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A. Höcker,41 V. Lepeltier,41 F. Le Diberder,41 A.M. Lutz,41 S. Pruvot,41 P. Roudeau,41 M.H. Schune,41 J. Serrano,41

V. Sordini,41,k A. Stocchi,41 G. Wormser,41 D. J. Lange,42 D.M. Wright,42 I. Bingham,43 J. P. Burke,43 C. A. Chavez,43

J. R. Fry,43 E. Gabathuler,43 R. Gamet,43 D. E. Hutchcroft,43 D. J. Payne,43 C. Touramanis,43 A. J. Bevan,44 K.A. George,44

F. Di Lodovico,44 R. Sacco,44 M. Sigamani,44 G. Cowan,42 H.U. Flaecher,45 D. A. Hopkins,45 S. Paramesvaran,45

F. Salvatore,45 A. C. Wren,45 D. N. Brown,46 C. L. Davis,46 K. E. Alwyn,47 N. R. Barlow,47 R. J. Barlow,47 Y.M. Chia,47

C. L. Edgar,47 G. D. Lafferty,47 T. J. West,47 J. I. Yi,47 J. Anderson,48 C. Chen,48 A. Jawahery,48 D. A. Roberts,48 G. Simi,48

J.M. Tuggle,48 C. Dallapiccola,49 S. S. Hertzbach,49 X. Li,49 E. Salvati,49 S. Saremi,49 R. Cowan,50 D. Dujmic,50

P. H. Fisher,50 K. Koeneke,50 G. Sciolla,50 M. Spitznagel,50 F. Taylor,50 R. K. Yamamoto,50 M. Zhao,50 S. E. Mclachlin,51,*

P.M. Patel,51 S. H. Robertson,51 A. Lazzaro,52,53 V. Lombardo,52 F. Palombo,52,53 J.M. Bauer,54 L. Cremaldi,54

V. Eschenburg,54 R. Godang,54,{ R. Kroeger,54 D.A. Sanders,54 D. J. Summers,54 H.W. Zhao,54 M. Simard,55 P. Taras,55

F. B. Viaud,55 H. Nicholson,56 M.A. Baak,57 G. Raven,57 H. L. Snoek,57 C. P. Jessop,58 K. J. Knoepfel,58 J.M. LoSecco,58

W. F. Wang,58 G. Benelli,59 L. A. Corwin,59 K. Honscheid,59 H. Kagan,59 R. Kass,59 J. P. Morris,59 A.M. Rahimi,59

J. J. Regensburger,59 S. J. Sekula,59 Q. K.Wong,59 N. L. Blount,60 J. Brau,60 R. Frey,60 O. Igonkina,60 J. A. Kolb,60 M. Lu,60

R. Rahmat,60 N. B. Sinev,60 D. Strom,60 J. Strube,60 E. Torrence,60 G. Castelli,61,62 N. Gagliardi,61,62 M. Margoni,61,62

M. Morandin,61 M. Posocco,61 M. Rotondo,61 F. Simonetto,61,62 R. Stroili,61,62 C. Voci,61,62 P. del Amo Sanchez,63

E. Ben-Haim,63 H. Briand,63 G. Calderini,63 J. Chauveau,63 P. David,63 L. Del Buono,63 O. Hamon,63 Ph. Leruste,63

J. Ocariz,63 A. Perez,63 J. Prendki,63 L. Gladney,64 M. Biasini,65 R. Covarelli,65 E. Manoni,65 C. Angelini,66,67

G. Batignani,66,67 S. Bettarini,66,67 M. Carpinelli,66,67,** A. Cervelli,66,67 F. Forti,66,67 M.A. Giorgi,66,67 A. Lusiani,66,68

G. Marchiori,66,67 M. Morganti,66,67 N. Neri,66,67 E. Paoloni,66,67 G. Rizzo,66,67 J. J. Walsh,66 J. Biesiada,69

D. Lopes Pegna,69 C. Lu,69 J. Olsen,69 A. J. S. Smith,69 A.V. Telnov,69 F. Anulli,70 E. Baracchini,70,71 G. Cavoto,70

D. del Re,70,71 E. Di Marco,70,71 R. Faccini,70,71 F. Ferrarotto,70 F. Ferroni,70,71 M. Gaspero,70,71 P. D. Jackson,70

PHYSICAL REVIEW D 78, 011104(R) (2008)

