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We report on a study of inclusive B~ and B° meson decays to D°X, D°X, D*X, D~ X, D} X, D; X,
AFX, A7 X, based on a sample of 231 X 10° BB events recorded with the BABAR detector at the Y'(4S)
resonance. Events are selected by completely reconstructing one B and searching for a reconstructed
charm particle in the rest of the event. From the measured branching fractions of these decays, we infer the
number of charm and anticharm particles per B decay, separately for charged and neutral parents. We
derive the total charm yield per B~ decay, n; = 1.208 = 0.023 = 0.040*0033, and per B® decay, n® =
1.203 £ 0.030 = 0.034f8:8§‘5‘ where the first uncertainty is statistical, the second is systematic, and the
third reflects the charm branching-fraction uncertainties. We also present the charm momentum distri-

butions measured in the B rest frame.

DOI: 10.1103/PhysRevD.75.072002

I. INTRODUCTION

The dominant process for the decay of a b quark is b —
cW*™ [1], resulting in a (flavor) correlated ¢ quark and a
virtual W. Thus the average number N, of correlated charm
hadrons produced per b decay is expected to be close to 1
while so far, only 48% (38%) of exclusive B™ (B°) decays
to correlated charmed particles have been measured [2]. In
the decay of the W, the production of a iid or a Cs pair are

*Also at Laboratoire de Physique Corpusculaire, Clermont-
Ferrand, France

TAlso with Universita di Perugia, Dipartimento di Fisica,
Perugia, Italy

*Also with Universita della Basilicata, Potenza, Italy

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

both Cabibbo-allowed and should be approximately equal,
the latter being suppressed by a phase-space factor. The
first process dominates hadronic b decays. The second can
be easily distinguished as it produces a (flavor) anticorre-
lated ¢ quark and is expected to account for a large fraction
of the anticorrelated charm production (N;) in b decays.
Theoretically, N,, N; and n, = N, + N; can be pre-
dicted [3-6] : N. = 0.97 = 0.01, N; = 0.24 = 0.05 and
n, = 1.21 = 0.05, the large uncertainty on the two latter
numbers being dominated by the error on the computation
of the b — c&s partial width. While the data from Z — bb
decays are in agreement with theoretical predictions [7],
the experimental picture has remained blurred for data
collected at the Y'(4S) resonance [8,9]. Using a fully in-
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clusive technique Ref. [8] measures n, = 1.10 % 0.05, and
Ref. [9] estimates the anticorrelated production to be N; =
0.22 £ 0.05; these two results lead to a small value of N,
compared to 1. This situation was clarified by our previous
measurement [10].

Besides the theoretical interest, the fact that anticorre-
lated charm particles are a background for many studies
also motivates a more precise measurement of their pro-
duction rates in B decays. For instance, the analysis of
semileptonic B decays (b — c{7) is sensitive to correlated
and anticorrelated charm productions when the charmed
particle decays semileptonically. Such processes can pro-
duce a lepton with the same sign as that of the b quark via
cascade decays such b — ¢ — €. This is the case, in
particular, for the measurement of the ratio B(B™ —
Xetv)/B(B® — Xetv) [11].

Experimentally, we investigate correlated and anticorre-
lated charm production through the measurement of the
inclusive B-decay rates to a limited number of charm
hadron species, i.e. D°, D°, D*, D™, D}, D7, Af, A,
E . and charmonia, because all other charm particles decay
into one of the previous hadrons. The analysis presented
here exploits a substantially larger data sample than the
original BABAR result [10]. In addition, two major im-
provements significantly reduce the systematic uncer-
tainty: a more sophisticated fitting method to extract, in
a correlated manner, the number of reconstructed B
mesons and the charm hadron yields, and a better under-
standing of the differences between data and simulation,
especially for particle identification. Other measurements
[8,9,12—14] of these rates are more statistically limited
and/or do not distinguish between the different parent B
states.

Most of the charged and neutral D mesons produced in B
decays come from correlated production B — DX.
However, a significant number of B — DX decays are
expected through b — cés transitions, such as B —
D®DWE® (nar). Although the branching fractions of the
3-body decays B — D®D®K have been measured
[15,16], they do not saturate B — DX transitions [10]. It
is therefore important to improve the precision on the B —
DX branching fraction.

By contrast, anticorrelated D; production, B —
D; D(nr), is expected to dominate B decays to D; mesons,
since correlated production needs an extra s§ pair created
from the vacuum to give B — D} K~ (nw). There is no
prior published measurement for correlated D;
production.

Correlated A are produced in decays like B —
A7 par~ (), while anticorrelated A should originate pre-
dominantly from B — 5 .A_ (). The decay B — =5 .A_
has recently been observed [17], confirming the hypothesis
of associated Z.A_ production. Another possibility for
anticorrelated A production is B — AJA_ K, the bar-
yonic analogue of the DDK decay.

PHYSICAL REVIEW D 75, 072002 (2007)

This analysis uses Y'(4S) — BB events in which either a
B* or a B® meson (hereafter denoted B,../q) decays into a
hadronic final state and is fully reconstructed. We then
reconstruct D, D, and A} from the decay products of the
recoiling B~ (B°) meson and compare the flavor of the
charm hadron with that of the reconstructed B (taking
into account B°-B° mixing). This allows separate measure-
ments of the B~ (B°) — D°X, D*X, DX, AfX and
B~ (B%) — DX, D~ X, D; X, A, X branching fractions.

