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The �þ�þ, �þ�0, Kþp, Kþn, and �K0�0 scattering lengths are calculated in mixed-action Lattice

QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-

quark masses, and at two light-quark masses on the fine MILC configurations. Heavy-baryon chiral

perturbation theory with two and three flavors of light quarks is used to perform the chiral extrapolations.

To the order we work in the three-flavor chiral expansion, the kaon-baryon processes that we investigate

show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon

scattering lengths are found to be a�þ�þ ¼ �0:197� 0:017 fm, and a�þ�0 ¼ �0:098� 0:017 fm,

where the comprehensive error includes statistical and systematic uncertainties.
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I. INTRODUCTION

Lattice QCD calculations of meson-meson interactions
have yielded predictions for physical scattering lengths at
the few percent level [1–3]. Several reasons underlie this
striking accuracy. Firstly, at the level of the lattice calcu-
lation, Euclidean-space correlation functions involving
pseudoscalar mesons have signal/noise ratios1 that do not
degrade, or only slowly degrade with time. Therefore,
highly accurate fits of both single- and multimeson prop-
erties are possible with currently available supercomputer
resources. Recent calculations of multimeson interactions
relevant for the study of pion and kaon condensation have
been performed with up to 12 mesons interacting on a
lattice [4–6] with no appreciable degradation of signal/
noise with time. Secondly, and perhaps more importantly,
QCD correlation functions involving Goldstone bosons are
subject to powerful chiral symmetry constraints. Since
current lattice calculations are carried out at unphysical
quark masses, these constraints play an essential role in
extrapolating the lattice data to the physical quark masses,
as well as to the infinite volume, and continuum limits.
Chiral perturbation theory (�-PT) is the optimal method
for implementing QCD constraints due to chiral symmetry,
and in essence, provides an expansion of low-energy S-
matrix elements in quark masses and powers of momentum
[7].

In contrast to the purely mesonic sector, recent studies of
baryon-baryon interactions, the paradigmatic nuclear
physics process, have demonstrated the fundamental diffi-
culty faced in making predictions for baryons and their
interactions [8,9]. Unlike the mesons, correlation functions
involving baryons suffer an exponential degradation of
signal/noise at large times2 and therefore pose a funda-
mentally different kind of challenge in extracting signal
from data [11]. Furthermore, while baryon interactions are
constrained by QCD symmetries like chiral symmetry, the
constraints are not nearly as powerful as when there is at
least one pion or kaon in the initial or final state. For
instance, there is no expectation that the baryon-baryon
scattering lengths vanish in the chiral limit as they do in the
purely mesonic sector. In nucleon-nucleon scattering, the
s-wave interactions are actually enhanced due to the close
proximity of a nontrivial fixed point of the renormalization
group, which drives the scattering lengths to infinity, thus
rendering the effective field theory description of the in-
teraction highly nonperturbative [12].
Given the contrast in difficulty between the purely mes-

onic and purely baryonic sectors described above, it is
clearly of great interest to perform a lattice QCD inves-
tigation of the simplest scattering process involving at least
one baryon: meson-baryon scattering. While pion-nucleon

1Here the signal is the Monte Carlo estimate of the quantum
correlation function evaluated on the lattice, while the noise
represents the statistical fluctuations in the correlation function.

2A recent high-statistics study of baryon correlation functions
on anisotropic clover lattices has found that the exponential
decay with time of signal/noise occurs only asymptotically in
time, and therefore, the signal/noise problem in baryon correla-
tion functions is not nearly as severe as previously thought [10].
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scattering is the best-studied process, both theoretically
and experimentally, its determination on the lattice is
computationally prohibitive since it involves annihilation
diagrams. At present only a few limiting cases that involve
these diagrams are being investigated [13]. Combining the
lowest-lying SUð3Þmeson and baryon octets, one can form
five meson-baryon elastic-scattering processes that do not
involve annihilation diagrams. Three of these involve
kaons and therefore are, in principle, amenable to an
SUð3Þ heavy-baryon �-PT (HB�-PT) analysis [14] for
extrapolation. The remaining two processes involve pions
interacting with hyperons and therefore can be analyzed in
conjunction with the kaon processes in SUð3Þ HB�-PT, or
independently using SUð2Þ HB�-PT.

Meson-baryon scattering has been developed to several
nontrivial orders in the SUð3Þ HB�-PT expansion in
Refs. [15,16], extending earlier work on kaon-nucleon
scattering in Ref. [17]. A very recent paper [18] has recon-
sidered the SUð3Þ HB�-PT results using a different regu-
larization scheme, and also derived results for pion-
hyperon scattering in the SUð2Þ HB�-PT expansion.
These works make clear that the paucity of experimental
data make it is very difficult to assess the convergence of
the chiral expansion in the three-flavor case. Further, in the
pion-hyperon system, the complete lack of experimental
data precludes a separate analysis in the chiral two-flavor
expansion. A lattice calculation of meson-baryon scatter-
ing analyzed using �-PT is therefore useful not only in
making predictions for low-energy scattering at the physi-
cal point, but also for assessing the convergence of the
chiral expansion for a range of quark masses at which
present-day lattice calculations are being performed.

