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The ground-state energies of systems containing up to 12 �þ’s in a spatial volume V � ð2:5 fmÞ3 are
computed in dynamical, mixed-action lattice QCD at a lattice spacing of �0:125 fm for four different

values of the light-quark masses. Clean signals are seen for each ground-state, allowing for a precise

extraction of both the �þ�þ scattering length and �þ�þ�þ interaction from a correlated analysis of

systems containing different numbers of �þ’s. This extraction of the �þ�þ scattering length is consistent

with that from the �þ�þ system alone. The large number of systems studied here significantly

strengthens the arguments presented in our earlier work and unambiguously demonstrates the presence

of a low energy �þ�þ�þ interaction. The equation of state of a �þ gas is investigated using our

numerical results and the density dependence of the isospin chemical potential for these systems agrees

well with the theoretical expectations of leading order chiral perturbation theory. The chemical potential is

found to receive a substantial contribution from the �þ�þ�þ interaction at the lighter pion masses. An

important technical aspect of this work is the demonstration of the necessity of performing propagator

contractions in greater than double precision to extract the correct results.

DOI: 10.1103/PhysRevD.78.014507 PACS numbers: 12.38.Gc

I. INTRODUCTION

Multihadron systems, from the deuteron to heavy nuclei
to neutron stars, represent a significant fraction of the
universe that we observe, and for decades the phenomeno-
logical study of these systems defined the field of nuclear
physics. Understanding how nuclei and nuclear interac-
tions emerge from quantum chromodynamics (QCD), the
underlying theory of the strong interaction, is now a central
goal of modern subatomic physics. Since hadrons are
bound states of quarks and gluons, they do not arise at
any finite order in perturbation theory and a description
from QCD has proved elusive. The only known nonpertur-
bative method that systematically implements QCD from
first principles is its formulation on a discretized space-
time, lattice QCD. While it is still not possible to directly
calculate the properties of even the simplest nucleus from
QCD, the tools and technology are gradually being put in
place to make such calculations possible with lattice QCD
in the near future. The impact of the successful realization
of this goal cannot be overstated. For the first time, it would
allow reliable calculations of strongly interacting many-
body processes that are not (or are only poorly) accessible
experimentally. Important examples are hyperon-nucleon
interactions that may play significant roles in the interior of

neutron stars. Further, it would enable the exploration of
how the properties of such systems depend upon the fun-
damental constants of nature, exposing the (possible) fine-
tunings between the light-quark masses that give rise to the
multiple fine-tunings observed in nuclear physics.
Our current understanding of nuclei requires a small but

nonzero three-nucleon interaction. In the study of the
structure of nuclei, we now have refined many-body tech-
niques, such as Green’s function Monte Carlo (GFMC) [1]
with which to calculate the ground states and excited states
of light nuclei, with atomic number A & 14. Using modern
nucleon-nucleon potentials that reproduce all scattering
data below inelastic thresholds with �2=dof � 1, such as
AV18 [2], one fails, quite dramatically, to recover the
structure of light nuclei. The inclusion of three-nucleon
interactions greatly improves the predicted structure of
nuclei, but at present, such interactions are difficult to
constrain. At some point in the future, lattice QCD will
be able to predict the interactions between multiple neu-
trons (and proton and mixed proton-neutron systems),
bound or unbound in the same way it will be used to
determine the two-body scattering parameters. A calcula-
tion of the three-neutron interaction, for instance, will be
possible.
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As a first step toward the study of nuclei and their
interactions using lattice QCD, in this work we study
systems composed of up to 12 �þ’s. These multipion
systems are conceptually and computationally the simplest
multihadron systems that can be constructed. In addition to
the two-body interactions, there are expected contributions
from multibody interactions. Such multibody interactions
are not forbidden by the symmetries of QCD, and are
expected to be present with a magnitude that can be
estimated with naive dimensional analysis (NDA) [3].
However, they are qualitatively (and obviously quantita-
tively) different from systems involving nucleons. The
lowest-lying continuum state of multiple pions in a large
volume is perturbatively close to each pion carrying zero-
momentum, whereas the wave functions of systems of
multiple nucleons are subject to the Pauli exclusion
principle.

In a recent paper [4], we have reported results of the first
many-pion calculation1 in lattice QCD. We explored sys-
tems containing up to five pions, extracted the �þ�þ
scattering length, and, for the first time, found indications
of a nonzero renormalization group invariant (RGI)
�þ�þ�þ interaction. Here we continue our investigations,
presenting more detailed results of the previous studies and
extending our work to systems containing up to 12 charged
pions. We also use the recently derived expression for the
ground-state energy of n-identical bosons in a finite vol-
ume atOðL�7Þ [5] in our analysis, one order beyond that at
which our previous calculations [4] were analyzed.

Multipion systems are of interest in their own right as a
strongly interacting boson gas at finite density and tem-
perature. Such systems may be important for the late-time
evolution of heavy ion collisions, such as those at RHIC
and also in the interior of neutron stars [6,7]. During the
last several years there have been a number of theoretical

explorations of pionic systems at finite isospin chemical
potential, with or without a finite baryon number chemical
potential. Leading order (LO) chiral perturbation theory
(�PT) has been used to study the vacuum realignment that
takes place in the presence of an isospin chemical potential
that exceeds the mass of the pion, leading to a charged-pion
condensate, and excitations about this realigned vacuum.
One of the important results of this present work is the
calculation of the isospin chemical potential as a function
of the isospin density. Our results are in good agreement
with the LO �PT result, and further, demonstrate the
sizable contribution from multipion interactions even at
moderate densities.
The structure of this paper is as follows. In Sec. II we

review the theoretical expectations for the ground-state
energy of multipion systems at finite volume and discuss
methods for extracting their interactions. In Sec. III we
provide details of our lattice QCD measurements and
analysis and in Secs. IV and V we present the main results
of our calculations. In Sec. VI we discuss the implications
of our results for the equation of state of the pionic gas, its
isospin chemical potential, and its pressure. Finally in
Sec. VII we discuss the results in a global context and
conclude. Certain technical details of contractions and
numerical implementation are relegated to the appendices.

II. MULTIMESON ENERGIES: ISOLATING THE
TWO- AND THREE-BODY INTERACTIONS

In recent works [5,8,9], the analytic volume dependence
of the energy of n identical bosons in a periodic volume has
been computed to OðL�7Þ, extending the classic results of
Bogoliubov [10] and Lee, Huang, and Yang [11]. The
resulting shift in energy of n particles of mass M due to
their interactions is [5]

�En ¼ 4� �a

ML3
nC2
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where the parameter �a is related to the scattering length2 a,
and the effective range r by a ¼ �a� 2�

L3
�a3r

�
1�

�
�a

�L

�
I
�
: (2)

The geometric constants that enter into Eq. (1) are

I ¼ �8:913 632 9; J ¼ 16:532 316;

K ¼ 8:401 924 0; L ¼ 6:945 807 9;

T 0 ¼ �4116:2338; T 1 ¼ 450:6392;

(3)

and nCm ¼ n!=m!=ðn�mÞ!. The three-body contribution
to the energy shift given in Eq. (1) is represented by the

1‘‘Many-body’’ implies systems containing more than two
bodies. When we refer to the pion we will mean the �þ unless
otherwise stated.

2In this work we use the Nuclear Physics sign convention for
the scattering length, which is opposite to that of the Particle
Physics sign convention. In this convention, the �þ�þ scattering
length is positive.
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parameter ���L
3 , which is a combination of the volume-

dependent, renormalization group invariant quantity, ��L
3 ,

and contributions from the two-body scattering length and
effective range,

���L
3 ¼ ��L

3

�
1� 6

�
�a

�L

�
I
�
þ 72� �a4r

ML
I ; (4)

where

��L
3 ¼ �3ð�Þ þ 64�a4

M
ð3 ffiffiffi

3
p � 4�Þ logð�LÞ � 96a4

�2M
SMS:

(5)

The quantity �3ð�Þ is the coefficient of the three-�þ
interaction that appears in the effective Hamiltonian den-
sity describing the system [5]. It is renormalization scale,
�, dependent. The quantity S is renormalization scheme
dependent and we give its value in the minimal subtraction
(MS) scheme, SMS ¼ �185:125 06.

