 1� 0:4� 2

0.55–6.50 274� 22 261� 5� 9
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FIG. 8. The 3� invariant mass spectrum for events in the data
with 
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3��� < 25. The solid vertical lines bound the � signal
region; the sideband regions are between these and the dashed
lines.
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dominance based simulation similar to that for the ��
analysis to estimate their contribution. In addition to the
� and J= , we include contributions from the high-mass
tails of the � and ! with couplings determined from the
measured �0 ! !� and �� decay widths. We estimate a
peaking background from this source of 0:3� 0:1 events in
each of the two � decay modes.

We check this prediction by selecting e�e� ! �ISR�0�
events using a kinematic fit to the ������� hypothesis.
Selecting events with a 
2

2���� < 25, we count signal and
sideband events in the����� invariant mass distributions
to obtain numbers of events from this source in a set of �0�
mass intervals. The results from data and simulation listed
in Table II are consistent. In the J= mass region these
events are practically free of background, and we compare
the data and simulated ����� invariant mass distribu-
tions for events with an �0� mass in the range
3:05–3:15 GeV=c2 in Fig. 9. The mass resolution of the
distribution is 3:9� 0:3 MeV=c2 in the data and 3:80�
0:06 MeV=c2 in the simulation.

To bound peaking background from e�e� ! �0�0�,
e�e� ! �ISR�0�0�, and other events containing addi-
tional pions and/or photons, we consider the difference
between the observed and expected numbers of e�e� !
�ISR�

0� candidates in Table II, 3� 20. Taking into ac-
count the factor of 30 difference in selection efficiency,
along with its 10% systematic uncertainty, we determine
that the total background contribution from such processes
does not exceed 1 event in the �! �� mode or 0.3 events
in the �! �����0 mode.

From the upper limit B�	�1S� ! �0��< 1:6
 10�5

[12], we estimate that the number of e�e� ! �ISR	 !
�ISR�

0� events in our data does not exceed 80, 40, or 110
for the 1S, 2S, or 3S states, respectively. The simulated
efficiencies for such events to pass the e�e� ! �0� selec-
tion criteria are small, and we estimate that the total 	
background does not exceed 0.03 events for the �! ��
mode, and is negligible for the �! �����0 mode. In the
736
 106 e�e� ! q �q events simulated by JETSET, we
find none that passes the �0� selection criteria.

Considering the upper limits as systematic errors, we
estimate total peaking backgrounds of 0:3� 1:0 and 0:3�

0:3 events in the 2�3� and 4�3� final states, respectively.
Subtracting these from the numbers of observed �0 events,
we obtain a total number of �0� events,

 N�0� � 49:5�7:7
�7:1 � 1:5:

V. DETECTION EFFICIENCY

A. e�e� ! ��

The detection efficiency determined from the simulation
is "MC � �2:01� 0:06�%, where the error includes a sta-
tistical error and the uncertainty in the value of B��!
�����0�. This efficiency must be corrected to account for
deficiencies in the simulated detector response. We take
advantage of the relatively large cross section for the ISR
process e�e� ! �ISR!�782� ! �ISR�����0, which can
be selected with very low background [28]. The M3�
spectrum for this process is described by

 

dN
dM
� �3��M�

dL
dM

R"�M�; (5)

where �3��M� is the Born cross section for e�e� ! 3�,
dL=dM is the so-called ISR differential luminosity, "�M� is
the detection efficiency as a function of mass, and R is a
radiative correction factor (see Ref. [28] for a more de-
tailed discussion). The e�e� ! 3� Born cross section
near the ! mass can be described by a Breit-Wigner
function with well measured parameters [12]. We calculate
the ISR luminosity from the total integrated luminosity L
and the theoretical ISR photon radiator function [30]. The
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FIG. 9. Distributions of the ����� invariant mass for se-
lected e�e� ! �ISRJ= ! �ISR�

0� events in the data (points
with error bars) and simulation (histogram).

TABLE II. The number of selected e�e� ! �ISR�
0� events in

the data in several ranges of the �0� invariant mass compared
with expectations from simulation. The first error on each
expected number is statistical, the second systematic.

M�0� (GeV=c2) Ndata Nexpect

<1:5 �2� 12 1:7� 0:3� 0:2
1.5–2.0 6� 4 1:0� 0:2� 1:0
2.0–3.0 2� 3 1:3� 0:3� 1:3
3.0–3.2 97� 10 102� 2� 10
>3:2 3� 3 1:1� 0:2� 1:1

Total 110� 17 107� 2� 10
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radiative correction factor is known with a theoretical
uncertainty below 1% [22]. We can therefore fit the 3�
invariant mass spectrum for events passing the criteria for
this analysis in the ! mass region to determine the effi-
ciency directly from the data.