RAPID COMMUNICATIONS

1550-7998=2008=78(1)=011104(8) 011104-1 � 2008 The American Physical Society



L. Li Gioi,70 M.A. Mazzoni,70 S. Morganti,70 G. Piredda,70 F. Polci,70,71 F. Renga,70,71 C. Voena,70 M. Ebert,72
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We present the results of searches for decays of B mesons to final states with a b1 meson and a neutral

pion or kaon. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center,

represent 465� 106 B �B pairs produced in eþe� annihilation. The results for the branching fractions are,

in units of 10�6, BðBþ ! bþ1 K0Þ ¼ 9:6� 1:7� 0:9, BðB0 ! b01K
0Þ ¼ 5:1� 1:8� 0:5 (< 7:8),

BðBþ ! bþ1 �
0Þ ¼ 1:8� 0:9� 0:2 (< 3:3), and BðB0 ! b01�

0Þ ¼ 0:4� 0:8� 0:2 (< 1:9), with the

assumption that Bðb1 ! !�Þ ¼ 1. We also measure the charge asymmetry AchðBþ ! bþ1 K
0Þ ¼

�0:03� 0:15� 0:02. The first error quoted is statistical, the second systematic, and the upper limits

in parentheses indicate the 90% confidence level.

DOI: 10.1103/PhysRevD.78.011104 PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

Recent searches for decays of B mesons to final states
with an axial-vector meson and a pion or kaon have re-
vealed modes with branching fractions that are rather large
among charmless decays: ð15� 35Þ � 10�6 for B !
a1ð�;KÞ [1,2], and ð7� 11Þ � 10�6 for charged pion and
kaon in combination with a b01 or a b

þ
1 meson [3,4]. In this

paper we present the results of investigations of the re-
maining charge states with b1 accompanied by a �0 or K0.
No previous searches for these modes have been reported.

The mass and width of the b1 meson are 1229:5�
3:2 MeV and 142� 9 MeV, respectively, and the domi-
nant decay is to !� [5]. In the quark model the b1 is the
IG ¼ 1þ member of the JPC ¼ 1þ�, 1P1 nonet. The

Cabibbo-favored amplitudes that mediate these decays
are those represented by color-suppressed tree diagrams
for the modes with �0, and ‘‘penguin’’ loop diagrams for
those with K0. Because the b1 meson has even G-parity,
only amplitudes in which the b1 contains the spectator
quark from the B meson are allowed, apart from isospin-
breaking effects [6]. Direct CP violation would be indi-
cated by a nonzero value of the asymmetryAch � ð�� �
�þÞ=ð�� þ �þÞ in the rates ��ðB� ! F�Þ for charged
B-meson decays to final states F�.

The available theoretical estimates of the branching
fractions of B mesons to b1� and b1K come from calcu-
lations based on naı̈ve factorization [7,8], and on QCD
factorization [9]. The latter incorporate light-cone distri-
bution amplitudes evaluated from QCD sum rules, and
predict branching fractions in quite good agreement with
the measurements for B ! b1�

þ and B ! b1K
þ [3]. The

expected branching fractions from QCD factorization are
about 10� 10�6 for Bþ ! bþ1 K

0, and 3� 10�6 or less for

B0 ! b01K
0 and B ! b1�

0 [9].
The data for these measurements were collected with the

BABAR detector [10] at the PEP-II asymmetric eþe�
collider located at the Stanford Linear Accelerator
Center. An integrated luminosity of 424 fb�1, correspond-
ing to ð465� 5Þ � 106 B �B pairs, was produced by eþe�
annihilation at the�ð4SÞ resonance (center-of-mass energyffiffiffi
s

p ¼ 10:58 GeV). Charged particles from the eþe� inter-

actions are detected, and their momenta measured, by a
combination of five layers of double-sided silicon micro-
strip detectors and a 40-layer drift chamber, both operating
in the 1.5 T magnetic field of a superconducting solenoid.
Photons and electrons are identified with a CsIðTlÞ elec-
tromagnetic calorimeter (EMC). Further charged particle
identification (PID) is provided by the average energy loss
(dE=dx) in the tracking devices and by an internally re-
flecting ring imaging Cherenkov detector (DIRC) covering
the central region. A detailed Monte Carlo program (MC)
is used to simulate the B production and decay sequences,
and the detector response [11].
The b1 candidates are reconstructed through the decay

sequence b1 ! !�, ! ! �þ���0, and �0 ! ��. The
other primary daughter of the B meson is reconstructed as
either K0

