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The dynamics of heavy quarkonium systems in the strong coupling regime reduces to a quantum

mechanical problem with a number of potentials which may be organized in powers of 1=m, m being the

heavy quark mass. The potentials must be calculated nonperturbatively, for instance, in lattice QCD. It is

well known that the long-distance behavior of the static (1=m0) potential is well reproduced by an

effective string theory. We show that this effective string theory, if correct, should also reproduce the long-

distance behavior of all 1=m suppressed potentials. We demonstrate the practical usefulness of this result

by finding a suitable parameterization of the recently calculated 1=m potential. We also calculate the 1=m2

velocity-dependent and spin-dependent potentials. Once Poincaré invariance is implemented, the shapes

of most of the spin-independent potentials are fully predicted in terms of the string tension and the shapes

of the spin-dependent ones in terms of a single parameter.
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Heavy quarkonium systems have played a major role in
our understanding of QCD (see [1] for a review). The early
successes of nonrelativistic potential models in describing
the gross features of the spectrum can nowadays be under-
stood as emanating from QCD in a particular kinematical
regime. The heavy quarks in the heavy quarkonium rest
frame move slowly, with a velocity v � 1, which gener-
ates a hierarchy of physical scales m � mv � mv2

(1=mv is the typical size of the system andmv2 the typical
binding energy) in addition to �QCD, the typical hadronic

scale. This hierarchy is most conveniently exploited using
the effective field theories (EFTs) of nonrelativistic QCD
(NRQCD) [2,3] and potential nonrelativistic QCD
(pNRQCD) [4,5], which are built in such a way that they
are equivalent to QCD in the kinematical regime they hold
(see [6] for a review). It was shown in [5] that in the case
mv��QCD the relevant degrees of freedom of pNRQCD

(and hence of QCD) reduce to those of nonrelativistic
potential models. The potentials to be input in pNRQCD,
however, have precise formulas in terms of objects com-
putable from QCD. Some of these formulas were known
since long ago [7–9], but others were uncovered when
formulating this problem in the EFT framework, like the
1=m potential [10].

The potentials have been computed on the lattice with
increasing precision [11–15]. Convenient and economical
parameterizations of lattice data are necessary in order to
include the potentials as simple functions in the
Schrödinger equation. For the static potential the naı̈ve
addition of the short-distance one-gluon exchange poten-
tial and the long-distance linear potential, as predicted by
the effective string theory (EST) [16], which is known as
the Cornell potential [17], provides a good description of
lattice data and has been very successful in phenomeno-

logical applications. Corrections to the long-distance linear
behavior can be calculated in a systematic manner in the
EST [18,19] (see also [20]). For the subleading potentials,
so far the only constraint which has been used for such
parameterizations is that, at short distances, the potentials
must approach their perturbative expressions. The long-
distance behavior has traditionally been a matter of guess-
work, being quite common the use of polynomials in 1=r
(lately, powers of r have also been used). The aim of this
paper is to show that the EST also predicts the long-
distance behavior of the 1=m suppressed potentials and
hence may become an extremely useful tool in order to find
suitable parameterizations of lattice data.
The static potential can be obtained from the vacuum

expectation value of the rectangular Wilson loop WðT; rÞ
[21]. The EST hypothesis maintains that at long distances
(r�QCD � 1) this expectation value can be obtained from

a string action:

lim
T!1h0jWðT; rÞj0i ¼ Z

Z
D�leiSstringð�lÞ; (1)

where Z is an unknown constant and �l ¼ �lðt; zÞ, l ¼ 1; 2,
are the transverse components of the string, which fulfill
the boundary conditions �lðt; r=2Þ ¼ �lðt;�r=2Þ ¼ 0. The
string action may be written as [19]

Sstring ¼ ��
Z

dtdz

�
1� 1

2
@��

l@��l

�
; (2)

where � is the string tension. This action is corrected by
higher order terms in the EST counting and can be obtained
as a long wavelength limit of the Nambu-Goto action.
Equations (1) and (2) give rise to the following prediction
for the long-distance behavior of the static potential [18]:
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Vð0ÞðrÞ ¼ �rþ�� �

12r
; (3)

where � is an unknown constant. This result agrees with
lattice data for � ’ 0:21 GeV2 [19].