We then compute the average number of correlated
(anticorrelated) charm particles per B~ decay, N. (N7 ) as

No => BB —CX), (1)
C

N; = ZB(B‘ — CX), (2)
c

where the sum is performed over C = {DO, DY, D/,
AL B, (ce)or C={D° D~,D;, A, (cé)}, and (cc) re-
fers to all charmonium states collectively. We neglect
anticorrelated = . production, as it requires both a ¢s and
an 55 pair in the decay to give 5 .{2,.. We then sum N, and
N{ to obtain the average number of charm plus anticharm
quarks per B~ decay, n;, = N; + N . We similarly define
N?, N2 and n? for B® decays.

The above method also lends itself to a measurement of
the momentum distribution of each charm species directly
in the rest frame of the parent meson, because the four-
momentum of each recoiling B is fully determined from
those of the Y'(4S) and of the reconstructed B. The result-
ing charm spectra can then be compared to theoretical
predictions in the same frame [18]. This avoids the signifi-
cant smearing due to the Lorentz boost from the parent-B
frame to the Y (4S) frame affecting earlier measurements,
such as those reported in [8]. These spectra might also
show indications of four-quark states [19].

II. BABAR DETECTOR AND DATA SAMPLE

The measurements presented here are based on a sample
of 231 X 10° BB pairs (210 tb~ ') recorded at the Y'(4S)
resonance with the BABAR detector at the PEP-II
asymmetric-energy B factory at SLAC. The BABAR detec-
tor is described in detail elsewhere [20]. Charged-particle
trajectories are measured by a 5-layer double-sided silicon
vertex tracker and a 40-layer drift chamber, both operating
in a 1.5-T solenoidal magnetic field. Charged-particle
identification is provided by the average energy loss
(dE/dx) in the tracking devices and by an internally re-
flecting ring-imaging Cherenkov detector. Photons are de-
tected by a CsI(Tl) electromagnetic calorimeter. We use
Monte Carlo simulations of the BABAR detector based on
GEANT4 [21] to optimize selection criteria and determine
selection efficiencies.
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ITII. B MESON RECONSTRUCTION

We reconstruct B and B° decays (B,.q) in the modes
BY — DYzt DOt DEOgF and B® — D4,
DW= p*, D®~af. D° candidates are reconstructed in
the K*7m ™, K*a 7’ K'w~a" 7~ and K07 7 (K§ —
ataT) decay channels, while D™ are reconstructed in the
Kt 7~ and Ky7~ modes. D* candidates are recon-
structed in the D*~ — D%z~ and D** — D70 decay
modes.

Two independent variables are defined to separate the B
signal from the combinatorial background in
reconstructed-B  samples. The first is mpg =

\/(S/Z +p, - pp)?/E? — p3, where py is the B,.q momen-
tum, (E;, p;) is the four-momentum of the initial e*e™
system, both measured in the laboratory frame, and /s is
the invariant mass of the e* e~ system. The signal yield Ny
of reconstructed B mesons is extracted from a fit to the mgg
spectrum of the B4 samples (Fig. 1). The B signal is
modeled by a Crystal Ball function I'cg [22] which is a
Gaussian peaking at the B meson mass modified by an
exponential low-mass tail that accounts for photon energy
loss. The B combinatorial background is modeled using the
empirical ARGUS phase-space threshold function I'zrg
[23]. All the signal and background parameters of these
functions are extracted from a fit to the data.

The second variable used to ensure a reasonable purity
of the B sample is AE = Ej — \/s/2, where Ej} is the
energy of the reconstructed B candidate in the ete~
center-of-mass frame. Quantitatively, the purity is defined
as the fitted yield of signal B with mgg > 5.27 GeV/c?,
normalized to the total number of reconstructed BT (BY)
candidates in the same interval. This is measured in the
data, separately for each reconstructed-B mode. To reach a
minimal purity of 40%, we apply a cut |AE| <noypg,
using the resolution o,y measured in data for each decay
mode, with n = 2 or 3 depending on the decay channel. If
an event contains several B* (B°) candidates, only the
highest-purity B-decay mode is retained.

The mgg spectra of the full charged and neutral recon-
structed B samples are shown on Fig. 1. The signal yields
of B™ and B® mesons are Ng+ = 200359 + 705 and Npo =
110735 = 424, where the errors reflect the statistical un-
certainty in the number of combinatorial background
events. These numbers provide the normalization for all
the branching fractions reported below.

The contamination of misreconstructed B events in the
B* signal (and vice-versa) induces a background which
peaks near the B mass. From the Monte Carlo simulation,
the fraction of BY events in the reconstructed B signal
sample is found to be ¢y = 0.038 = 0.009(syst), and the
fraction of BT events in the reconstructed B° signal sample
¢, = 0.028 = 0.007(syst). The systematic uncertainties
take into account possible differences in reconstructing
real and simulated events, as well as branching-fraction
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FIG. 1 (color online). mgg spectra of reconstructed (a) B* and
(b) BY candidates. The solid curve is the sum of the fitted signal
and background whereas the dashed curve is the background
component only.

uncertainties for those B decay modes contributing to the
wrong-charge contamination.