S ! �þ�� or �0 ! ��. For K0
S, the invariant

mass of the pion pair is required to lie between 486 and
510 MeV, i.e., within about 3.5 standard deviations of the
nominal K0

S mass [5]. The minimum energy for a

�0-daughter photon is 30 MeV (50 MeV for a primary
�0), and the minimum energy of a �0 is 250 MeV. The
invariant mass of the photon pair is required to lie between
120 and 150 MeV, or within about 2 standard deviations of
the nominal �0 mass. For the b1 and !, whose masses are
treated as observables in the maximum likelihood (ML) fit
described below, we accept a range that includes wider
sidebands (see Fig. 1). Secondary charged pions in b1 and
! candidates are rejected if classified as protons, kaons, or
electrons by their DIRC, dE=dx, and EMC PID signatures.
For a K0

S candidate we require a successful fit of the decay

vertex with the flight direction constrained to the pion pair
momentum direction, that yields a flight length greater
than 3 times its uncertainty.
We reconstruct the B-meson candidate by combining

the four-momenta of a pair of primary-daughter mesons,
using a fit that constrains all particles to a common
vertex and the �0 mass to its nominal value. From the
kinematics of �ð4SÞ decay we determine the energy-

substituted mass mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 s� p2

B

q
and energy difference

�E ¼ EB � 1
2

ffiffiffi
s

p
, where ðEB;pBÞ is the B-meson four-
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momentum vector, and all values are expressed in the
�ð4SÞ rest frame. The resolution in mES is 2.4–2.8 MeV
and in �E is 22–46 MeV, depending on the decay mode.
We require 5:25 GeV<mES < 5:29 GeV and j�Ej<
100 MeV.

We also impose restrictions on the helicity-frame decay
angles of the b1 and ! mesons. The helicity frame of a
meson is defined as the rest frame of the meson with z axis
along the direction of boost to that frame from the parent
rest frame. For the decay b1 ! !�, �b1 is the polar angle

of the daughter pion, and for ! ! 3�, �! is polar angle of
the normal to the 3� decay plane. Since many misrecon-
structed candidates accumulate in a corner of the cos�b1 vs

cos�! plane, we require cos�b1 � minð1:0; 1:1� 0:5�
j cos�!jÞ.

Backgrounds arise primarily from random combinations
of particles in continuum eþe� ! q �q events (q ¼
u; d; s; c). We reduce these with a requirement on the angle
�T between the thrust axis [12] of the B candidate in the
�ð4SÞ frame and that of the charged tracks and neutral
calorimeter clusters in the rest of the event (ROE). The
event is required to contain at least one charged track not
associated with the B candidate. The distribution is sharply
peaked near j cos�Tj ¼ 1 for q �q jet pairs, and nearly

uniform for B-meson decays. The requirement, which
optimizes the expected signal yield relative to its
background-dominated statistical error, is j cos�Tj< 0:7.
The average number of candidates found per event in the

selected sample is in the range 1.3 to 1.6 (1.4 to 1.6 in
signal MC), depending on the final state. We choose the
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FIG. 1 (color online). Distributions for signal-enhanced subsets (see text) of the data projected onto the fit observables for the decay
Bþ ! bþ1 K0: (a) mES, (b) �E, (c) F , (d) mð�þ���0Þ for the ! candidate, and (e) mð!�Þ for the b1 candidate. The solid lines

represent the results of the fits, and the dashed and dot-dashed lines the signal and background contributions, respectively.
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candidate with the largest confidence level for the B-meson
vertex fit.

In the ML fit we discriminate further against q �q back-
ground with a Fisher discriminant F that combines five
variables: the polar angles, with respect to the beam axis in
the�ð4SÞ rest frame, of the B candidate momentum and of
the B thrust axis; the flavor tagging category; and the
zeroth and second angular moments L0;2 of the energy

flow, excluding the B candidate, about the B thrust axis.
The tagging category [13] is the class of candidate partially
reconstructed from the ROE, designed to determine
whether, in a signal event, it represents a B or �B meson.
The moments are defined by Lj ¼ P

ipi � j cos�ijj, where
�i is the angle with respect to the B thrust axis of track or
neutral cluster i, pi is its momentum, and the sum excludes
the B candidate daughters. The Fisher variable provides
about 1 standard deviation of separation between B decay
events and combinatorial background.