For n ¼ 2, the last two terms in Eq. (1) vanish and the
remaining terms constitute the small �a=L expansion of the
exact eigenvalue equation derived by Lüsher [12,13]:

p cot�ðpÞ ¼ 1

�L
S

��
pL

2�

�
2
�
; (6)

which is valid below the inelastic threshold. Below this
threshold p cot�ðpÞ is the real part of the inverse scattering
amplitude. The regulated three-dimensional sum is [14]

S ðxÞ � Xjjj<�

j

1

jjj2 � x
� 4��; (7)

where the summation is over all triplets of integers j such
that jjj<� and the limit � ! 1 is implicit. For n ¼ 3,
Eq. (1) reproduces the shift of the ground-state energy of
three identical bosons that was recently calculated by Tan
[9].
Naively, one might have expected to be able to deter-

mine the two-body effective range parameter r by calcu-
lating the energies of systems with different numbers of
pions. However, given the scattering parameter redefini-
tions of Eq. (2), this is clearly not possible.3 Instead, the
effective range will be extracted by calculating the energies
of the excited states of, for example, the n ¼ 2 pion system
at finite volume, the lowest lying of which is perturbatively
close to the state in which the pions both carry (back-to-
back) one unit of lattice momentum, 2�=L.
It is useful to form various combinations of the many-

body energies in order to isolate or eliminate the various
contributions from two-body or three-body interactions.
Further, important checks can be made regarding the con-
vergence of the large-volume expansion, as more particles
are added into the volume. In particular, the combinations
involving systems with n, m and two bodies

� ð6Þn;m ¼ 1� ðm� 2Þ
ðm� nÞnC2

�
�En

�E2

�
nC3
mC3

�Em

�E2

�

þ 5ð4� 2m� 2nþmnÞK
�
L2M�E2

4�2

�
3

(8)

vanish at order OðL�6Þ while

� ð7Þn;m ¼ 1� ðm� 2Þ
ðm� nÞnC2

�
�En

�E2

�
nC3
mC3

�Em

�E2

�
þ 5ð4� 2m� 2nþmnÞK

�
L2M�E2

4�2

�
3 � ðm� 2Þðn� 2Þ

32�2
IðL�E2Þ2

þ ðm� 2Þðn� 2Þ
256�8

ðML2�E2Þ4ðJ 2 þ 16IKþ ð199� 14m� 14nÞL� 16T 1Þ (9)

vanishes at order OðL�7Þ for any n, m.
The three-body interaction ���L

3 can be eliminated by forming combinations of the many-body energies, allowing for

various determinations of �a. One such combination is

3Writing �1=p cot� ¼ �a ¼ aþ a2rp2=2þ . . . , and evaluating it at the shifted energy of two particles in the volume at LO in the
volume expansion, gives �a ¼ aþ 2�a3r=L3 þ . . . .
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�
; (10)

which allows for the scattering length to be extracted at N3LO (omitting the last set of square brackets) and N4LO in the
large-volume expansion.

Similarly, the three-body interaction can be isolated from combinations of the many-body energies. One such
combination formed from the n-body and the two-body energies is

���L
3 ¼ L6 1
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L
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256�8
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3Iðnþ 3Þ
32�2

ð�E2L
3Þ3; (11)

which allows for ���L
3 to be extracted at two orders in the

expansion. This, of course, can be straightforwardly gen-
eralized to other combinations of energies that may or may
not include �E2.

The ground-state energies at finite volume, given in
Eq. (1), have been computed in nonrelativistic quantum
mechanics, with relativistic effects added perturbatively
[5]. They are given in terms of the scattering parameters,
and the three-body interaction. For pionic systems in par-
ticular, it is natural to ask about the role of chiral perturba-
tion theory in such a calculation. In �PT, the expansion
parameters for this system (in the p-regime) are p=�� and

m�=��, where �� � 4�f� is the chiral symmetry break-

ing scale. The �PT expression for the ground-state energy
of n-�’s in a finite volume (which remain to be deter-
mined) will be a dual expansion in 2�=ð��LÞ andm�=��.

As such, in order to extract the three-body interaction that
first enters atOðL�6Þ, the calculation in �PTwould need to
be performed at N3LO. While providing the complete
quark-mass dependence at this order, such a calculation
would involve the evaluation of three-loop diagrams, and
contributions from the relevant N3LO counterterms.
Organizing the perturbative expansion using nonrelativis-
tic effective field theory, EFTð�6 Þ (see e.g. Refs. [15,16]),
greatly simplifies the result, but does so at the expense of
ignorance of the quark-mass dependence of the EFTð�6 Þ
parameters without further calculation (such as the quark-
mass dependence of the scattering length).

It is important to notice that for the systems containing a
large enough number of pions, the energy shift of the
ground state exceeds that required to pair-produce pions.

The leading relativistic effects that are included in the
analytic expression for the energy shift include only the
single particle relativistic kinematics and corrections to the
two-pion scattering amplitude, they do not include contri-
butions due to inelasticities, including pair-production.
However, we conclude that such effects make a small
contribution to the ground-state energy as we find no
evidence for deviations from Eq. (1). Nonetheless, this
aspect of these systems must be explored further.

III. METHODOLOGYAND DETAILS OF THE
LATTICE CALCULATION

A. Lattice configurations and quark propagators

The results of the numerical computations presented in
this paper were obtained using the mixed-action lattice
QCD scheme developed by LHPC [17,18] and are based
on the coarse MILC lattice configurations [19]. These
lattices have a lattice spacing of b� 0:125 fm, and a
spatial extent of L� 2:5 fm. They were generated using
the asqtad-improved [20,21] staggered formulation of lat-
tice fermions, taking the fourth-root of the fermion deter-
minant, and the one-loop, tadpole-improved Symanzik
gauge action [22]. Herein, we assume that the ‘‘fourth-
root trick’’4 recovers the correct continuum limit of QCD.
These ensembles of configurations have a fixed (almost
physical) strange quark mass while the degenerate light

4For an introduction to staggered fermions and the fourth-root
trick, see Ref. [23]. For the most recent discussions of the topic,
see Refs. [24–37]
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quarks were varied over a range of masses; see Table I and
Refs. [38–42] for details.

Based on these configurations, valence quark propaga-
tors using the domain-wall (DW) formulation of the lattice
fermion action [43–47] were computed from smeared
sources on each gauge-field configuration. Hyper-cubic
(HYP) smearing [24,48–50] was applied to the gauge links
used in the domain-wall fermion action to improve chiral
symmetry, and in calculating the quark propagators,
Dirichlet boundary conditions were imposed to reduce
the original temporal extent of 64 down to 32. This proce-
dure is optimized for nucleon physics and indeed leads to
minimal degradation of a nucleon signal, however it does
limit the number of time slices available for fitting pseu-
doscalar meson properties in which the ratio of signal to
noise remains constant in time. Further details about the
mixed-action scheme can be found in Refs. [38,51]. A
summary of the lattice parameters and resources used in
this work is given in Table I. In order to generate large
statistics on the existing MILC configurations, multiple
propagators from sources displaced both temporally and
spatially on the lattice were computed.

In the continuum chiral limit the nf ¼ 2 staggered ac-

tion has an SUð8ÞL � SUð8ÞR �Uð1ÞV chiral symmetry
due to the fourfold taste degeneracy of each flavor, and
each pion has 15 degenerate partners. At finite lattice
spacing, this symmetry is broken and the taste multiplets
are no longer degenerate, but have splittings that are
Oð�2b2Þ for the asqtad staggered action. When determin-
ing the mass of the DW valence quarks there is an ambi-
guity due to the nondegeneracy of the 16 staggered bosons
associated with each pion. One could choose to match to
the taste-singlet meson or to any of the mesons that become
degenerate in the continuum limit. The choice of tuning to
the lightest taste of staggered meson mass, as opposed to
one of the other tastes, provides for the ‘‘most chiral’’
domain-wall mesons and therefore reduces the uncertainty
in extrapolating to the physical point. The mass splitting
between the domain-wall mesons and the staggered taste-
identity mesons, which characterizes the unitarity viola-
tions present in the calculation, is then given by [52,53]

b2m2
�I

� b2m2
�dwf

¼ 0:0769ð22Þ: (12)

Simple properties of the�þ have been computed to high
precision on the ensembles of coarse MILC lattices that are
used in this work, both with staggered valence quarks and
domain-wall valence quarks. Further, the energies of the
lowest-lying 2-�þ states, which lead directly to the scat-
tering lengths using Lüscher’s method, have been com-
puted relatively precisely [54]. The results of the previous
mixed-action calculations on these lattice ensembles [54]
are shown in Table II.5

The results of the present calculation are presented in
lattice units (l.u.), or in terms of dimensionless quantities
such as m�=f� which eliminates the requirement of scale
setting. They are performed only at one lattice spacing, due
to limited computer time, and as a result the continuum
limit cannot be determined. Unlike the two meson system,
for which mixed-action chiral perturbation theory
(MA�PT) [55–57] has been used to include the leading
order effects of the finite lattice spacing, MA�PT calcu-
lations have not yet been performed for the multi-�þ
systems, and therefore the leading lattice spacing artifacts
in these calculations cannot be removed at present. The
lattice spacing artifacts are assumed to be small, occurring
at Oðb2Þ, but a systematic study must be performed in the
future.

B. Correlation functions

In this work we determine the �þ�þ and �þ�þ�þ
interactions from the ground-state energy of n < 13�þ’s
(isospin stretched states). By working in themu ¼ md limit
and restricting the calculation to states of maximal isospin,
only the simplest sets of propagator contractions are re-
quired to be performed (i.e. no disconnected diagrams) in
order to form the correlation functions from which the
ground-state energies are extracted.
Naively, there are ðn!Þ2 contractions (for large n this

behaves as �ð2nþ 1
3Þ�e2nðlogn�1Þ) contributing to the cor-

relation function of n-�þ’s,

CnðtÞ /
��X

x

��ðx; tÞÞnð�þð0; 0Þ
�
n
	
; (13)

where �þðx; tÞ ¼ �uðx; tÞ�5dðx; tÞ. However, this correla-
tion function can be written as6

CnðtÞ / hð ����Þni; (14)

where

� ¼ X
x

Sðx; t; 0; 0ÞSyðx; t; 0; 0Þ; (15)

and Sðx; t; 0; 0Þ is a light-quark propagator. The object
(block) � is a 12� 12 (4 spin and 3 color) bosonic
time-dependent matrix, and �� is a 12 component
Grassmann variable. Using

h ���1 ���2 . . . ���n�	1
�	2

. . .�	n
i

/ "�1�2...�n
1...
12�n"	1	2...	n
1...
12�n
; (16)

leads to correlation functions

5Until this point the two-body scattering length for a generic
system has been denoted by �a. For the �þ�þ system, we
denote the scattering length by �aðI¼2Þ

�� .