IV.INCLUSIVE CHARM BRANCHING FRACTIONS

We now turn to the analysis of inclusive D, D, D, D,
AF, A production in the decays of the B mesons that
recoil against the reconstructed B. Charm particles C are
distinguished from anticharm particles C. They are recon-
structed from charged tracks that do not belong to the
reconstructed B. The decay modes considered are listed
in Table I along with their branching fractions. Those are
taken from Ref. [24] except for the D — @7 channel
[25] where we use the more precise measurement reported
in Ref. [2].

A. Charm particle yields

The numbers of charm (anticharm) particles are ex-
tracted from an unbinned maximum likelihood fit to the
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TABLE I. Charm-particle decay modes and branching frac-
tions.

C—f B(C — ) (%)

D' — K 7t 3.80 = 0.09

D' — K mata ot 7.48 = 0.31

Dt - K ntn?t 9.1 +0.7

D{ = ¢m (¢ = K'K")

D} — KKK (K — K~ 7™")
Dy — KYK* (K — 7t ™)
Af — pK—7w?

4.40 = 0.60(49.3 = 1.0%)
4.18 £ 0.72(66.51 = 0.01%)
2.22 +0.46(68.95 * 0.14%)

50+ 1.3

two-dimensional distribution [mgg, mc) ], where mgg is
the beam-energy substituted mass of the reconstructed B
and mg¢) is the mass of the charm (anticharm) particle
found among the recoil products. Figs. 2—-5 show the
results of these fits, projected onto the mc) axis, for
events in the mgg signal region (mpg > 5.270 GeV/c?).
The probability density function used to fit the [mgg, m ()]
distributions is the sum of four components :
@) Pg:iig : reconstructed charm (anticharm) signal in the
recoil of reconstructed B signal,
(i1) Pg;fg : reconstructed charm (anticharm) signal in the
recoil of combinatorial B background,
(ii1) ngi];g : combinatorial charm (anticharm) background
in the recoil of reconstructed B signal,
@iv) ngllzg : combinatorial charm (anticharm) background
in the recoil of combinatorial B background,
These four components are modeled as follows :

Pf;:ilﬁ(mﬁs, mc) = T cp(mgs) X ps(me),
Csi _

P Bglfg(mES’ me) = T prg(mes X ps(me), )
Cbk _

P Bsigg(mES’ me) = Teg(mes) X peomp(mc),

Cbk _
PBbkg(mEs: me) = Targ(mes) X peomp (M)

The function I' -z with all its parameters fixed from the
fit detailed in Sec. III is used to model the reconstructed B
signal. The combinatorial background is described by an
ARGUS function I' \ (see Sec. IIT) whose shape parame-
ter is floated in the fit to allow for a possible charm decay-
mode dependence of this background. A Gaussian function
ps(me) describes the mass shape of the reconstructed
charm signal. Its mean is fixed from the data using charm
particles recoiling against either B~ or B° mesons. Its
resolution is fixed from the simulation in order to remain
insensitive to statistical fluctuations, particularly for the
modes with a small branching fraction. For all charm
modes, the Monte Carlo resolution is consistent with that
measured in the data; the difference is accounted for in the
systematic uncertainty. The combinatorial charm-
background distribution is fitted with a linear function
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Peomb(Mme(c)) (except for the D® — K~ 7" 7~ o™ for which
a quadratic dependence is assumed); all its parameters are
floated in the fit [26].

The reconstruction efficiencies for each charm final state
C — f (Table II) are computed from the simulation as a
function of p*, the charm-particle momentum in the B rest
frame, and applied event-by-event to obtain the efficiency-
corrected charm and anticharm signal yields. These are
denoted, respectively, by N~ (C — f) (N°(C — f)) and
N~ (C— f) (N°(C — f)) and are listed in Table III. We
then determine the charm and anticharm fractional produc-

tion rates B; © and B-©, defined as
B0 = N-O(C — f)/[Ng- g, X BIC— [)],
B O = N-O(C — 7)/[Ny+ g0, X B(C — f)]

where Ng+ (Npo) is the number of reconstructed B* (B°)
mesons, and B(C — f) is the C — f branching fraction
reported in Table 1. B., B., B and BY are listed in
Table III.

B. Correlated and anticorrelated charm branching
fractions

For charged B, the branching fractions for correlated and
anticorrelated C production are given by

B(B~ — CX) = B — ¢,BY,

o 5)

B(B~ — CX) = B, — ¢;BS.
The correlated (anticorrelated) B~ — CX branching- frac-
tion is equal to the charm (anticharm) fractional production
rate B (B.) in the recoil of reconstructed B™ mesons
modified by a small correction term c¢yBY (cyBY) that
accounts for the B® contamination in the reconstructed
B sample. The factors BY and BY depend on the mea-
sured B — CX and B — CX branching fractions, and on
the B°B° mixing parameter y, [24]. Doubly Cabibbo-
suppressed D° decays (D°— K*7~ and D°—
KT#" @ 7) are also taken into account. We combine
the results from the different D° and D, decay modes to
extract the final branching fractions listed in Table I'V. The
probability for the correlated D] production observed in
B~ decays to be due to a background fluctuation is less
than 5 X 1074,