Figure 10 shows this distribution after subtraction of the
�0:5% background, estimated from simulation as de-
scribed in Ref. [28]. The fitting function is given by
Eq. (5) convolved with the simulated detector resolution
function. There are three free parameters: the efficiency

correction factor �! (" � �!"MC); the!mass; and�G, an
ad-hoc Gaussian smearing to account for any resolution
difference between data and simulation. The curve in
Fig. 10 represents the result of the fit, which returns:

 �! � 0:933� 0:009� 0:026;

�G � 1:3�0:5
�1:0 � 0:3 MeV=c2;

(6)

where the first error is statistical and the second systematic.
The fitted mass is shifted from the nominal value by
0:5 MeV=c2, consistent with expectations from our detec-
tor simulation. The systematic error in the correction factor
includes contributions from simulation statistics (1.2%),
uncertainties on the radiative correction (1%), background
subtraction (0.2%), and the PDG ! width (1.5%) and peak
cross section (1.5%). The systematic error in �G is due to
the uncertainty in the ! width.

Before applying this correction to the e�e� ! �� effi-
ciency, we must take into account differences in the dis-
tributions of any kinematic variables on which the
efficiency depends. Of the many variables studied, three
show large differences, the photon polar angle ��, the
invariant mass of the two charged pions M2�, and the
minimum angle between a charged pion and a photon
from the �0 decay ���; in Fig. 11 we compare their
distributions in simulated e�e� ! �ISR! events (solid
histograms) with those in simulated e�e� ! �� events
(dashed histograms). The ��� distribution for the e�e� !
�ISR! data (dots in Fig. 11) is consistent with that for the
simulation, but significant inconsistencies are visible in the
�� (
2=dof � 38=14) and M2� (
2=dof � 17=11) distri-
butions. To estimate shifts in the efficiency correction due
to the dependence of the efficiency on these variables, we
calculate
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FIG. 11 (color online). Distributions of the photon polar angle (left), the invariant mass of the two charged pions (middle), and the
minimum angle between a charged pion and a photon from the �0 decay (right) for data (points with error bars) and simulated (solid
lines) e�e� ! �ISR! events. The simulated background is shown as the (very small) shaded histograms, and the dashed lines show the
distributions for simulated e�e� ! �� events.
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FIG. 10. The �����0 invariant mass spectrum for data events
in the ! mass region. The curve is the result of the fit described
in the text.
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 rx �
X
i

Pexp
! �xi�

PMC
! �xi�

PMC
� �xi�; x � ��;M2�; (7)

where P!��� is the �� or M2� distribution for !� (��)
events normalized to unit area, and xi is the center of the ith
bin. We obtain the values r�� � 1:011� 0:006 and rM2�

�

0:973� 0:016, from which we calculate the efficiency
correction �� � r��rM2�

�! � 0:918� 0:032, and the de-
tection efficiency " � ��"MC � �1:85� 0:09�%.

B. e�e� ! �0�

The simulated efficiency for e�e� ! �0�! 2�3�
events is "MC � �2:91� 0:13�%. For this final state we
can again use the efficiency correction determined from the
e�e� ! �ISR! events, taking into account differences in
the relevant kinematic variables. Considering the same set
of variables, we find similar results: corrections are needed
only for �� and M2� with very similar values of r�� �
1:016� 0:008 and rM2�

� 0:976� 0:013. In addition,
there are photon distributions that are different for �0

and � decays. We show distributions of the angle between
the two decay photons ���, and the minimum and maxi-
mum photon energies E�;min and E�;max in Fig. 12. A
disagreement between data and simulation for e�e� !
�ISR! events is seen in the E�;max spectrum (
2=dof �
18=11) and we calculate rE�;max