6We thank David Kaplan and Michael Endres for discussions
on this topic. For a general approach to evaluating contractions
involving a large number of fermions, see Ref. [58].
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CnðtÞ ¼ "�1�2...�n
1...
12�n"	1	2...	n
1...
12�n
ð�Þ	1

�1
ð�Þ	2

�2
. . . ð�Þ	n

�n
: (17)

While correct, further simplifications are possible. Let us recall that for an arbitrary 12� 12 matrix A,

detð1þ �AÞ ¼ 1

12!
"�1�2...�12"	1	2...	12

ð1þ �AÞ	1
�1
ð1þ �AÞ	2

�2
. . . ð1þ �AÞ	12

�12

¼ 1

12!
½"�1�2...�12"�1�2...�12

þ �12C1"
�1�2...�12"	1�2...�12

ðAÞ	1
�1

þ . . .

þ �n12Cn"
�1�2...�n
1...
12�n"	1	2...	n
1...
12�n

ðAÞ	1
�1
ðAÞ	2

�2
. . . ðAÞ	n

�n
. . .þ �12"�1�2...�12"	1	2...	12

ðAÞ	1
�1

. . . ðAÞ	12
�12

�

¼ 1

12!

X12
j¼1

Cj�
jCjðtÞ; (18)

where in the last line we identify the matrix A with �. Further,

detð1þ �AÞ ¼ expðTr½log½1þ �A��Þ ¼ exp

�
Tr

�X
p¼1

ð�Þp�1

p
�pAp

��

¼ 1þ �Tr½A� þ �2

2
ððTr½A�Þ2 � Tr½A2�Þ þ �3

6
ð2Tr½A3� � 3Tr½A�Tr½A2� þ ðTr½A�Þ3Þ þ . . . : (19)

Therefore, by equating terms of the same order in the
expansion parameter � in Eqs. (18) and (19), one can
recover the n-�þ correlation functions in Eq. (17). As an
example, the contractions for the 3-�þ system are

C3ðtÞ / trC;S½��3 � 3trC;S½�2�trC;S½�� þ 2trC;S½�3�;
(20)

where the traces, trC;S, are over color and spin indices. The
three contributions in the correlator in Eq. (20) are shown
in Fig. 1(a)–1(c), respectively. As it is the energy of states
with a maximal z-component of isospin that are calculated
in this work, disconnected contractions, such as those in
Fig. 1(d), do not contribute to the correlation functions that
are computed. The explicit form of the contractions for
n ¼ 1; . . . ; 13 are given in Appendix A. Rewriting the
contractions in terms of traces over the �-blocks greatly
reduces the required number of calculations, with the
number of independent contributions to the correlation
function equal to the partition, PðnÞ, of n objects. An

estimate of the number of operations that must be per-
formed to generate the correlator for n-mesons is�nð12�
13� 1Þ þP

n
j¼1 PðjÞ, which for large n scales as

� 1
2
ffiffi
2

p
�
ffiffi
n

p e�
ffiffiffiffiffiffiffiffi
2n=3

p
using a classic result of Hardy and

Ramanujan [59]. While for n ¼ 12 there are �2:3� 1017

independent contractions that must be performed, this can
be accomplished with �2� 103 calculations to produce
the�80 terms contributing to the contraction. Since, in this
work, each contraction is performed with only a single
quark propagator on each configuration, the Pauli exclu-
sion principle requires that the n � 13 identical meson
contractions vanish identically, e.g. C13ðtÞ ¼ 08t, imply-
ing the �13 and higher terms in the expansion of Eq. (19)
vanish. Written in terms of contractions of propagators in
flavor and color space, the n ¼ 13 case of Eq. (19) repre-
sents a generalized Cayley-Hamilton identity satisfied by
all matrices of size less than 13� 13. To perform calcu-
lations on systems containing more than 12 pions, addi-
tional propagators will be required.

FIG. 1. Graphical representation of the contractions for three pions with Iz ¼ 3, (a,b,c). By restricting to the maximal isospin,
computationally demanding contractions such as the type shown in (d) are eliminated.
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C. High-precision implementation

In order to calculate the n-�þ correlation functions,
particularly for n � 8, it is necessary to use a numerical
representation with precision greater than that of standard
64-bit machine precision.7 This need arises because of the
large products of propagators that must be computed and is
not particular to the contractions studied here. In particular,
the numerical issues impacting calculations of multipion
systems that we have found in this work will also impact
calculations of multinucleon systems.

Our implementation of these contractions uses arbitrary
precision arithmetic based on the ARPREC library [60]
which was extended for the particular operations needed
here, matrix multiplications and traces. For the correlators
studied here 64 decimal digit precision (approximately
octupule precision) in internal operations is sufficient to
give results accurate to 16 digits. The additional overhead
of using this numerical representation causes the high-
precision contraction code to run �10–50 times slower
than a double-precision version but is only marginally
dependent on the precision used.8 For the n ¼ 13 correla-
tion function it is instructive to look at the dependence of
the resulting correlator on the precision used in the com-
putations. Since the correlation function must vanish iden-
tically for any input propagator, it is a very stringent test of
the codes used herein. In Fig. 2, the logarithm of the sum
over time slices of the absolute value of the correlation
function as a function of the digits of precision used to
perform the contractions on a representative configuration
is shown. From extrapolating the results shown here, we
conclude that the correlator is indeed identically zero.

D. Analysis

The correlation functions from which we extract the
ground-state energy of the n-�þ system are given in
Eq. (13), and, on a lattice with infinite extent in the time
direction, behave as

CnðtÞ !t!1
AðnÞ

0 e�Ent (21)

at large times. It is the difference between this energy, En

and n times the �þ rest mass that is equated to the energy
difference given in Eq. (1), and which is extracted from the
ratio of correlation functions

GnðtÞ ¼ CnðtÞ
½C1ðtÞ�n !t!1

BðnÞ
0 e��Ent; (22)

where �En is that of Eq. (1). While there are a number of
ways to extract the energy difference from the correlation
function, perhaps the most visually pleasing one is to
construct the effective energy difference function, defined
to be

�Eeff
n ðtÞ ¼ log

�
GnðtÞ

Gnðtþ 1Þ
�
!t!1

�En: (23)

In the limit of an infinite number of measurements, this
function would tend to a constant equal to the ground-state
energy splitting. Of course, for any real calculation, both
the number of gauge fields and the number of propagators
per gauge field are finite, and as such the object �Eeff

n ðtÞ
consists of a central value and an associated uncertainty at
each time slice, t. Further, the temporal extent of the lattice
is finite, giving rise to both forward and backward prop-
agating hadrons. As such, �Eeff

n ðtÞ is constant (up to sta-
tistical fluctuations) only over a finite number of time
slices, in a region between where the forward propagating
excited states have died-out sufficiently, and where the
backward propagating states have not yet become signifi-
cant. In the current situation where Dirichlet boundary
conditions are imposed, the behavior of the correlator is
modified by the ‘‘reflection’’ of forward and backward
propagating states from the boundaries. As these reflec-
tions are poorly understood, the region close to the bound-
ary is omitted in our analysis.
In our lattice calculations, multiple propagators and

correlation functions are computed on each gauge configu-
ration. These propagators and correlation functions are not
statistically independent unless the sources are separated
by many correlation lengths. To account for this, all the
correlation functions for a fixed n computed on a given

FIG. 2 (color online). The n ¼ 13 correlation function as a
function of the precision used to perform the calculation. The
vertical axis is the logarithm of the sum over time slices of the
absolute value of the n ¼ 13 correlation function on a repre-
sentative gauge-field configuration.

7The failure of double-precision operations for these correla-
tion functions is explored in detail in Appendix B.

8Checks of our cþþ contractions have also been performed
using Mathematica 6.0 (time costs prevent us using this on a
large scale).

MULTIPION STATES IN LATTICE QCD AND THE . . . PHYSICAL REVIEW D 78, 014507 (2008)

014507-7



configuration are averaged (blocked) into one correlation
function. The configurations are found to be statistically
independent,9 and the blocked correlators on each configu-
ration form the basis of our statistical analysis.

In order to extract the energy difference �En from
�Eeff

n ðtÞ, a fitting interval must be selected. This interval
is chosen to be entirely contained in the region where the
�Eeff

n ðtÞ is consistent with a constant. Once the fitting
interval has been selected a correlated �2 minimization is
performed to extract the parameter �En, defined in
Eq. (22). The covariance matrix that determines the corre-
lated weightings of each of the values of �Eeff

n ðtÞ on any
given time slice is generated using a single-subtraction
Jackknife procedure.10 The central value of �En is the
value that minimizes the correlated �2, and the standard
statistical uncertainty is determined by the values of �En

for which �2 ! �2 þ 1. The fitting systematic uncertainty
associated with the fitting procedure is determined by
varying each end of the fitting range by �2 � �t � þ2,
and refitting the energy splitting.

To study the scattering length and three-body parameter,
���L
3 , using Eqs. (10) and (11), the appropriate ratios of the

CnðtÞ correlators are used to define effective scattering
length functions for each n (LO, NLO, N2LO) or each
pair fn;mg (N3LO and N4LO) and effective ���L

3 functions

for each n. We then analyze these in the same manner as
the energy differences above. This leads to multiple deter-

minations of �aðI¼2Þ
�� and ���L

3 . The effective functions defined

by �6;7, Eqs. (8) and (9), are studied similarly.