The 1=m suppressed potentials are given by expectation
values of suitable operator insertions in the rectangular
Wilson loop (see [10,22] for concrete formulas). Since
the large distance behavior of the expectation value of
the Wilson loop is given by an EST, it is natural to expect
that the suitable operator insertions that the 1=m potentials
need also have a representation in the EST. In order to pin
down the mapping, it is convenient to express the operator
insertions in a gauge invariant fashion. This is achieved by
introducing two spinless (Grassmann) fields c and �. c
annihilates a static source in the fundamental representa-
tion at the point r=2 ¼ ð0; 0; r=2Þ, and � creates a static
source in the antifundamental representation at the point
�r=2, fc y; c g ¼ f�y; �g ¼ 1, the remaining fixed-time
(anti)commutators being zero. The QCD Lagrangian is
then augmented by

�LQCD ¼ c yðtÞði@0 � gA0ðt; r=2ÞÞc ðtÞ
þ �yðtÞði@0 � gA0ðt;�r=2ÞÞ�ðtÞ: (4)

The expectation value of the rectangular Wilson loop
WðT; rÞ can be rewritten as

h0jWðT; rÞj0i ¼ h0jO
�
T

2
; r

�
Oy

�
�T

2
; r

�
j0i; (5)

Oðt; rÞ ¼ �yðtÞ�
�
t;� r

2
; t;

r

2

�
c ðtÞ: (6)

�ðt; r; t; r0Þ is the straight Wilson line joining the points r
and r0 at the time t. In this formalism the insertions of
chromoelectric and chromomagnetic operators [see (18)
below and Ref. [22]] correspond to insertions in (5) of the
following gauge invariant operators:

c yðtÞEi

�
t;
r

2

�
c ðtÞ; c yðtÞBi

�
t;
r

2

�
c ðtÞ;

��yðtÞEi

�
t;� r

2

�
�ðtÞ; ��yðtÞBi

�
t;� r

2

�
�ðtÞ:

(7)

For instance, let us denote as hEiðt; r=2Þ Eiðt0; r=2Þi the
expectation value of the insertions of two chromoelectric
fields at the points ðt; r=2Þ and ðt0; r=2Þ of the Wilson loop
(T=2> t > t0 >�T=2). We have

hEiðt; r=2ÞEiðt0; r=2Þi
¼ h0jO

�
T

2
; r

�
c yðtÞEi

�
t;
r

2

�
c ðtÞ

� c yðt0ÞEi

�
t0;

r

2

�
c ðt0ÞOy

�
�T

2
; r

�
j0i: (8)

This way of rewriting the operator insertions in the Wilson
loop is especially convenient for the mapping into the EST.

In the limit T ! 1, which is taken in the computation of
the 1=m suppressed potentials, the chromoelectric and
chromomagnetic insertions reduce to correlation functions
of the gauge invariant operators (7). These correlation
functions can now be mapped into the EST as correlation
functions of some suitable EST operators.
Therefore, what we have to do is to find a representation

of operators like (7) in terms of string variables, under the
guidance of the global symmetries of the system. The latter
correspond to theDh1 group, the symmetries of a diatomic
molecule (changing P by CP), and time reversal. In order
to identify the implementation of the symmetry in the EST,
it is convenient to choose a world sheet parameterization in
which evolution is described by time, the zeroth coordinate
of the string, and the labeling by the z coordinate, the last
coordinate of the string, as it has already been implemented
in (2). For the building blocks of (7), we have the following
transformation properties with respect to the generators of
Dh1 [z ¼ ð0; 0; zÞ]:
(i) rotations with respect to the z axis:

Eiðt; zÞ ! RijEjðt; zÞ;
Biðt; zÞ ! RijBjðt; zÞ;

c ðtÞ ! c ðtÞ;
�ðtÞ ! �ðtÞ;