� 1:035� 0:016. This
correction is not needed for e�e� ! �� events since their
E�;max distribution is very close to that for e�e� ! �ISR!
events. We calculate an efficiency correction of ��0 �
r��rM2�

rE�;max
�! � 0:957� 0:037, and a detection effi-

ciency of " � ��0"MC � �2:79� 0:16�%.
The simulated efficiency for e�e� ! �0�! 4�3�

events is �1:05� 0:07�%. We estimate an efficiency cor-
rection for the two additional pions using the ISR process

e�e� ! �ISR��! ������. We select events in both
the �! �� and �! �����0 decay modes with criteria
similar to those used for the signal. The ����� invariant
mass must be in the range 1:4–1:7 GeV=c2 where the ��
mass spectrum is at a maximum, and the invariant mass of
the � candidate must be in the range 0:64–0:90 GeV=c2.
From the numbers of selected data and simulated events in
the two � decay modes we determine the double ratio
�5� � �N3�=N2��data=�N3�=N2��MC � 0:98� 0:06, and
we calculate a fully corrected detection efficiency of " �
�5���0"MC � �0:99� 0:10�%. The ratio of the numbers of
events selected in the two decay modes, 0:31� 0:11, is
consistent with the ratio of simulated detection efficiencies
0:35� 0:04. The total detection efficiency for the two
modes is �3:78� 0:19�%.

VI. CROSS SECTIONS AND FORM FACTORS

For each of the two signal processes, we calculate the
cross section as

 ��e�e� ! P�� �
NP�
"L

R; (8)

whereNP� is the number of signal events from Sec. IV, " is
the detection efficiency from Sec. V, L � 232 fb�1 is the
integrated luminosity, and R is a radiative correction factor.
We calculate R as the ratio of the Born cross section for
e�e� ! P� to the total cross section including higher-
order radiative corrections calculated with the structure
function method [22]. The simulation requires the invariant
mass of the P� system MP� > 8 GeV=c2, for which we
calculate R � 0:956. The detection efficiency used in
Eq. (8) is for simulated events with this requirement. The
value of R depends on the energy dependence of the cross
section. We use � / 1=q4 (see Eqs. (1) and (2)), and
investigate the model dependence by recalculating R="
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FIG. 12 (color online). Distributions of the angle between the two photons from the �0 ! �� or �! �� decay (left), and the
minimum (middle) and maximum (right) energy of the decay photons, for data (points with error bars) and simulated (solid lines)
e�e� ! �ISR! events, simulated background events (small shaded histograms), and simulated e�e� ! �0�! ����� events
(dashed lines).
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under the 1=q3 and 1=q5 hypotheses. The relative variation
is less than 10�3, which we neglect. The theoretical uncer-
tainty on R obtained with the structure function method
does not exceed 1%. We obtain

 ��e�e� ! ��� � 4:5�1:2
�1:1 � 0:3 fb; (9)

 ��e�e� ! �0�� � 5:4� 0:8� 0:3 fb; (10)

where the first error is statistical and the second systematic.
The systematic error is the sum in quadrature of contribu-
tions from detection efficiency, background subtraction,
fitting procedure, and radiative correction.

The value of R we use does not take into account
vacuum polarization, and its contribution is included in
the results (9) and (10). For comparison with theoretical
predictions, we calculate the so-called ‘‘undressed’’ cross
section by applying a 7:5� 0:2% correction for vacuum
polarization at 10:58 GeV=c2 [31], obtaining

 ��e�e� ! ���undressed � 4:2�1:2
�1:0 � 0:3 fb; (11)

 ��e�e� ! �0��undressed � 5:0�0:8
�0:7 � 0:3 fb: (12)

Using Eq. (1) we obtain the values of the �� and �0�
transition form factors at q2 � 112 GeV2

 q2jF��q
2�j � 0:229� 0:030� 0:008 GeV; (13)

 q2jF�0 �q
2�j � 0:251� 0:019� 0:008 GeV: (14)

VII. SUMMARY

We have studied the e�e� ! �� and e�e� ! �0�
processes at an e�e� c.m. energy of 10.58 GeV. We select
20�6
�5�� and 50�8

�7�
0� events, measure the cross sections,

and extract the values of the transition form factors at q2 �
112 GeV2.

Since the asymptotic values of the timelike and space-
like transition form factors are expected to be very close,
we show our results along with CLEO results for spacelike
momentum transfers [13] in Fig. 13 (we averaged the
CLEO results obtained in different � (�0) decay modes).
The CLEO data rise with increasing q2, and are consistent
with the values given by our data points. A precise theo-
retical prediction of the value of the form factor at q2 �
112 GeV2 is problematic due to uncertainties in the effec-
tive decay constants, the quark distribution amplitudes, and
possible gluon content of the � and �0. Naively taking the
decay constants from Refs. [3–8] and calculating form
factor values according to Eq. (2), we obtain a range of
values indicated by the shaded boxes in Fig. 13. Our data
points are at the upper and lower ends of the range of
predictions for � and �0, respectively. The predicted ratio
of the form factors ranges from 1.6 to 2.3, inconsistent with
our value of 1:10� 0:17. This discrepancy and the large

range of the predictions indicates the need for more theo-
retical input.
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