To make use of the full data set, we also perform a

simultaneous, correlated fit of �aðI¼2Þ
�� and ���L

3 to the effective

masses for n ¼ 2; 3; . . . ; Nmax for Nmax ¼ 3; . . . ; 12. In

order to do this, fitting ranges, tðnÞmin � t � tðnÞmax, are

chosen for each n (as above) and the data is assembled

into a vector V ¼ f�Eeff
2 ðtð2ÞminÞ; . . . �Eeff

2 ðtð2ÞmaxÞ;�Eeff
3 ðtð3ÞminÞ;

. . . �Eeff
3 ðtð3ÞmaxÞ; . . . �Eeff

12 ðtð12Þmin Þ; . . . �Eeff
12 ðtð12ÞmaxÞg. A corre-

lated �2 minimization is performed to extract the parame-

ters �aðI¼2Þ
�� and ���L

3 via the fit vector U ¼ f�E2; . . . ;
�E2;�E3; . . . ;�E3; . . . ;�E12; . . . ;�E12g, where �En is

given in terms of �aðI¼2Þ
�� and ���L

3 using Eq. (1), and where

the covariance matrix that determines the correlated
weightings of each contribution is generated using the
Jackknife procedure. The standard (statistical) uncertain-

ties on �aðI¼2Þ
�� and ���L

3 are determined from the maximum

and minimum values of each parameter dictated by the
uncertainty ellipse corresponding to their values for which

�2 ! �2 þ 1. The systematic uncertainty associated with
the fitting procedure is determined by repeatedly and ran-
domly varying each end of the fitting range for each
correlator by �2 � �t � þ2, refitting the parameters

�aðI¼2Þ
�� and ���L

3 , determining the complete range of values

for each parameter associated with �2 ! �2 þ 1.11 The
systematic and statistical uncertainties are combined in
quadrature in this work.

IV. LATTICE QCD RESULTS

Using the techniques discussed in the previous section,
we now turn to analysis of the results of the lattice calcu-

lations. Our main aim is to extract the parameters �aðI¼2Þ
��

and ���L
3 which we can do in a number of ways, either by

forming a particular combinations of energies, Eqs. (10)
and (11), or by a coupled analysis accounting for correla-
tions among different n. The different methods give con-
sistent results but we find that the most precise extraction is
achieved using the latter method and consequently our final
results are generated from this technique. Before we
present these results, we first detail the simpler analysis
using combinations of energies. As there are a large num-
ber of correlation functions that we study in this work, in
some intermediate stages, we only display results for a
single-quark mass corresponding to m� ¼ 291 MeV (in
terms of uncertainties, this ensemble is neither the best
nor the worst).

A. Multipion energies and energy differences

A priori, it may seem surprising that the correlation
function of 12 �þ’s can be calculated at all. On the
ensemble associated with the lightest pion mass, m� ¼
291 MeV, the 12-�þ state has an energy of E12 �
3:5 GeV, while on the ensemble with m� ¼ 591 MeV,
the 12-�þ state has an energy of E12 � 7:1 GeV. It is
not immediately obvious that such a rapidly diminishing
exponential can be cleanly measured but in these systems
we find that it is possible.12 As an example, for m� ¼
291 MeV, the effective energies (in lattice units) for sys-
tems with n ¼ 1; 2; . . . ; 12�þ’s are shown in Fig. 3.
Extracted energies for each ensemble are given in
Table III in Appendix C. Well-defined plateaus in the
effective energy plots are seen for all systems, with the
relative statistical uncertainty in the data almost constant as
a function of n. As can be seen from the fits to the energies
(statistical and systematic uncertainties are shown in quad-
rature), the precision with which the energy can be ex-

9This is tested by averaging over sets of neighboring configu-
rations and performing analysis on the resulting blocked en-
semble. For block sizes of 1, 4, and 12, no noticeable difference
is seen.
10As a check, we also performed a separate analysis using
bootstrap resampling. The resulting energies and parameters
were consistent, and, for simplicity, we focus on a single analysis
in the main discussion.

11An alternative systematic procedure of repeatedly and ran-
domly choosing triplets of time slices in each fit range 	1 time
slice and refitting is also used, giving qualitatively similar
results.
12In purely pionic systems there is no exponential degradation
of the signal-to-noise ratio, unlike in most other hadronic sys-
tems [61].
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tracted is high, typically <2%. The total relative uncer-
tainties on the energy of the n-�þ systems are shown for
all data sets in Fig. 4, with only a slight dependence of n
apparent. An additional point is that it was not obviously
the case that the Gaussian-smeared source for the light
quark, that is suitable for the single pion ground state,
would have sufficient overlap onto the multipion ground
state to produce useful correlation functions. However, it is
clear that it did.

The energy differences which enter into Eq. (1) and
subsequent results can also be extracted cleanly, although
with somewhat less precision than the individual energies.
The effective energy difference plots, along with our fits to
the energy differences are shown in Fig. 5 (again for the

m� ¼ 291 MeV ensemble) while the relative uncertainties
in our extractions are given in Fig. 4. The extracted energy
differences for each ensemble are given in Table IV in
Appendix C. All effective energy-splitting plots show be-
havior that is consistent with a single exponential (within
statistical uncertainties) for a number of time slices. As
discussed above, the region above ðt� t0Þ=b� 16 is con-
taminated by reflections from the Dirichlet boundary at
ðt� t0Þ=b ¼ 22 (the source is placed at t0 ¼ 10) and is
discarded in our analysis.

B. �þ�þ scattering length

Since the �þ�þ system is free from three- and higher-
body hadronic interactions, it is the ideal place to extract

FIG. 3 (color online). Effective energy plots for the n ¼ 1; . . . ; 12 pion correlations as a function of time for the ensemble with
m� ¼ 291 MeV. The solid line and shaded region show the fitted energy and the systematic and statistical uncertainties combined in
quadrature.
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FIG. 4 (color online). Relative uncertainties in extractions of energies (left) and energy differences (right) as a function of the
number of �þs. Results are shown for all quark masses.

FIG. 5 (color online). Effective energy difference plots for n ¼ 2; . . . ; 12 pion correlations as a function of time for the ensemble at
m� ¼ 291 MeV. The solid line and shaded region show our fitted energy and the systematic and statistical uncertainties combined in
quadrature.
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the two-body parameter, �aðI¼2Þ
�� . As is well known, this can

be donewithout resorting to an expansion in �aðI¼2Þ
�� =L using

the eigenvalue equation in Eq. (6). We refer to �aðI¼2Þ
��

extracted in this way as the exact eigenvalue result and it
forms a benchmark for extractions in the n > 2 systems.

Equation (1) also allows us to extract �aðI¼2Þ
�� in a number of

ways. At orders L�3, L�4, L�5 (LO, NLO, and N2LO,
respectively), each energy difference, �En for n ¼
2; . . . ; 12, leads to a separate extraction of �aðI¼2Þ

�� . Finally
Eq. (10) allows us to extend these extractions to N3LO and

FIG. 6 (color online). Effective m� �a
ðI¼2Þ
�� plots for the LO (top-left), NLO (top-right), and N2LO (bottom-left) extractions using the

n ¼ 8 energy and the N3LO effective m� �aðI¼2Þ
�� extracted from fn;mg ¼ f8; 4g (bottom-right) from Eq. (10). In each case the m� ¼

291 MeV ensemble is used and the scale in each plot is identical. The horizontal band corresponds to the extraction using the exact
eigenvalue method for n ¼ 2.

FIG. 7 (color online). Extractions of m� �aðI¼2Þ
�� for each ensemble. The blue circles, mauve squares, and brown diamonds correspond

to the extractions at OðL�3Þ, OðL�4Þ, and OðL�5Þ in the 1=L expansion given in Eq. (1). The stars correspond to the OðL�6Þ
extractions using Eq. (10), which requires two different energy shifts. At any given n, we have shown various combinations of m< n.

Finally the solid line and the shaded region correspond to the extraction of m� �a
ðI¼2Þ
�� using the exact eigenvalue method of Lüscher

from the n ¼ 2 data. In all cases, statistical and systematic uncertainties have been combined in quadrature. The upper-left, upper-
right, lower-left, and lower-right panels correspond to m� ¼ 291, 352, 491, 591 MeV, respectively.
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N4LO in the �aðI¼2Þ
�� =L expansion by combining the n- and

m-body energy differences to eliminate three-body inter-
actions. Choosing 3 � m< n � 12 allows for 45 separate
extractions.

As a representative example, Fig. 6 shows the LO, NLO,

and N2LO effective �aðI¼2Þ
�� plots13 for n ¼ 8, and the N3LO

effective �aðI¼2Þ
�� plots for fn;mg ¼ f8; 4g from Eq. (10), for

the m� ¼ 291 MeV ensemble. A summary of all the ex-

tractions of �aðI¼2Þ
�� is given in Fig. 7 (the N4LO extractions

are entirely consistent with those at N3LO in all cases and
are omitted). For the n ¼ 2 data, it is clear that NLO and

higher extractions, Fig. 7, yields the same �aðI¼2Þ
�� as the

exact eigenvalue method of Lüscher. However, for the
multipion systems, an n-dependent systematic deviation
from the exact eigenvalue method is found at LO, NLO,
and N2LO. This is particularly clear for the lighter mass

ensembles. In contrast, the extractions of �aðI¼2Þ
�� in which

the�þ�þ�þ interaction (or at least, a term that behaves as
nC3) is eliminated (N3LO and N4LO) are in close agree-

ment with the n ¼ 2 exact eigenvalue result for all n. From
this alone we conclude that the calculation suggests the
presence of a significant �þ�þ�þ interaction.

FIG. 8 (color online). The effective energy-splitting plots for the m� ¼ 291 MeV ensemble. The solid lines correspond to the

energy differences of Eq. (1) using the value of �aðI¼2Þ
�� from the �þ�þ energy splitting (using the exact eigenvalue method) and setting

���L
3 ¼ 0. The shaded region shows the statistical and systematic uncertainties combined in quadrature.