For neutral B, charm and anticharm production rates in
the recoil of reconstructed B® mesons have to be corrected
for B’ BY mixing to obtain the correlated and anticorrelated
charm branching fractions

B — xa(B + BY) _

B(BO i CX) = C+B+,
l_sz
B (B + B ©
BB — CX) = —c A= T2 B
1_2/\/d

The correction factors ¢, B{ and ¢, B; account for B*
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5 signal in the recoil of combinatorial B}, ,, background. The light shaded area corresponds to the

fitted combinatorial (anti-) charm background. The Gaussian peak at the D* mass accounts for reconstructed D* signal [26].

contamination in the B° sample and depend on the B~ —
CX and B* — CX branching fractions. Combining the
different D° and D; modes, we obtain the final branching
fractions listed in Table IV.

We also compute the fraction of anticorrelated charm
production in B decays

B(B — CX)

w(C) = B(B — CX) + B(B— CX)’

)

Here, many systematic uncertainties cancel out (tracking,
K identification, D branching fractions, B counting). The
results are given in Table V.

The main systematic uncertainties are associated with
the track-finding efficiency, the models used to describe the
mgs and m ¢ distributions, and the particle-identification
efficiency. For example, the 2.7% absolute systematic un-
certainty on B(B~ — D°X) reflects the quadratic sum of
1.3% attributed to the track-finding efficiency, 1.6% to the
description of the mgg distribution by the I'yrg and '
functions, 0.8% to the description of the mcg) signal
distribution by the pg function, 1.4% to the particle iden-
tification, 0.5% to the Monte Carlo statistics, 0.4% to final-
state radiations in D° decays, 0.3% to ¢, and 0.1% to fB(l).

The uncertainty affecting the track-finding efficiency is
estimated with two different methods. The first uses a large
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TABLE II. p*-averaged reconstruction efficiencies €. for each
charm final state. The errors reflect the limited Monte Carlo
statistics.

C—f €c (%)

D — K~ 7t 50.2 = 0.3
DK ata ot 20.1 =0.2
Dt - K atmt 33.7+0.2
D — ¢mt 33.0+0.8
D} — K*K* 18.0 + 0.5
Df — KK+ 31.1 £0.8
Af - pK~ 7t 26.7 0.9
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D} and D, mass spectra as for Fig. 4, but in the recoil of B candidates.

inclusive sample of tracks with a minimum number of hits
in the silicon vertex detector. The second relies on an
ete” — 777 control sample. From these, we derive a
relative systematic uncertainty of 0.8% per track.

The modeling of the mgg distribution by the I' -5 and the
I'srg functions affects, in a correlated manner, both the
charm signal yields and the numbers of reconstructed B
mesons used in normalizing the branching fractions. As a
consequence, the measured branching fractions become
largely insensitive to the model parameters. The remaining
uncertainty is conservatively estimated by varying the
lower edge of the mgg fit range from 5.195 to
5.225 GeV/c?. This yields a variation in the branching
fraction that is taken as systematic uncertainty. This range
was chosen such that the branching fractions measured in
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TABLE III. Charm and anticharm efficiency-corrected signal yields and fractional production rates. The uncertainties are statistical
only.
C decay mode C in recoil of BY C in recoil of B, C in recoil of B ,, C in recoil of BY,
N (C—f) B (% NI(C—f) B (% N(C—f Bl(% NI(C—f) B(%)
D' — K 7" 5898 =126 77.5* 1.6 691 = 52 9.1 £0.7 1713 £70 41.1 £1.7 669 £44 159=*1.0
— K ata ot 11010 £383 73.4*x26 1378214 9.2+ 1.4 3418 £239 41.2+29 1065*159 12819
Dt - K wtm* 1970 = 131 10.8 £0.7 513 £89 2805 3044 =122 302=*12 869 = 74 8.6 £0.7
D} — o7t 85 24 20=*0.5 385 =42 89x1.0 97 =21 40=*x09 227 £ 30 9513
— KOK* 78 =39 1.4 0.7 56772 102=*1.3 78 =28 25*09 306 £ 50 9.9=* 1.6
— KYK+ 0=*16 0.0 =0.5 212 £39 72+ 1.3 48 = 19 3.0x1.2 148 =29 9.1 =17
Af — pK—7w? 288 £ 52 29=*0.5 210 £ 45 2105 240 =41 43 *+0.7 124 = 30 22=*05

TABLE 1IV. B branching fractions. The first uncertainty is statistical, the second is systematic, and the third reflects charm branching-

fraction uncertainties [2,24].

Correlated B Anticorrelated B
c B(B~ — CX) (%) B(B® — CX) (%) B(B~ — CX) (%) B(B® — CX) (%)
D° 78.6 = 1.6 = 27729 47.4 2.0 = 1.5713 8.6 0.6 +0.3%22 8.1+ 1.4+0.5%3

2.5+0.5+ 01102 23+ 1.1+ 03402
<3.9 at 90% CL

8.6 +0.7 04513 11.2 = 1.3 = 04%1]

D* 9.9 + 0.8 +0.5708 36.9 + 1.6 + 1.4728

D¢ 12434+ 0.1453 1.6 % 0.9 = 0.1793
<2.8 at 90% CL

Al 2.8+0.5= 0319 50+ 100518

2.1+0.5+0.208 1.6 = 0.9 = 0.204

<3.1 at 90% CL

the simulation remain stable within their statistical
uncertainty.