(9)

(ii) reflection with respect to the zx plane:

Eiðt; zÞ ! �ijEjðt; zÞ;
Biðt; zÞ ! ��ijBjðt; zÞ;

c ðtÞ ! c ðtÞ;
�ðtÞ ! �ðtÞ;

(10)

(iii) CP:

Eiðt; zÞ ! ðEiÞTðt;�zÞ;
Biðt; zÞ ! �ðBiÞTðt;�zÞ;

c ðtÞ ! ��ðtÞ;
�ðtÞ ! c �ðtÞ:

(11)

Under time reversal they transform as follows:
(i) T:

Eiðt; zÞ ! Eið�t; zÞ;
Biðt; zÞ ! �Bið�t; zÞ;

c ðtÞ ! c ð�tÞ;
�ðtÞ ! �ð�tÞ:

(12)

In these equations, Rij is the rotation matrix, �ij ¼
diagð1;�1; 1Þ, and T stands for transpose (with respect to
color indices). On the string theory side, the building

GUILLEM PÉREZ-NADAL AND JOAN SOTO PHYSICAL REVIEW D 79, 114002 (2009)

114002-2



blocks, namely, the string coordinates �iðt; zÞ (with �3 ¼
z), transform as follows:

(i) rotations with respect to the z axis:

�iðt; zÞ ! Rij�jðt; zÞ; (13)

(ii) reflection with respect to the zx plane:

�iðt; zÞ ! �ij�jðt; zÞ; (14)

(iii) CP:

�iðt; zÞ ! ��iðt;�zÞ; (15)

(iv) T:

�iðt; zÞ ! �ið�t; zÞ: (16)

We find that the following mapping satisfies the symmetry
requirements:

c yðtÞEl

�
t;
r

2

�
c ðtÞ � �2@z�

l

�
t;
r

2

�
;

�yðtÞEl

�
t;� r

2

�
�ðtÞ � ��2@z�

l

�
t;� r

2

�
;

c yðtÞBl

�
t;
r

2

�
c ðtÞ � �0	lm@t@z�m

�
t;
r

2

�
;

�yðtÞBl

�
t;� r

2

�
�ðtÞ � �0	lm@t@z�m

�
t;� r

2

�
;

c yðtÞE3

�
t;
r

2

�
c ðtÞ � �002;

�yðtÞE3

�
t;� r

2

�
�ðtÞ � ��002;

c yðtÞB3

�
t;
r

2

�
c ðtÞ � �000	lm@t@z�l

�
t;
r

2

�
@z�

m

�
t;
r

2

�
;

�yðtÞB3

�
t;� r

2

�
�ðtÞ � �000	lm@t@z�l

�
t;� r

2

�
@z�

m

�
t;� r

2

�

(17)

(l; m ¼ 1; 2), where �;�0;�00;�000 ��QCD are unknown

constants with dimension of mass. The assignment above
agrees with the early assignment in Ref. [23]. The EST
provides an expansion of the physical observables in terms
of 1=r�QCD, transverse string coordinates must be counted

as 1=�QCD, whereas @z and @0 like 1=r. Hence the ex-

pressions in (17) will be corrected by higher order opera-
tors in the EST counting. The expression of the 1=m
potentials in the EST will be obtained by substituting the
operators on the left-hand side of (17) by the operators on
the right-hand side of (17) and calculating the expectation
values with the EST action (2).