We obtain yields for each channel from an extended ML
fit with the input observables �E, mES, F , and the reso-
nance masses mb1 and m!. The selected data sample sizes

are given in Table I. Besides the signal events, these
samples contain several backgrounds. Most of the events
in the sample are combinatorial background from q �q pro-
duction, with a smaller contribution of B �B with b ! c. We
include these with a single ‘‘combinatorial’’ component in
the probability density function (PDF). The remaining
backgrounds are cross feed from other charmless B �B
modes, which we estimate from the simulation to amount
to (0.5–1.1)%. These include nonresonant !��, !K�,
and modes that have final states different from the signal,
but with similar kinematics so that broad peaks near those
of the signal appear in some observables. We account for
these with a separate component in the PDF.

The likelihood function is

L ¼
expð�P

j
YjÞ

N!

YN

i

X

j

Yj

� P jðmES
iÞP jðF iÞP jð�EiÞP jðmi

b1
ÞP jðmi

!Þ; (1)

whereN is the number of events in the sample, and for each
component j (signal, combinatorial background, or charm-
less B �B cross feed), Yj is the yield of events, and P jðxiÞ the
PDF for observable x in event i. The signal component is

further separated into two components (with proportions
fixed in the fit for each mode) representing the correctly
and incorrectly reconstructed candidates in events with
true signal, as determined with MC. These misrecon-
structed candidates arise from the misassignment of tracks
or calorimeter clusters either between the two B mesons in
the event, or among the daughters of the reconstructed B;
the fraction of these is (32–40)%, depending on the mode.
The factored form of the PDF indicated in Eq. (1) is a good
approximation, particularly for the combinatorial q �q com-
ponent, since we find correlations among observables in
the data (which are mostly q �q background) are generally
less than 2%, with none exceeding 5%. The effects of this
approximation are determined in simulation and included
in the bias corrections and systematic errors discussed
below.
We determine the PDFs for the signal and B �B back-

ground components from fits to MC samples. We calibrate
the resolutions in �E and mES with large data control
samples of B decays to charmed final states of similar
topology [e.g. B ! DðK��Þ�, B ! DðK��Þ�]. We de-
velop PDFs for the combinatorial background with fits to
the data from which the signal region (5:27 GeV<mES <
5:29 GeV and j�Ej< 75 MeV) has been excluded.
The functions P j are constructed as linear combinations

of Gaussian and polynomial functions, or in the case of
mES for q �q background, the threshold function

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
exp½��ð1� x2Þ�, with argument x � 2mES=

ffiffiffi
s

p
and shape parameter �. These functions are discussed in
more detail in [14], and are illustrated in Figs. 1 and 2.
We allow the parameters most important for the deter-

mination of the combinatorial background PDFs to vary in
the fit, along with the yields for all components, and the
signal and q �q background asymmetries. Specifically, the
free background parameters are: � for mES, linear and
quadratic coefficients for �E, and the mean, width, width
difference, and polynomial fraction parameters for F .
We validate the fitting procedure by applying it to en-

sembles of simulated experiments with the q �q component
drawn from the PDF, into which we have embedded known
numbers of signal and B �B background events randomly
extracted from the fully simulated MC samples. By tuning
the number of embedded events until the fit reproduces the
yields found in the data, we determine the biases that are
reported, along with the signal yields, in Table I.

TABLE I. Number of events N in the sample, fitted signal yield YS, and measured bias (to be subtracted from YS) in events,
detection efficiency times secondary decay branching fractions �, significance S (with systematic uncertainties included), and
branching fraction and charge asymmetry with statistical and systematic error.

Mode N (events) YS (events) Bias (events) � (%) S (�) B (10�6) Ach

bþ1 K0 9841 164þ27
�25 15� 7 3.4 6.3 9:6� 1:7� 0:9 �0:03� 0:15� 0:02

b01K
0 5420 58þ19

�17 5� 3 2.2 3.4 5:1� 1:8� 0:5 ð<7:8Þ
bþ1 �0 28 787 71þ35

�32 8� 4 7.7 1.6 1:8� 0:9� 0:2 ð<3:3Þ
b01�

0 10 554 6þ19
�16 �2� 2 4.8 0.5 0:4� 0:8� 0:2 ð<1:9Þ
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In Figs. 1 and 2 we show the projections of the PDF and
data for each fit. The data plotted are subsamples enriched
in signal with the requirement of a minimum value of the
ratio of signal to total likelihood (computed without the
plotted variable) that retains (30–50)% of the signal, de-
pending on the mode.