The uncertainty associated with the description of the
charm signal mass shape by the pg function translates into
an uncertainty on the charm reconstruction efficiency. It is
estimated by fitting the simulated charm signal with a
double instead of a single Gaussian.

The systematic uncertainties affecting the proton and
charged kaon particle-identification efficiency are esti-
mated using D° — K~ 7" and A° — pzr~ samples recoil-
ing against reconstructed B and B® mesons. The D or A°
signal yields are extracted in a manner similar to that
described in Sec. IVA, both with and without applying

TABLE V. Fraction of anticorrelated charm as defined in
Eq. (7).

Mode B~ decays BO decays

DX 0.098 = 0.007 = 0.001 0.146 = 0.022 * 0.006

DX 0.204 = 0.035 * 0.001 0.058 * 0.028 = 0.006
<0.098 at 90% CL

Dy X 0.884 = 0.038 = 0.002 0.879 = 0.066 * 0.005
>0.791 at 90% CL

AZX 0.427 = 0.071 = 0.001 0.24375112 + 0.003

<0.403 at 90% CL

the proton or kaon particle-identification requirements.
The ratio of these yields on real and simulated samples is
proportional to the particle-identification efficiency in the
data and the simulation, respectively. The difference be-
tween these two efficiencies is then taken as an estimate of
the corresponding systematic uncertainty (1.7% relative
uncertainty per kaon and 1.3% per proton).

The statistical and systematic uncertainties in Table IV
and V are computed separately for each charm decay
mode; correlated errors are taken into account when aver-
aging over D° and D; final states.

C. Average charm production in B decays

To extract N, from the results of Table IV, we still need
to evaluate the B — =5 _.X and B — (c¢)X branching frac-
tions. Because there exists no absolute measurement of the
E .-decay branching fraction, the absolute rates for corre-
lated =, production in B decays are unknown [17,27].
Therefore, following the discussion in Sec. I, we assume
that B(B— 5.X)=BB—A_X)— B(B—
AFAZK(m)) [28]. A recent measurement [29] indicates
that B — A} A K decays have a branching fraction of the
order of 7 X 1074, and thus can be neglected by compari-
son to N./° (see also [10]). We take B(B — (cé)X) =
(2.3 = 0.3)% [7,30] and, using Egs. (1) and (2), we obtain
for charm production in B~ decays
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N7 =0.969 = 0.019 = 0.032759%,
N7 = 0.239 + 0.012 = 0.008*9915,
ns = 1.208 = 0.023 = 0.040+9933.
and in B° decays :
N? = 0.948 = 0.030 = 0.02875.93,
N? = 0.255 =+ 0.024 = 0.0097991%,
nd = 1.203 £ 0.030 = 0.0347 .94,

These results supersede those of Ref. [10]. The three-
fold increase in integrated luminosity accounts for the
substantial reduction in statistical error. The experimental
systematic uncertainties have been similarly reduced, pri-
marily through the use of the two-dimensional [mgg, m ()]
fit, which takes correctly into account the correlation be-
tween the fitted number of reconstructed B mesons and the
corresponding charm yield, and by a better description of
the kaon identification in the simulation. The systematic
uncertainty associated with these sources decreased by a
factor of 1.7 and 1.8, respectively. The reconstructed-B
selection was also somewhat tightened to improve the
purity. The differences between the central values reported
above and those in our original publication [10] can be
traced to three factors: a more precise D] branching
fraction [2] assumed in interpreting the D] — ¢ yield,
a better control of systematic uncertainties, and statistical
fluctuations. The consistency of our analyses was checked
by splitting the present sample into two data-taking peri-
ods, one corresponding to the dataset used in Ref. [10]
(81 fb™') and another one gathering the remaining
121 fb~!. For the first data-taking period, the differences
with the results of Ref. [10] are consistent with the system-
atic uncertainty ( = 3.5%) arising from the differences
between the two fitting methods, augmented by a statistical
component associated with a more restrictive event selec-
tion adopted in this paper. A global chi-squared test of the
statistical consistency between the two data-taking periods
(with identical selection and analysis procedures) yields a
17% probability for the observed differences.

Our results are in agreement with theoretical predictions
(as reviewed in Ref. [6])

N. = 0.97 001,
N, = 0.24 + 0.05,
n, = 1.21 = 0.05.

Different theoretical results, using experimental inputs,
predict n, to lie in the range [1.09, 1.28] [6].