13Given the accuracy with which m� and f� have been ex-

tracted on these ensembles, the uncertainties in m� �a
ðI¼2Þ
�� and

m�f
4
�
���L
3 are dominated by the uncertainties in �aðI¼2Þ

�� and ���L
3 ,

respectively.
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We can further demonstrate the need for a �þ�þ�þ
interaction by using Eq. (1) to compute the energy shifts at

OðL�7Þ using the value of �aðI¼2Þ
�� extracted from the �þ�þ

system using the exact eigenvalue method and setting
���L
3 ¼ 0. These can then be compared to the calculated

effective energy differences as shown in Fig. 8 for the
m� ¼ 291 MeV ensemble. The deviations between the
predictions and the effective energy splittings are signifi-
cant and grow with increasing n. Over the same sets of time
slices as used in the fits to the two-particle energy differ-
ence, the �2=d:o:f: of such an ansatz is 8.62 and therefore
���L
3 ¼ 0 very poorly describes the results of the calculation.

C. Three-body interaction

The �þ�þ�þ interaction can be explicitly constructed
using Eq. (11) for n ¼ 3; . . . ; 12. As an example, the
effective ���L

3 plots for the m� ¼ 291 MeV ensemble are

shown in Fig. 9. A clear plateau inconsistent with zero is
seen in most cases. Figure 10 shows the n dependence of
the extracted value of ���L

3 for each quark mass. In general,

the combined systematic and statistical uncertainty of the
extractions decreases with increasing number of �þ’s.
This is not surprising given the combinatoric factors that
appear in the expression for the energy shift.

FIG. 9 (color online). The effective ���L
3 plots for the m� ¼ 291 MeV ensemble using Eq. (11) at OðL�7Þ. Statistical and systematic

uncertainties are added in quadrature (shaded band).
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D. Convergence: �6;7

Before presenting the n-correlated analysis we briefly
turn to the quantities �6;7 defined in Eqs. (8) and (9). A

plateau in the corresponding effective-�6;7 plots for a par-
ticular pair fn;mg at a value inconsistent with zero would
signal the breakdown of the large-volume expansion in
Eq. (1) that is central to our analysis. In all cases, no
such breakdown is seen. However for increasing n and
m, the uncertainties increase. For example, for the systems
with fn;mg ¼ f11; 12g at m� ¼ 291 MeV, these quantities
are found to be �6 ¼ �7 ¼ 0:0ð3Þ.

E. n-correlated analysis

The most complete use of the full set of energy differ-
ences that we have computed is made by performing the
coupled, OðL�7Þ analysis of the n ¼ 2; . . . ; 12 effective

energy differences to extract �aðI¼2Þ
�� and ���L

3 , including the

correlations in both t and n as discussed in the preceding
section. The resultant fits of such an analysis are shown in
Figs. 11–14 for the four ensembles. The extracted fit

parameters, �aðI¼2Þ
�� and ���L

3 , are central results of this

work. They are given in Table V and their uncertainty
ellipses are shown in Fig. 15. For comparison with the
simpler analysis above, the shaded regions in Fig. 10 cor-
respond to the values of ���L

3 extracted from this correlated

analysis and are seen to be consistent with the extractions

made using Eq. (11). Similarly, the extracted �aðI¼2Þ
�� agrees

with that obtained from the exact eigenvalue method for
n ¼ 2 (and hence with all the N3LO extractions above).

In Fig. 16, ���L
3 is plotted versus m�=f�, in units of the

estimate based upon NDA, ���L;NDA
3 ¼ 1=ðm�f

4
�Þ, as dis-

cussed in Refs. [5,8]. While the three-body interaction is
consistent with its NDA estimate for the lightest three-pion
masses, it is found to be consistent with zero at the heaviest
mass, m� ¼ 591 MeV. It is desirable to reduce the uncer-
tainties in this calculation to see, if in fact, the three-body
interaction is decreasing with increasing pion mass. If this
is found to be the case then a more detailed study in this
high pion mass region is warranted.
It is interesting to study how the larger n energy differ-

ences influence the extraction of the two parameters. To do
so, we have performed a series of fits including only the
energy differences up to a given nmax. The resulting con-
fidence regions for the parameters extracted from the
m� ¼ 291 MeV ensemble are shown in Fig. 17 for nmax ¼
3, 5, 7, 9, 11, 12. Clearly the inclusion of higher n data
improves the determination of ���L

3 in particular.

V. THE THREE-PION INTERACTION, ���L
3 , ��L

3 ,
AND �3ð�Þ

In the preceding section the �þ�þ�þ interaction, ���L
3 ,

has been extracted successfully from the lattice QCD
calculations and is nonzero at the lighter quark masses
used in this study. The renormalization group invariant,
but volume-dependent three-body interaction that arises at
OðL�6Þ, ��L

3 , that receives perturbative corrections in the

volume expansion to become ���L
3 at OðL�7Þ, is somewhat

more problematic to extract from these particular lattice

calculations due to the size of �aðI¼2Þ
�� in relation to the size

of the lattice.
There are two terms that must be calculated in order to

determine ��L
3 , one is additive and one is multiplicative, as

FIG. 10 (color online). The value extracted for ���L
3 using Eq. (11) at OðL�7Þ as a function of n for each ensemble used in the

calculation. The horizontal line in each plot corresponds to the value extracted using all the data in the n-correlated fit of Sec. IVE.
The inner and outer shaded bands correspond to the statistical uncertainty and the statistical and systematic uncertainties combined in
quadrature, respectively.
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given in Eq. (4). Assuming that the effective range for
�þ�þ scattering is not orders of magnitude larger than

�aðI¼2Þ
�� , the additive term makes a very small contribution to
���L
3 . To make this explicit, it is useful to rewrite Eq. (4) as

m�f
4
� ��L

3 ¼ ��3
m�f

4
� ��L

3 þ 	�3

r

�a
; (24)

where

��3
¼ 1� 6

�
�a

�L

�
I ; 	�3

¼ 72� �a5

L
f4�I : (25)

The numerical values of 	�3
are shown in Table VI and are

all seen to be very small for r� j �aj. The multiplicative

factor, ��3
, is also shown in Table VI, and its values make

clear that the perturbative expansion for the three-body
interaction is converging extremely slowly at the lightest
pion mass, with a �75% correction at OðL�7Þ to the
OðL�6Þ result, and fails completely at both m� ¼
491 MeV and 591 MeV for the lattice volumes used in
this work. Clearly larger lattice volumes will be required in
order to determine the three-body interaction ��L

3 with

precision.14 This is in stark contrast to the two-body scat-
tering parameters which can be extracted to high precision
from these same lattice volumes and the perturbative ex-

FIG. 11 (color online). n-correlated fits to the n ¼ 2; . . . ; 12 energy differences for the m� ¼ 291 MeV ensemble. All energy

differences, �EðnÞ
eff ðtÞ for n ¼ 2; . . . ; 12, are used. Statistical and statistical plus systematic (added in quadrature) uncertainties are

shown as the inner and outer shaded regions, respectively.

14We note that it is ���L
3 that was extracted in Ref. [4].
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pansion in Eq. (1) appears to be converging. So while it is
possible to determine the ‘‘dressed’’ three-pion interaction,
the uncertainty in the determination of the bare three-pion
interaction is large, not because of the uncertainty in the
lattice calculation, but due to the relatively large higher-
order terms in the volume expansion when evaluated at this
present lattice volume (a theoretical systematic uncer-
tainty). In Table VI, the correction factors are also given
for a lattice of spatial volume ð3:5 fmÞ3 for comparison.
However, even in these large volumes the correction fac-
tors at one higher order in the large-volume expansion of
�50% and clearly even larger volumes, L * 3:5 fm, are
required in order to have the volume expansion of the
three-pion interaction under perturbative control.

The quantity �3ð�Þ is a renormalization scheme depen-
dent quantity that is independent of the volume, and as
such is the quantity that most directly enters into the
calculation of other many-body processes. It is easily
extracted from ��L

3 via Eq. (5). However, given the present

theoretical systematic uncertainties in ��L
3 , we do not at-

tempt a determination of �3ð�Þ.

VI. THE EQUATION OF STATE AND THE ISOSPIN
CHEMICAL POTENTIAL

The ground state of the system studied in this work is an
interacting gas of bosons. The interactions are weakly
repulsive, �Ia

3 
 1 where �I ¼ n=L3 is the isospin num-

FIG. 12 (color online). n-correlated fits to the n ¼ 2; . . . ; 12 energy differences for the m� ¼ 352 MeV ensemble.
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ber density, and consequently a significant fraction of the
ground state is a Bose-Einstein condensate.15

The energy of the n-�þ system as a function of volume
and of the number of �þ’s is given explicitly in Eq. (1) in
the large-volume expansion. From the equation of state, the
isospin chemical potential is defined as

�I ¼ dEn

dn









V¼const
; (26)

which can be constructed analytically from Eq. (1) or
numerically from the results of the lattice calculation by
using a simple finite-difference approximation. The result-
ing ratio of this isospin chemical potential to the pion mass
for each of our ensembles is shown in Fig. 18 as a function
of n, and for convenience, the isospin density, �I. We note

that for the 12-�þ system, the number density is �ð12Þ
I ¼

12=L3 ¼ 0:77 fm�3. In Fig. 18, the solid curves corre-
spond to the prediction at OðL�7Þ from Eq. (1), and this
prediction differs insignificantly from that at OðL�6Þ.
There have been recent works that perform lattice QCD
calculations at finite isospin chemical potential, e.g.
Refs. [63,64], where the starting point is a chemical-
potential term for the quarks added to the QCD action.