Let us illustrate it by calculating the EST expression of
the 1=m potential. For this potential we have [22]

Vð1;0ÞðrÞ ¼ �g2

2

Z 1

0
dtt

��
Ei

�
t;
r

2

�
Ei

�
0;
r

2

���
c
; (18)

where hh. . .ii means that the expectation value of the op-
erator insertions in the Wilson loop [e.g. (8)] is normalized
to the expectation value of the Wilson loop (5), and the
subscript c stands for connected. Hence the EST represen-
tation is

Vð1;0ÞðrÞ ¼ � g2�4

2

Z 1

0
dtt@z@z0G

ll
F

�
t;
r

2
; 0;

r

2

�
; (19)

where Glm
F ðt; z; t0; z0Þ ¼ h�lðt; zÞ�mðt0; z0Þi. This integral is

most easily computed by performing a Wick rotation to
imaginary time. For the calculation of the correlator we
obtain

Glm
F ðit; z; it0; z0Þ ¼ �lm 1

4��

� ln

�
cosh½�r ðt� t0Þ� þ cos½�r ðzþ z0Þ�
cosh½�r ðt� t0Þ� � cos½�r ðz� z0Þ�

�
:

(20)

The time integration in (19) suffers from an UV diver-
gence, which may be regulated by introducing a cutoff for
small times. The contribution from this cutoff is just an
additive constant to the potential, which may be absorbed
into the additive constant that appears in the EST result for
the static potential (3). Up to a constant term, we then
obtain

Vð1;0ÞðrÞ ¼ g2�4

��
lnð ffiffiffiffi

�
p

rÞ: (21)

Hence we obtain the nontrivial result that the 1=m potential
must grow logarithmically at large r. Let us compare this
result with available lattice data. We fitted a curve of the

form Vð1;0ÞðrÞ ¼ a logrþ b to the data in [24] at 
 ¼
6=g2 ¼ 6:00 and r > 0:2 fm. Note that this range already
corresponds to the intermediate and long-distance regimes
r * ��1

QCD. The result is plotted in Fig. 1. As we can see,

the fit is very good, with a reduced chi square
�2=Ndf ¼ 0:93.1 Of course, for phenomenological appli-

-0.05

 0
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FIG. 1. The lattice data for Vð1;0ÞðrÞ, fitted to the EST predic-
tion Vð1;0ÞðrÞ ¼ a logrþ b.

1We have considered the errors of the different lattice points
uncorrelated. When the correlations are taken into account,
�2=Ndf becomes larger but still of order one [25].
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cations (see, for instance, [26]) a short-distance piece
compatible with perturbation theory (� 1=r2) should be
‘‘added’’ to the long-distance behavior above.

Some of the 1=m2 potentials are related to the correlator
(20) and hence can be easily obtained from it:

Vð2;0Þ
p2 ðrÞ ¼ Vð1;1Þ

p2 ðrÞ ¼ 0;

Vð2;0Þ
L2 ðrÞ ¼ �Vð1;1Þ

L2 ðrÞ ¼ �g2�4

6�
r:

(22)

The velocity-dependent potentials Vð2;0Þ
p2 ðrÞ and Vð1;1Þ

p2 ðrÞ
may receive nonvanishing contributions at next-to-next-
to-leading order, and, hence, up to logarithmic corrections,

they are expected to scale as Vð2;0Þ
p2 ðrÞ � Vð1;1Þ

p2 ðrÞ � C=r

[Vð2;0Þ
p2 ðrÞ may develop a constant piece due to a contact

term, similar to the ones appearing in (26) below]. We
obtain from (22) the following model-independent predic-
tions for the long range behavior of these potentials:

Vð2;0Þ
L2 ðrÞ

Vð1;1Þ
L2 ðrÞ ¼ �1;

r2 d
dr V

ð1;0ÞðrÞ
Vð2;0Þ
L2 ðrÞ ¼ � 6

�
: (23)

Let us next turn to the potentials involving chromomag-
netic fields (spin-dependent potentials). We obtain for the

spin-orbit potentials

Vð2;0Þ
LS ðrÞ ¼ ��2

c

r
� g2cð1ÞF �0�2

�r2
;

Vð1;1Þ
L2S1

ðrÞ ¼ �g2cð1ÞF �0�2

�r2
;

(24)

where cð1ÞF is a matching coefficient of the NRQCD
Lagrangian, which is inherited by the spin-orbit interaction