D. Isospin analysis

The main source of anticorrelated D mesons produced in
B decays is b — c¢&s transitions. In these processes isospin
should be conserved, leading to the expectation that:
(B~ —D°X)=T(B°—> D" X) and (B~ — D X) =

PHYSICAL REVIEW D 75, 072002 (2007)

I'(B° — D°X). However, D mesons can also arise from
D* mesons, whose decay does not conserve isospin since
the D** — D~ 7" channel is kinematically forbidden.
Thus isospin invariance actually requires

1—‘dir(37 - D_OX) = l-‘dir(é0 - DiX)
F4e(B~ — D™X) = T'y;(B" — D°X)
I'(B~ — D*X) =T'(B° — D*X)
I'(B~ — D*~X) = I'(B" — D*X)
where Iy, (B — DX) refers to the partial width of B-meson
decays to D mesons where the D state is not reached
through a D* cascade decay. Equations (8) lead to the

following relations involving the measured anticorrelated
D branching fractions in Table IV :

rx* = B(B~ — D°X) — B(B® — D~ X) &

©))

Tgo

T8 _ BB~ —DX) (10

rx* = B(B° — D°X)

TBO
and

x+xt = %[fB(B‘ — DYX) + B(B~ — D™ X)

+ BB — D°X) 5" + BB — D X) TB*}
T go Tgo

(11

where 7+ /7p is the ratio of the B* to the B lifetime,

r=B(D" — D_077'7), x =By (B~ — D+ D X) and

x* = B(B~ — D*® + D*~X) [31]. That both Egs. (9) and

(10) must be satisfied is a consequence of isospin invari-

ance. From these two equations, we extract x* with a chi-

squared method, and using in addition Eq. (11) we calcu-
late

BB~ — D+ D*"X)=9.1*15%*0.6%
By (B~ =D+ D X)=21=*17*07%
<4.5%at 90%CL

Byi(B— D° + D™X)

S = 0.23701 + 0.09
B(B— D* + D*"X) —on

<0.60 at 90%CL
Here the first uncertainty is statistical, the second is sys-
tematic and includes charm branching-fraction uncertain-
ties, as well as those affecting the values of 73 /7% and
B(D*~ — D"7r™) taken from Ref. [24]. The y? of the fit to
Egs. (9) and (10) is 0.01 for 1 degree of freedom.

V. CHARM MOMENTUM DISTRIBUTIONS IN THE
B REST FRAME

As the four-momentum of the recoiling B is fully deter-
mined, each reconstructed charm hadron can be boosted
into the rest frame of its parent B, yielding the p* distri-
bution of the corresponding (anticharm) charm species in
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STUDY OF INCLUSIVE B~ AND B° DECAYS ...

the B frame. The number of C(C) _candidates, their frac-
tional production rates and the B — C(C)X branching
fractions are then determined in each p* bin by the same

BR x 10? /(0.15 GeV/c)

BR x 10* /(0.2 GeV/c)

BR x 10? /(0.34 GeV/c)

S o o
N O N

BR x 10? /(0.24 GeV/c)

FIG. 6 (color online).
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methods as in Sec. IV, separately for B~ and B° decays.
The systematic uncertainties are assumed to be indepen-
dent of p*, except for the error associated with the B® (B*)

BR x 10? /(0.34 GeV/c) BR x 10? /(0.2 GeV/c) BR x 10? /(0.15 GeV/c)

BR x 102 /(0.24 GeV/c)
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Momentum spectra, in the B~ rest frame, of correlated (left) and anticorrelated (right) charm particles : D°/D°

(a), (b), D™ (c)(d), D5 (e), (), A= (g), (h). The error bars are statistical only. The histogram in frame (f) represents the contribution of

B — D(*)ng*)_
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contamination in the B* (B°) sample : the latter is com-
puted bin-by-bin with a relative uncertainty on ¢, and c,
increased to 100%.

Figs. 6 and 7 show the result for correlated and anti-
correlated D°, D™, D, and A} production in B~ and B°
decays, respectively. The numerical values are tabulated in
the Appendix.
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Correlated D° and D™ [Figs. 6(a), 6(c), 7(a), and 7(c)]
are produced in several types of transitions : b — c¢€ " v,
b — ciud and b — ccs which explains the fairly large
spread of their momentum. High-p* correlated D’s are
produced in two-body decays such as B~ — D%zr~ while
low momentum D’s might come from higher multiplicity
final states such as B — DDK(Xjign) Where Xjigy, is any
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FIG. 7. Momentum spectra, in the B? rest frame, of correlated (left) and anticorrelated (right) charm particles : D°/D° (a), (b), D

(c)(d), Dy (e), (f), AZ (g), (h). The error bars are statistical only.
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number of pions and/or photons. The latter processes are
also the main source of anticorrelated D° and D~ produc-
tion [Figs. 6(b), 6(d), 7(b), and 7(d)] which explains why
anticorrelated D spectra are softer than their correlated
counterparts.

Anticorrelated D spectra [Figs. 6(f) and 7(f)] have a
very different shape compared to anticorrelated D spectra.
They are peaked at high p* values which is suggestive of
the two-body decays B— D®D; and B— D"D:~.
These decays represent a large fraction of the total anti-
correlated Dy production as shown in Fig. 6. In contrast,
the corresponding two-body processes B — D®D~ and
B — D®D*~ are Cabibbo-suppressed.

In the case of anticorrelated A, production associated
with &, production, for decays such as B — 5 A (Xjign),
the anticorrelated A, spectra should have a cut-off at p* <
1.15 GeV/c. This is actually observed in the data, both in
B~ [Fig. 6(h)] and in B° [Fig. 7(h)] decays.