We compute the branching fraction by subtracting the fit
bias from the measured yield, and dividing the result by the
number of produced B �B pairs and by the efficiency times
Bð! ! �þ���0Þ ¼ 89:1� 0:7% (and for the modes
with K0

S, BðK0 ! K0
S ! �þ��Þ ¼ 1

2 ð69:20� 0:05Þ%)

[5]. The efficiency is obtained from the MC signal model.
We assume that the branching fractions of the �ð4SÞ to
BþB� and B0 �B0 are each equal to 0.5, consistent with
measurements [5]. The results are given in Table I, along
with the significance, computed as the square root of the

difference between the value of�2 lnL0 for zero signal and
the value at its minimum. Here L0 is the convolution of L
[Eq. (1)] with a Gaussian function representing the additive
systematic uncertainty.
Systematic uncertainties on the branching fractions arise

from the PDFs, B �B backgrounds, fit bias, and efficiency.
PDF uncertainties not already accounted for by free pa-
rameters in the fit are estimated from the consistency of fits
to MC and data in control modes. Varying the signal-PDF
parameters within these errors, we estimate yield uncer-
tainties of (1.6–6.4)%, depending on the mode. We esti-
mate the uncertainty of the MC model of the
misreconstructed-signal component by performing alter-
nate fits with a signal PDF determined from true signal
events only; we find differences of 1–4 events between
these and the nominal fits. The uncertainty from fit bias
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FIG. 2 (color online). Distributions for signal-enhanced subsets (see text) of the data projected onto mES (a), (c), (e) and �E (b), (d),
(f) for the decays B0 ! b01K

0 (a), (b), Bþ ! bþ1 �
0 (c), (d), and B0 ! b01�

0 (e), (f). The solid lines represent the results of the fits,

and the dashed and dot-dashed lines the signal and background contributions, respectively.
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(Table I) includes its statistical uncertainty from the simu-
lated experiments, and half of the correction itself, added in
quadrature. For the B �B backgrounds we vary the fixed fit
component by 100% and include in quadrature a term
derived from MC studies of the inclusion of a b ! c
component with the dominant q �q background.
Uncertainties in our knowledge of the efficiency include
0:5%� Nt and 1:5%� N�, where Nt and N� are the

numbers of tracks and photons, respectively, in the B
candidate. The uncertainties in the efficiency from the
event selection are below 0.5%.

We study asymmetries from the track reconstruction
(found to be negligible), and from imperfect modeling of
the interactions with material in the detector, by measuring
the asymmetries in the q �q background in the data and
control samples mentioned previously, in comparison
with MC [15]. We assign a systematic error for Ach equal
to 0.01.

With the assumption that Bðb1 ! !�Þ ¼ 1, we obtain
for the branching fractions (in units of 10�6):

B ðBþ ! bþ1 K0Þ ¼ 9:6� 1:7� 0:9

BðB0 ! b01K
0Þ ¼ 5:1� 1:8� 0:5 ð<7:8Þ

BðBþ ! bþ1 �0Þ ¼ 1:8� 0:9� 0:2 ð<3:3Þ
BðB0 ! b01�

0Þ ¼ 0:4� 0:8� 0:2 ð<1:9Þ:
The first error quoted is statistical and the second system-

atic. We find no evidence for the modes with �0; the
evidence for BðB0 ! b01K

0Þ has a significance of 3.4 stan-
dard deviations. For these modes we quote also 90% con-
fidence level upper limits, given in parentheses. We
observe the decay BðBþ ! bþ1 K0Þ, and measure the
charge asymmetry

A chðBþ ! bþ1 K0Þ ¼ �0:03� 0:15� 0:02:

The QCD factorization estimates [9] for the branching
fractions and charge asymmetry (0.014) agree with these
measurements within experimental and theoretical errors.
We find no evidence for direct CP violation in BðBþ !
bþ1 K0Þ.
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