FIG. 13 (color online). n-correlated fits to the n ¼ 2; . . . ; 12 energy differences for the m� ¼ 491 MeV ensemble.

15At the highest density studied (n ¼ 12), the condensate
fraction [62] f ¼ 1� 8

3
ffiffiffi
�

p ð�Ia
3Þ1=2 ranges from 0.95 to 0.99

depending on the quark mass.
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Compelling results for the formation of the charged-pion
condensate at �I �m� have been produced.

Pionic systems at finite isospin chemical potential (and
temperature) have been explored theoretically in �PT [65–
68], primarily as a step toward understanding finite density
nuclear systems. The inclusion of the isospin chemical
potential can be accomplished straightforwardly by replac-
ing the time component of the covariant derivative acting
on the exponential field of �’s, D0�, with r0� ¼ D0��
i�I

1
2 ½3;��. For �I < m� the vacuum state is the same as

it is for �I ¼ 0, � ¼ 1, but for �I > m� the vacuum
alignment changes and becomes

�� ¼ cos�þ ið1 cos�þ 2 sin�Þ sin�; (27)

using the notation of Refs. [67,68]. Minimizing the poten-
tial energy at LO in �PT gives cos� ¼ m2

�=�
2
I and a

relation between the isospin density, �I, and chemical

FIG. 14 (color online). n-correlated fits to the n ¼ 2; . . . ; 12 energy differences for the m� ¼ 591 MeV ensemble.

FIG. 15 (color online). The 68% and 90% confidence regions
for the two parameter fits performed to the n ¼ 2; . . . ; 12 energy
differences for each ensemble used in our work. Only statistical
uncertainties are shown.
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potential,16

�I ¼ 1

2
f2��I

�
1�m4

�

�4
I

�

¼ 2f2�ð�I �m�Þ � 3
f2�
m�

ð�I �m�Þ2 þ . . . : (28)

By construction, our lattice QCD calculation is in the
regime of �I > m�, and we expect that these LO �PT
results should come perturbatively close to describing the
properties of the n-�þ systems. Implicit in this LO �PT
analysis are not only the �þ�þ interactions, but also
multipion interactions, including the�þ�þ�þ interaction.
In fact, the NDA estimate of the �þ�þ�þ interaction
arises from the LO terms in �PT. In Fig. 19, we show
the isospin chemical potential versus the number of �þ’s
in the lattice volume, which can be directly translated into
isospin density, �I ¼ n=L3. To determine the importance
of the �þ�þ�þ interaction, we show the �I calculated

FIG. 16 (color online). The three-body interaction, m�f
4
�
���L
3 ,

defined in Eq. (1), as a function of m�=f�. The statistical
uncertainties, and the statistical and systematic uncertainties
combined in quadrature are shown as the inner and outer error
bars, respectively. The dashed vertical line indicates the physical
point.

FIG. 17 (color online). Dependence of the fit parameters, �aðI¼2Þ
�� and ���L

3 , on the number of energy differences included in the fit for
the m� ¼ 291 MeV ensemble. n � nmax implies that the energies up to nmax are included in the correlated fit. The inner and outer
ellipses show the 68% and 90% confidence regions.

16The numerical factors that appear in Eq. (28) differ by factors of two from Refs. [65–68] due to the definition of f�. At the physical
pion mass we use f� � 132 MeV.
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directly from the lattice calculation. We also show the

curve resulting from Eq. (1) with the values of �aðI¼2Þ
�� and

���L
3 extracted from the lattice calculation and their associ-

ated correlated uncertainties (red curves and shaded re-
gions), and we show the curve resulting from setting
���L
3 ¼ 0 in Eq. (1) (blue curve and shaded region). It is

clear from Fig. 19 that the �þ�þ�þ interaction plays an
important role in the relation between the isospin chemical
potential and the isospin density. Further, in Fig. 19, the
dashed curve is the result of LO �PT, as given in Eq. (28),
which is seen to describe the result of the lattice calculation
well at all the pion masses we have explored. There does
appear to be a slight m�-dependent systematic difference,
but the magnitude of this effect is consistent with terms
higher order in �PT.
Another quantity of interest that one wishes to determine

for such systems is the pressure as a function of the �I,

P ¼ 1

3L2

dEn

dL









n¼const
: (29)

Unfortunately, we cannot recover the pressure directly
from our lattice calculations using Eq. (1) because both

�aðI¼2Þ
�� and ���L

3 depend implicitly upon the volume. Further,

without lattice calculations of different volumes, the pres-
sure cannot be determined directly from the lattice calcu-
lations either. Therefore, with the present lattice
calculations we have performed, while the isospin
chemical-potential can be determined as a function of
density, the pressure cannot.
An important issue to consider is the impact of the finite

lattice volume upon the relation between the isospin
chemical potential and the isospin density. The periodic
boundary conditions imposed in the spatial directions leave
the zero mode untouched, but discretize the nonzero
modes. As such, the tree-level matrix element of the inter-

FIG. 18 (color online). The isospin chemical potential as a
function of the number of pions in a fixed volume (equivalent to
the isospin density �I). The points and their associated uncer-
tainties are the results of the lattice calculation where a finite
difference has been used to construct the derivative with respect
to the number of �þ’s. The solid curves and bands result from
the analytic expression for the energy of the ground state in the

large-volume expansion, Eq. (1), using the fit values for �aðI¼2Þ
��

and ���L
3 and their correlated uncertainties.

FIG. 19 (color online). The isospin chemical potential as a function of the number of pions (equivalent to the isospin density �I) at a
fixed volume with and without the contribution from the �þ�þ�þ interaction, ���L

3 . The solid red (lighter) curves and bands result

from the analytic expression for the energy of the ground state in the large-volume expansion, Eq. (1), using the fit values for �aðI¼2Þ
��

and ���L
3 and their correlated uncertainties. The solid blue (darker) curves and bands are similarly the results for the fitted value of

�aðI¼2Þ
�� and ���L

3 ¼ 0. The dashed curve corresponds to the leading order prediction of �PT.
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action Hamiltonian between initial and final states in which
each pion carries zero three-momentum is unaffected by
the finite volume. However, the boundary conditions will
modify contributions at the one-loop level and beyond.
Therefore, in the limit where the contributions from
loop-level diagrams are small, as is the case for a small
scattering length, the modifications of the relation between
isospin chemical potential and isospin density due to the
boundary conditions is expected to be perturbatively
small.17 In systems with large scattering lengths, e.g. nu-
cleons, the finite-volume modifications may be substantial,
and this requires further study.

VII. CONCLUSIONS

One of the major challenges facing nuclear physics is the
solution of the hadronic many-body problem, including the
effects of the multihadron interactions induced at the scale
of chiral symmetry breaking. While the two-nucleon inter-
action is overwhelmingly the dominant interaction in mul-
tinucleon systems, a three-nucleon interaction contributes
significantly to the structure and interactions of nuclei.
Calculating the properties and interactions of nuclei is a
major goal of lattice QCD and as a small step in this
direction we have performed the first lattice QCD calcu-
lations of the properties of systems comprised of
multiple-�þ’s. The present paper is a detailed follow-up
to the paper we recently published [4], and it extends that
work from studies of systems comprised of up to five pions,
to systems containing up to 12 pions. As a technical detail,
this required calculations of very high (64 decimal digit)
precision.

We have convincingly determined a nonzero value for
the dressed three-body interaction, ���L

3 , defined in Eq. (1),

at the lightest three-pion masses, m� ¼ 291, 352, and
491 MeV, and find a value consistent with zero at the
heaviest mass, m� ¼ 591 MeV. These central results are
summarized in Table Vand Fig. 16 above. Given the lattice
volumes in which the calculations have been performed,
and the value of the �þ�þ scattering length, the connec-
tion between ���L

3 and the underlying three-body interaction,

�3ð�Þ, (see Eqs. (4) and (5)) is slowly converging, making
a meaningful extraction of �3ð�Þ currently impractical.
Clearly, in addition to higher-order calculations (OðL�8Þ
and beyond) of the energy of multipion systems in a finite
volume, lattice calculations in larger volumes, and of
excited states in these volumes, are required to disentangle
the bare from the dressed interactions.
An important outcome of our calculations is a determi-

nation of the relation between the isospin chemical poten-
tial and the isospin density. For m� & 400 MeV the
�þ�þ�þ interaction is seen to make a sizable contribu-
tion to this relation. Such contributions are implicit in the
LO �PT theoretical result, but our calculation has provided
the first explicit QCD calculation of the importance of
multipion interactions.
This work and our previous paper represent the first

study of many-body systems (n � 3 hadrons) directly
from QCD. Whilst encouraging, we conclude by reiterat-
ing that a significant amount of theoretical work remains to
be performed in order to explore meaningfully more com-
plicated systems such as those involving large numbers of
baryons.
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þ . . .
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þ . . .

�
!

�
1�

�
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APPENDIX A: CONTRACTIONS FOR Iz ¼ n � 13
MESONS

The contractions required for the n ¼ 1; . . . ; 13 correla-
tion functions are given below as discussed in Sec. III B.
The notation

Tj ¼ trC;S½�j�
is used for brevity with the trace being over color and
spinor indices. The index, j, is the matrix power to which
� is raised.