VI. CONCLUSIONS

We have measured the branching fractions for inclusive
decays of B mesons to flavor-tagged D, D, and A,
separately for B~ and B°. We observe a significant pro-
duction of anticorrelated D° and D" mesons in B decays,
with the branching fractions reported in Table IV. These
results are consistent with and supersede our previous
measurement [10]. We find evidence for correlated D}
production in B~ decays, a process which has not been
previously reported.

The sum of all correlated charm branching fractions, N,
is compatible with 1, for charged as well as for neutral B
mesons. The numbers of charm particles per B~ decay
(n; =1.208 = 0.023 = 0.040*3933) and per B’ decay
(n? = 1.203 = 0.030 + 0.034*30%) are consistent with
previous measurements [7,9,10] and with theoretical ex-
pectations [3-6].

Assuming isospin conservation in the b — ccs transi-
tion, we show that anticorrelated D mesons are mainly
produced by cascade decays B — D*X — DX.

Finally, the technique developed for this analysis allows
us to measure the inclusive momentum spectra of flavor-
tagged D, D, and A in the rest frame of the B parent,
separately in B~ and B decays, eventually providing in-
sight into B-decay mechanisms.
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APPENDIX : CHARM p* SPECTRA

This appendix tabulates the measured p* dependence of
the branching fractions displayed in Figs. 6 and 7. In
Tables VI, VII, VIII, IX, X, XI, XII, and XIII, the first
uncertainty is statistical, the second is systematic and in-
cludes charm branching-fraction uncertainties. Within
each table, the statistical uncertainties are uncorrelated

whereas the systematic errors are fully correlated.

TABLE VL
decays.

Correlated and anticorrelated D° roduction in B~

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
BB~ — X:X) (%)

0.00-0.15 0.03 £0.06 =0.01 0.04 =0.04 =0.01
0.15-0.30 0.70 £0.18 =0.03  0.36 = 0.12 = 0.02
0.30-0.45 245*0.29£0.11 0.75*0.18 £0.03
0.45-0.60 3.01 £0.34 £0.13 1.08 £0.22 £0.05
0.60-0.75 496 £0.40 = 0.22 1.54 =£0.24 = 0.07
0.75-0.90 6.62 = 0.44 =0.30 1.56 =0.23 = 0.07
0.90-1.05 6.63 = 0.43 =030 1.78 =0.23 =0.07
1.05-1.20 7.18 043 +0.32 0.72+0.18 = 0.04
1.20-1.35 7.01 =0.41 =0.32 0.30*=0.14 =0.05
1.35-1.50 7.70 £0.38 2 0.35 0.29 = 0.11 =0.02
1.50-1.65 7.90 £0.39 £ 0.36  0.01 =0.09 = 0.05
1.65-1.80 7.96 = 0.38 =040 0.20 = 0.09 = 0.02
1.80-1.95 6.49 +£0.33 £0.32 —0.07 = 0.04 = 0.02
1.95-2.10 5.32£0.29 £0.26 0.02 =0.06 = 0.02
2.10-2.25 3.54 £0.24 £0.19 0.05 =0.04 = 0.01
2.25-2.40 1.06 = 0.13 = 0.06 -

TABLE VII. Correlated and anticorrelated Dt production in
B~ decays.

p* range (GeV/c)

correlated prod.
B(B~ — X.X) (%)

anticorrelated prod.
B(B~ — X:X) (%)

0.00-0.20 0.19 £0.09 = 0.02  0.06 = 0.06 = 0.01
0.20-0.40 0.59 £0.19=0.06 0.15*0.15*=0.02
0.40-0.60 1.43 =0.28 =0.14 0.78 =0.22 = 0.07
0.60-0.80 1.81 =0.31 =0.17 0.06 = 0.20 = 0.02
0.80-1.00 1.27 £0.29 £ 0.13  0.55 = 0.21 = 0.05
1.00-1.20 1.57 £0.27 £0.16 0.67 =0.18 £ 0.06
1.20-1.40 1.27£0.23 £0.16 0.02 =0.12 £0.03
1.40-1.60 072 +0.18 2 0.15 0.04 =0.10 = 0.04
1.60-1.80 0.69 =0.15*0.16 0.15*0.09 = 0.04
1.80-2.00 033 x0.11 =0.16 0.06 = 0.06 = 0.03
2.00-2.20 0.07 £0.07=0.09 0.02 =0.04 =0.03
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TABLE VIIL
B~ decays.

Correlated and anticorrelated D, production in

TABLE XI.
decays.

PHYSICAL REVIEW D 75, 072002 (2007)

Correlated and anticorrelated D™ production in B°

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
BB~ — X:X) (%)

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
B(B™ — X:X) (%)

0.00-0.34
0.34-0.68
0.68-1.02
1.02-1.36
1.36-1.70
1.70-2.04

—0.09 £0.20 = 0.02
0.03 = 0.20 £ 0.03
0.50 = 0.24 = 0.10
0.57 =0.21 £0.12
0.11 £ 0.12 = 0.03
0.08 = 0.08 = 0.02

0.50 =0.17 £ 0.08
0.09 =0.25 £0.04
1.04 £ 0.30 = 0.16
1.09 = 0.26 = 0.17
3.57*0.35*=0.55
2.33 £0.27 £ 0.36

TABLE IX. Correlated and anticorrelated A production in

B~ decays.