(see [6]). Vð2;0Þ
LS ðrÞ is UV divergent and requires regulariza-

tion and renormalization. This is not a problem of the EST
itself but rather one inherited from the static limit of QCD.
The introduction of the static fields c ðtÞ and �ðtÞ makes
the solution of the problem straightforward. Indeed, when-
ever we have a time ordered product of local operators,
contact (local) terms of dimension equal or smaller than
the sum of the dimensions of the operators must generi-
cally be added in order to obtain finite results. In the case of

Vð2;0Þ
LS ðrÞ, which involves the time ordered product

	lmc yðtÞBl

�
t;
r

2

�
c ðtÞc yð0ÞEm

�
0;
r

2

�
c ð0Þ; (25)

only the following terms are possible2:

	lmc yðtÞBl

�
t;
r

2

�
c ðtÞc yð0ÞEm

�
0;
r

2

�
c ð0Þ ! 	lmc yðtÞBl

�
t;
r

2

�
c ðtÞc yð0ÞEm

�
0;
r

2

�
c ð0Þ þ iðc1�0ðtÞ

þ c2�
000ðtÞÞc yð0Þc ð0Þ þ ic3�

0ðtÞc yð0ÞE3

�
0;
r

2

�
c ð0Þ: (26)

c1, c2, and c3 are real constants. The term with c2 is
subleading in the EST counting, but c1 and c3 are not.
We use the same regularization as for Vð1;0ÞðrÞ and add a
suitable contact term corresponding to the EST represen-
tation of the terms with c1 and c3 in (26), which turn out to
be proportional to the identity operator, in order to make
the final expression finite. The coefficient �2

c appearing in
(24) depends on the finite piece of this contact term and
must be considered an additional free parameter. For the
spin-spin potentials we get zero at LO, which is consistent
with the argument put forward in [23]. However, at next-to-
leading order they might receive nonvanishing contribu-
tions. Up to logarithmic corrections, we expect them to
scale as Vð1;1Þ

S2
� Vð1;1Þ

S12
� C=r5, which may explain the

sharp drop observed in lattice calculations [15]. Note that
these contributions would be m2=�2

QCD enhanced with
respect to the one found in [23].

Before closing, it is interesting to explore the constraints
that Poincaré invariance imposes on the potentials [27]

with regard to the EST results above. The Gromes relation
[28] and the first Brambilla-Barchielli-Montaldi-Prosperi
relation [29] fix �2

c in (24) and �2 to

�2
c ¼ �=2; g�2 ¼ �: (27)

The other BBMP relations are satisfied without any further
constraints. This is a remarkable result. It fixes the coef-
ficients of the 1=m potential and of the velocity-dependent
potentials in terms of the slope of the static potential (the
string tension �). For the 1=m potential the fit value of the
coefficient a ¼ 0:095 GeV2, whereas the previous relation
gives a ¼ �=� ¼ 0:067 GeV2. The difference may be due
to two reasons: (i) the lattice data of [24] are not in the
continuum, and, hence, small violations of Poincaré invari-
ance are expected, and (ii) higher order terms in the EST,
which have not been considered, the most important of
which goes like C=r2, up to logarithms.
In summary, we have shown how EST can be used to

extract the long-distance part of the 1=m suppressed po-
tentials. As an example, we have quantitatively compared
with lattice data in the case of the 1=m potential and have
found an excellent agreement. We expect a similar agree-
ment for the remaining potentials. When Poincaré invari-

2Note that c yð0Þc ð0Þ is the identity operator in the subspace
spanned by c yð0Þ, and hence operators involving higher powers
of it are redundant.
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ance is used, the shapes of the spin-independent potentials
are fully predicted (at LO in the EST expansion), and the
shapes of the spin-dependent ones are given in terms of a
single parameter.

We believe our results are important from two different
points of view. On the one hand, we have obtained for the
first time a satisfactory parameterization of the 1=m poten-
tial at long distances, which can now be used to compute
the 1=m correction to the heavy quarkonium spectrum. On
the other hand, there is no available proof of the idea that
QCD is equivalent to EST at long distances. Our results

provide a number of new ways to test whether this idea is
valid or not.
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