C1ðtÞ ¼ T1; (A1)

C2ðtÞ ¼ T2
1 � T2; (A2)

C3ðtÞ ¼ T3
1 � 3T2T1 þ 2T3; (A3)

C4ðtÞ ¼ T4
1 � 6T2T

2
1 þ 8T3T1 þ 3T2

2 � 6T4; (A4)

C5ðtÞ ¼ T5
1 � 10T2T

3
1 þ 20T3T

2
1 þ 15T2

2T1 � 30T4T1 � 20T2T3 þ 24T5; (A5)

C6ðtÞ ¼ T6
1 � 15T2T

4
1 þ 40T3T

3
1 þ 45T2

2T
2
1 � 90T4T

2
1 � 120T2T3T1 þ 144T5T1 � 15T3

2 þ 40T2
3 þ 90T2T4 � 120T6;

(A6)

C7ðtÞ ¼ T7
1 � 21T2T

5
1 þ 70T3T

4
1 þ 105T2

2T
3
1 � 210T4T

3
1 � 420T2T3T

2
1 þ 504T5T

2
1 � 105T3

2T1 þ 280T2
3T1 þ 630T2T4T1

� 840T6T1 þ 210T2
2T3 � 420T3T4 � 504T2T5 þ 720T7; (A7)

C8ðtÞ ¼ T8
1 � 28T2T

6
1 þ 112T3T

5
1 þ 210T2

2T
4
1 � 420T4T

4
1 � 1120T2T3T

3
1 þ 1344T5T

3
1 � 420T3

2T
2
1 þ 1120T2

3T
2
1

þ 2520T2T4T
2
1 � 3360T6T

2
1 þ 1680T2

2T3T1 � 3360T3T4T1 � 4032T2T5T1 þ 5760T7T1 þ 105T4
2 � 1120T2T

2
3

þ 1260T2
4 � 1260T2

2T4 þ 2688T3T5 þ 3360T2T6 � 5040T8; (A8)

C9ðtÞ ¼ T9
1 � 36T2T

7
1 þ 168T3T

6
1 þ 378T2

2T
5
1 � 756T4T

5
1 � 2520T2T3T

4
1 þ 3024T5T

4
1 � 1260T3

2T
3
1 þ 3360T2

3T
3
1

þ 7560T2T4T
3
1 � 10 080T6T

3
1 þ 7560T2

2T3T
2
1 � 15 120T3T4T

2
1 � 18 144T2T5T

2
1 þ 25 920T7T

2
1 þ 945T4

2T1

� 10 080T2T
2
3T1 þ 11 340T2

4T1 � 11 340T2
2T4T1 þ 24 192T3T5T1 þ 30 240T2T6T1 � 45 360T8T1 þ 2240T3

3

� 2520T3
2T3 þ 15 120T2T3T4 þ 9072T2

2T5 � 18 144T4T5 � 20 160T3T6 � 25 920T2T7 þ 40 320T9; (A9)
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C10ðtÞ ¼ T10
1 � 45T2T

8
1 þ 240T3T

7
1 þ 630T2

2T
6
1 � 1260T4T

6
1 � 5040T2T3T

5
1 þ 6048T5T

5
1 � 3150T3

2T
4
1 þ 8400T2

3T
4
1

þ 18 900T2T4T
4
1 � 25 200T6T

4
1 þ 25 200T2

2T3T
3
1 � 50 400T3T4T

3
1 � 60 480T2T5T

3
1 þ 86 400T7T

3
1 þ 4725T4

2T
2
1

� 50 400T2T
2
3T

2
1 þ 56 700T2

4T
2
1 � 56 700T2

2T4T
2
1 þ 120 960T3T5T

2
1 þ 151 200T2T6T

2
1 � 226 800T8T

2
1

þ 22 400T3
3T1 � 25 200T3

2T3T1 þ 151 200T2T3T4T1 þ 90 720T2
2T5T1 � 181 440T4T5T1 � 201 600T3T6T1

� 259 200T2T7T1 þ 403 200T9T1 � 945T5
2 þ 25 200T2

2T
2
3 � 56 700T2T

2
4 þ 72 576T2

5 þ 18 900T3
2T4

� 50 400T2
3T4 � 120 960T2T3T5 � 75 600T2

2T6 þ 151 200T4T6 þ 172 800T3T7 þ 226 800T2T8 � 362 880T10;

(A10)

C11ðtÞ ¼ T11
1 � 55T2T

9
1 þ 330T3T

8
1 þ 990T2

2T
7
1 � 1980T4T

7
1 � 9240T2T3T

6
1 þ 11 088T5T

6
1 � 6930T3

2T
5
1 þ 18 480T2

3T
5
1

þ 41 580T2T4T
5
1 � 55 440T6T

5
1 þ 69 300T2

2T3T
4
1 � 138 600T3T4T

4
1 � 166 320T2T5T

4
1 þ 237 600T7T

4
1

þ 17 325T4
2T

3
1 � 184 800T2T

2
3T

3
1 þ 207 900T2

4T
3
1 � 207 900T2

2T4T
3
1 þ 443 520T3T5T

3
1 þ 554 400T2T6T

3
1

� 831 600T8T
3
1 þ 123 200T3

3T
2
1 � 138 600T3

2T3T
2
1 þ 831 600T2T3T4T

2
1 þ 498 960T2

2T5T
2
1 � 997 920T4T5T

2
1

� 1 108 800T3T6T
2
1 � 1 425 600T2T7T

2
1 þ 2 217 600T9T

2
1 � 10 395T5

2T1 þ 277 200T2
2T

2
3T1 � 623 700T2T

2
4T1

þ 798 336T2
5T1 þ 207 900T3

2T4T1 � 554 400T2
3T4T1 � 1 330 560T2T3T5T1 � 831 600T2

2T6T1

þ 1 663 200T4T6T1 þ 1 900 800T3T7T1 þ 2 494 800T2T8T1 � 3 991 680T10T1 � 123 200T2T
3
3 þ 415 800T3T

2
4

þ 34 650T4
2T3 � 415 800T2

2T3T4 � 166 320T3
2T5 þ 443 520T2

3T5 þ 997 920T2T4T5 þ 1 108 800T2T3T6

� 1 330 560T5T6 þ 712 800T2
2T7 � 1 425 600T4T7 � 1 663 200T3T8 � 2 217 600T2T9 þ 3 628 800T11; (A11)

C12ðtÞ ¼ T12
1 � 66T2T

10
1 þ 440T3T

9
1 þ 1485T2

2T
8
1 � 2970T4T

8
1 � 15 840T2T3T

7
1 þ 19 008T5T

7
1 � 13 860T3

2T
6
1

þ 36 960T2
3T

6
1 þ 83 160T2T4T

6
1 � 110 880T6T

6
1 þ 166 320T2

2T3T
5
1 � 332 640T3T4T

5
1 � 399 168T2T5T

5
1

þ 570 240T7T
5
1 þ 51 975T4

2T
4
1 � 554 400T2T

2
3T

4
1 þ 623 700T2

4T
4
1 � 623 700T2

2T4T
4
1 þ 1 330 560T3T5T

4
1

þ 1 663 200T2T6T
4
1 � 2 494 800T8T

4
1 þ 492 800T3

3T
3
1 � 554 400T3

2T3T
3
1 þ 3 326 400T2T3T4T

3
1

þ 1 995 840T2
2T5T

3
1 � 3 991 680T4T5T

3
1 � 4 435 200T3T6T

3
1 � 5 702 400T2T7T

3
1 þ 8 870 400T9T

3
1

� 62 370T5
2T

2
1 þ 1 663 200T2

2T
2
3T

2
1 � 3 742 200T2T

2
4T

2
1 þ 4 790 016T2

5T
2
1 þ 1 247 400T3

2T4T
2
1

� 3 326 400T2
3T4T

2
1 � 7 983 360T2T3T5T

2
1 � 4 989 600T2

2T6T
2
1 þ 9 979 200T4T6T

2
1 þ 11 404 800T3T7T

2
1

þ 14 968 800T2T8T
2
1 � 23 950 080T10T

2
1 � 1 478 400T2T

3
3T1 þ 4 989 600T3T

2
4T1 þ 415 800T4

2T3T1

� 4 989 600T2
2T3T4T1 � 1 995 840T3

2T5T1 þ 5 322 240T2
3T5T1 þ 11 975 040T2T4T5T1 þ 13 305 600T2T3T6T1

� 15 966 720T5T6T1 þ 8 553 600T2
2T7T1 � 17 107 200T4T7T1 � 19 958 400T3T8T1 � 26 611 200T2T9T1

þ 43 545 600T11T1 þ 10 395T6
2 þ 246 400T4

3 � 1 247 400T3
4 � 554 400T3

2T
2
3 þ 1 871 100T2

2T
2
4 � 4 790 016T2T

2
5

þ 6 652 800T2
6 � 311 850T4

2T4 þ 3 326 400T2T
2
3T4 þ 3 991 680T2

2T3T5 � 7 983 360T3T4T5 þ 1 663 200T3
2T6

� 4 435 200T2
3T6 � 9 979 200T2T4T6 � 11 404 800T2T3T7 þ 13 685 760T5T7 � 7 484 400T2

2T8

þ 14 968 800T4T8 þ 17 740 800T3T9 þ 23 950 080T2T10 � 39 916 800T12; (A12)
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C13ðtÞ ¼ T13
1 � 78T2T