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
B(B™ — X:X) (%)

0.00-0.24
0.24-0.48
0.48-0.72
0.72-0.96
0.96-1.20
1.20-1.44
1.44-1.68

0.28 =0.12 £0.09
0.30 = 0.17 £ 0.09
0.48 =£0.21 =0.15
0.72 =2 0.24 £0.22
0.28 = 0.18 £ 0.09

0.10 = 0.08 = 0.03
0.40 = 0.20 £0.12
0.50 £0.22 £ 0.15
0.50 =0.21 £0.15
0.70 = 0.23 £0.21

0.34 +£0.16 £ 0.11 —0.10 £ 0.08 £ 0.03
0.41 £0.15*0.13 —0.05 £0.05 = 0.01

TABLE X. Correlated and anticorrelated D° production in B°

decays.

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
B(B™ — X:X) (%)

0.00-0.15
0.15-0.30
0.30-0.45
0.45-0.60
0.60-0.75
0.75-0.90
0.90-1.05
1.05-1.20
1.20-1.35
1.35-1.50
1.50-1.65
1.65-1.80
1.80-1.95
1.95-2.10
2.10-2.25

0.11 = 0.12 £ 0.01
0.73 = 0.28 = 0.03
1.46 = 0.41 £ 0.07
253 *0.51 =0.11
3.60 £0.62 £0.16
4.05 = 0.63 = 0.20
5.07 £ 0.61 =0.23
5.50 £0.62 = 0.25
4.93 £ 0.56 = 0.24
5.70 £0.56 + 0.27
551 £0.53 £0.27
2.85*+0.40 =0.23
2771 =0.37 £ 0.19
2.17*+0.32x£0.16

0.03 = 0.08 = 0.01
0.45 = 0.23 = 0.03
0.60 = 0.31 £0.04
1.56 £ 0.41 = 0.11
1.71 £ 0.47 £ 0.12
1.64 = 0.46 = 0.12
0.90 = 0.43 £ 0.07
0.48 = 0.40 £ 0.06
0.72 = 0.37 = 0.08

—0.53 = 0.29 = 0.07

0.45 =0.33 £0.09
0.19 = 0.24 = 0.07

—0.03 =0.19 = 0.06

0.04 =£0.17 = 0.05

0.58 =0.18 £0.11 —0.14 £0.10 = 0.02

0.00-0.20
0.20-0.40
0.40-0.60
0.60-0.80
0.80-1.00
1.00-1.20
1.20-1.40
1.40-1.60
1.60-1.80
1.80-2.00
2.00-2.20
2.20-2.40

0.08 = 0.12 = 0.01
1.10 = 0.37 = 0.09
0.97 = 0.47 = 0.08
247 £0.54 =0.19
2770 = 0.54 = 0.21
3.49+0.53=0.28
4.92 +0.54 = 0.39
541 £0.52 044
5.50 = 0.51 =0.45
5.54 = 0.49 = 0.45
3.08 £0.37 = 0.25
1.63 =0.26 = 0.13

0.05 = 0.11 = 0.01
0.42 = 0.28 £ 0.07
0.68 £ 0.36 = 0.11
0.08 =0.36 £ 0.02
—0.06 £0.34 = 0.02
0.76 £ 0.37 = 0.12
—0.14 = 0.30 £ 0.04
0.12 =0.31 £0.04
0.33 £ 0.31 = 0.06
—0.32 £ 0.25 £ 0.06
0.39 = 0.23 £0.06
—0.01 £0.14 = 0.01

TABLE XII.
B decays.

Correlated and anticorrelated D, production in

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
BB~ — X:X) (%)

0.00-0.34
0.34-0.68
0.68-1.02
1.02-1.36
1.36-1.70
1.70-2.04

—0.23 £0.14 = 0.03
0.69 = 0.46 = 0.10
0.03 =0.43 = 0.01
1.03 = 0.47 £ 0.16

—0.10 £ 0.32 = 0.03
0.22 £ 0.25 = 0.04

0.07 = 0.17 £ 0.02
1.29 = 0.49 = 0.20
2.10 £0.52 = 0.32
1.81 £ 0.47 = 0.28
3.88 £0.57 £ 0.60
2.10 £ 0.40 = 0.32

TABLE XIIL
B0 decays.

Correlated and anticorrelated A production in

p* range (GeV/c)

correlated prod.
BB~ — X.X) (%)

anticorrelated prod.
BB~ — X:X) (%)

0.00-0.24
0.24-0.48
0.48-0.72
0.72-0.96
0.96-1.20
1.20-1.44
1.44-1.68

0.01 =0.11 £0.01
0.46 = 0.34 = 0.15
0.73 £0.38 = 0.23
1.90 = 0.51 £ 0.60
0.73 = 0.40 = 0.23
0.96 = 0.35 = 0.30
0.21 = 0.19 = 0.07

0.14 £ 0.16 = 0.05
0.57 £0.33 = 0.19
0.34 £ 0.31 =0.12
—0.24 £0.30 = 0.08
0.94 = 0.36 = 0.32
—0.19 = 0.17 = 0.07
—0.01 £0.13 = 0.01
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