11
1 þ 572T3T

10
1 þ 2145T2

2T
9
1 � 4290T4T

9
1 � 25740T2T3T

8
1 þ 30888T5T

8
1 � 25740T3

2T
7
1

þ 68640T2
3T

7
1 þ 154440T2T4T

7
1 � 205920T6T

7
1 þ 360360T2

2T3T
6
1 � 720720T3T4T

6
1 � 864864T2T5T

6
1

þ 1235520T7T
6
1 þ 135135T4

2T
5
1 � 1441440T2T

2
3T

5
1 þ 1621620T2

4T
5
1 � 1621620T2

2T4T
5
1 þ 3459456T3T5T

5
1

þ 4324320T2T6T
5
1 � 6486480T8T

5
1 þ 1601600T3

3T
4
1 � 1801800T3

2T3T
4
1 þ 10810800T2T3T4T

4
1

þ 6486480T2
2T5T

4
1 � 12972960T4T5T

4
1 � 14414400T3T6T

4
1 � 18532800T2T7T

4
1 þ 28828800T9T

4
1

� 270270T5
2T

3
1 þ 7207200T2

2T
2
3T

3
1 � 16216200T2T

2
4T

3
1 þ 20756736T2

5T
3
1 þ 5405400T3

2T4T
3
1

� 14414400T2
3T4T

3
1 � 34594560T2T3T5T

3
1 � 21621600T2

2T6T
3
1 þ 43243200T4T6T

3
1 þ 49420800T3T7T

3
1

þ 64864800T2T8T
3
1 � 103783680T10T

3
1 � 9609600T2T

3
3T

2
1 þ 32432400T3T

2
4T

2
1 þ 2702700T4

2T3T
2
1

� 32432400T2
2T3T4T

2
1 � 12972960T3

2T5T
2
1 þ 34594560T2

3T5T
2
1 þ 77837760T2T4T5T

2
1

þ 86486400T2T3T6T
2
1 � 103783680T5T6T

2
1 þ 55598400T2

2T7T
2
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2
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2
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2
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2T3T5T1 � 103783680T3T4T5T1 þ 21621600T3
2T6T1

� 57657600T2
3T6T1 � 129729600T2T4T6T1 � 148262400T2T3T7T1 þ 177914880T5T7T1
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3
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2
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FIG. 20 (color online). Comparison of double-precision contractions and 64 decimal digit precision contractions for the effective
energy plots for n ¼ 9, 10, 11, and 12 pions. The data is for the m� ¼ 352 MeV ensemble.
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APPENDIX B: NUMERICAL PRECISION IN
n-MESON CORRELATION FUNCTIONS

In order to extract the correlation functions for systems
with n * 8 mesons it is necessary to perform the contrac-
tions using high-precision numerical techniques. It is nec-
essary to calculate the propagators to an analogous level of
precision.

1. Contraction precision

As discussed in the main text, the double-precision
numerical representations are insufficient to accurately
compute the propagator contractions required for the large
n correlators. Here we exhibit the failure of these calcu-
lations and discuss their origin. In Figs. 20 and 21, we
compare the n particle effective energies and effective
energy differences performed using double precision
(squares) and using 64 decimal digit internal precision
(stars, slightly offset to the right for clarity) for n ¼ 9,
10, 11, and 12 for the m� ¼ 352 MeV ensemble. The
breakdown of double-precision calculations with increas-
ing n and t, where nonzero values of the correlation func-
tions are lost to noise, is clear. This breakdown has its
origin in the large powers to which propagators are raised
in the contractions required for systems with a large num-
ber of mesons. Viewing the zero three-momentum propa-
gator as a time-dependent 12� 12 matrix, the range of
numbers that can be represented in double precision is too
limited and small elements of high powers of these propa-

gators are rounded away in tracing or other matrix manipu-
lations. Such terms are crucial for maintaining gauge
invariance, and their removal leads to a serious degradation
of the correlation function. For the numbers of mesons
considered in this work, n � 13, it is sufficient to use 64
decimal digit precision, but for n * 13, such precision will
rapidly become insufficient.

2. Propagator precision

Given a particular gauge field, the accuracy with which
the quark propagator is computed (e.g. the tolerance in
conjugate gradient (CG) algorithm) will influence the cor-
relation functions computed from that propagator. In ex-
treme cases, where the solution is quite inaccurate in
comparison to the statistical precision of the importance
sampling procedure, this residual error can persist through
the ensemble averaging and lead to errors in the correlation
functions. In the case of the multipion correlations studied
here, the situation is particularly acute as the high powers
to which the propagators are taken can enhance small
effects. At this point in time we have not performed a
detailed study of this issue. It would require generating
full sets of propagators at different inversion precisions on
the same configurations. We have simply studied the effect
on a few representative configurations, and it is clear that
for large n, significant differences in the correlation func-
tions can arise from loose tolerance of the CG-solver. In
future studies of even larger n (and very high-precision
studies of any observable), this issue must be investigated
in more detail.

FIG. 21 (color online). Comparison of double-precision contractions and 64 decimal digit precision contractions for the effective
energy difference plots for n ¼ 9, 10, 11, and 12 pions. The data is for the m� ¼ 352 MeV ensemble.
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APPENDIX C: TABLES

TABLE I. The parameters of the MILC gauge configurations and domain-wall propagators used in this work. The subscript l
denotes light quark (up and down), and s denotes the strange quark. The superscript ‘‘dwf’’ denotes the bare-quark mass for the
domain-wall fermion propagator calculation. The last column is the number of configurations times the number of sources per
configuration. Throughout the paper we will use the pion mass to refer to the ensembles.

Ensemble bml bms bmdwf
l bmdwf

s m� [MeV] # of propagators

2064f21b676m007m050 0.007 0.050 0.0081 0.081 �291 1039� 24
2064f21b676m010m050 0.010 0.050 0.0138 0.081 �352 769� 24
2064f21b679m020m050 0.020 0.050 0.0313 0.081 �491 486� 24
2064f21b681m030m050 0.030 0.050 0.0478 0.081 �591 564� 23

TABLE II. The mass and decay constant of the �þ, and the energy-shift and scattering parameters in the �þ�þ system calculated
previously [54]. The first uncertainties are statistical, the second uncertainties are systematic uncertainties due to fitting, and the third

uncertainty, when present, is a comprehensive systematic uncertainty [54]. lðI¼2Þ
�� is the one-loop counterterm in �PT contributing to

�þ�þ scattering, and � is the phase-shift. Recall that we are using the nuclear physics convention for the sign of the scattering length.

Quantity m� � 291 MeV m� � 352 MeV m� � 491 MeV m� � 591 MeV

Fit range 8–12 8–13 7–13 9–12

m� (l.u.) 0.184 54(58)(51) 0.222 94(31)(09) 0.311 32(28)(21) 0.374 07(49)(12)

f� (l.u.) 0.092 73(29)(42) 0.095 97(16)(10) 0.101 79(12)(28) 0.107 59(28)(17)

m�=f� 1.990(11)(14) 2.3230(57)(30) 3.0585(49)(95) 3.4758(98)(60)

Fit range 11–15 9–15 10–15 12–17

�E2 (l.u.) 0.007 79(47)(14) 0.007 45(20)(07) 0.006 78(18)(20) 0.006 27(23)(10)

m� �aðI¼2Þ
�� (b � 0) 0.1458(78)(25)(14) 0.2061(49)(17)(20) 0.3540(68)(89)(35) 0.465(14)(06)(05)

lðI¼2Þ
�� (b � 0) 6.1(1.9)(0.7)(0.4) 5.23(68)(24)(28) 6.53(32)(42)(16) 6.90(40)(18)(13)

�ðb � 0Þ (degrees) �1:71ð14Þð04Þ �2:181ð81Þð28Þ �3:01ð09Þð12Þ �3:46ð17Þð07Þ
jpj=m� 0.2032(60)(18) 0.1836(25)(09) 0.1480(17)(23) 0.1298(24)(10)

TABLE III. Energies in lattice units, bEn, of the various n pion states. Uncertainties are statistical and systematic, respectively. The
fit range is shown in square brackets.

n m� � 291 MeV m� � 352 MeV m� � 491 MeV m� � 591 MeV

1 0.1845(2)(22)[8–16] 0.2226(2)(6)[10–16] 0.3106(2)(18)[8–16] 0.3741(3)(13)[10–15]

2 0.3783(5)(58)[9–16] 0.4527(5)(15)[11–16] 0.6265(5)(55)[11–16] 0.7547(6)(53)[10–15]

3 0.5818(9)(60)[9–16] 0.6916(6)(35)[10–16] 0.9538(8)(69)[8–16] 1.1421(10)(67)[10–15]

4 0.796(1)(8)[9–16] 0.939(1)(6)[11–16] 1.2841(9)(142)[10–16] 1.535(1)(11)[11–15]

5 1.021(2)(10)[9–16] 1.196(1)(10)[11–16] 1.622(1)(14)[11–16] 1.937(2)(17)[11–15]

6 1.259(3)(16)[9–16] 1.465(2)(13)[11–16] 1.970(2)(18)[11–16] 2.346(3)(23)[11–15]

7 1.508(4)(28)[9–16] 1.747(2)(18)[10–16] 2.330(2)(23)[10–16] 2.763(3)(30)[11–15]

8 1.773(5)(43)[9–16] 2.040(3)(22)[10–16] 2.696(3)(28)[10–16] 3.190(3)(38)[11–15]

9 2.048(7)(31)[11–16] 2.345(4)(26)[11–16] 3.066(5)(40)[11–16] 3.627(3)(42)[11–15]

10 2.349(9)(66)[10–15] 2.667(5)(29)[10–16] 3.448(5)(65)[11–16] 4.081(5)(63)[10–15]

11 2.66(1)(7)[10–15] 3.002(6)(32)[10–16] 3.845(7)(81)[11–16] 4.536(8)(70)[10–15]

12 2.99(1)(8)[10–15] 3.349(10)(50)[10–15] 4.26(1)(10)[11–15] 5.00(1)(8)[11–15]
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