Meson-baryon scattering is also of interest for several
indirect reasons. The K�n interaction is important for the
description of kaon condensation in the interior of neutron
stars [19], and meson-baryon interactions are essential
input in determining the final-state interactions of various
decays that are interesting for standard-model phenome-
nology (See Ref. [20] for an example). Finally, in deter-
mining baryon excited states on the lattice, it is clear that
the energy levels that represent meson-baryon scattering on
the finite-volume lattice must be resolved before progress
can be made regarding the extraction of single-particle
excitations.

The experimental input to existing �-PT analyses of
meson-baryon scattering is extensively discussed in
Refs. [15–18]. Threshold pion-nucleon scattering informa-
tion is taken from experiments with pionic hydrogen and
deuterium [21,22], and the kaon-nucleon scattering lengths
are taken from model-dependent extractions from kaon-
nucleon scattering data [23]. There is essentially no ex-
perimental information available on the pion-hyperon and
kaon-hyperon scattering lengths. There have been two
quenched lattice QCD studies of meson-baryon scattering
parameters: the pioneering work of Ref. [24] calculated

pion-nucleon and kaon-nucleon scattering lengths at heavy
pion masses without any serious attempt to extrapolate to
the physical point, and Ref. [25] calculated the I ¼ 1 KN
scattering length and found a result consistent with the
current algebra prediction.
In this work we calculate the lowest-lying energy levels

for five meson-baryon processes that have no annihilation
diagrams: �þ�þ, �þ�0, Kþp, Kþn, and �K0�0 in a
mixed-action Lattice QCD calculation with domain-wall
valence quarks on the asqtad-improved coarse MILC con-
figurations with b� 0:125 fm at four light-quark masses
(m� � 291, 352, 491 and 591MeV), and at two light-quark
masses (m� � 320 and 441 MeV) on the fine MILC con-
figurations with b� 0:09 fm, with substantially less sta-
tistics on the fine ensembles. We extract the s-wave
scattering lengths from the two-particle energies, and ana-
lyze the five processes using SUð3Þ HB�-PT. We find a
rather conclusive lack of convergence in the three-flavor
chiral expansion. We then consider �þ�þ and �þ�0

using SUð2Þ HB�-PT and find that we are able to make
reliable predictions of the scattering lengths at the physical
point. We find

a�þ�þ ¼ �0:197� 0:017 fm; (1)

a�þ�0 ¼ �0:098� 0:017 fm; (2)

where the errors encompass statistical and systematic un-
certainties. The leading order �-PT (current algebra) pre-
dictions for the scattering lengths are given by [26]:

a�þ�þ ¼ �0:2294 fm; (3)

a�þ�0 ¼ �0:1158 fm: (4)

Ultimately, either the chiral extrapolation should be
performed after a continuum limit has been taken, or one
should use the mixed-action extension of HB�-PT to per-
form the chiral extrapolations [27,28]. However, our re-
sults on the fine MILC configurations are statistics-limited
and not yet sufficiently accurate to make this a useful
exercise. Further, the explicit extrapolation formulas for
the meson-baryon scattering lengths have not yet been
determined in mixed-action �-PT. Despite these limita-
tions, we expect the corrections from finite lattice spacing
to be small for two principle reasons. Firstly, the meson-
baryon scattering lengths are protected by chiral symmetry
and therefore the (approximate) chiral symmetry of the
domain wall valence fermions used in this work protects
the scattering lengths from additive renormalization, which
can be explicitly seen in the construction of the mixed-
action baryon Lagrangian in Ref. [28]. The mixed-action
corrections do not appear until next-to-next-to leading
order in the chiral expansion of the meson-baryon scatter-
ing lengths. Secondly, our previous experience with this
mixed-action lattice QCD program leads us to expect that
discretization effects will be well-encompassed within the
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overall errors we quote. In our precise calculation of
meson-meson scattering, the predicted mixed-action cor-
rections [29,30] were smaller than the uncertainties on a
given ensemble [1,3].

This paper is organized as follows. In Sec. II we isolate
the five meson-baryon processes with no annihilation dia-
grams that are calculated in this work. We briefly review
the standard Lüscher method for extracting the scattering
amplitude from two-particle energy levels in a finite vol-
ume in Sec. III. Particulars regarding the mixed-action
lattice calculation and fitting methods are provided in
Sec. IV. Additional details can be found in Ref. [31].
Mixing between two of the meson-baryon channels with
the same quantum numbers is discussed in Sec. V. In
Sec. VI we consider chiral extrapolations of the lattice
data using SUð3Þ HB�-PT, and in Sec. VII we analyze
the pion-hyperon lattice data using SUð2Þ HB�-PT.
Finally, we conclude in Sec. VIII.

II. MESON-BARYON SCATTERING PROCESSES

It is a straightforward exercise to construct the six
scattering channels involving the lowest-lying octet me-
sons and baryons that do not have annihilation diagrams,
and to determine their isospin.3 The particle content, iso-
spin, and valence-quark content of these meson-baryon
states are shown in Table I. We adopt the notation of
Ref. [15], denoting the threshold T-matrix in the isospin

basis as TðIÞ
�B, where I is the isospin of the meson-baryon

combination, � is the meson, and B is the baryon. The five
elastic meson-baryon scattering processes that we consider
are then in correspondence with the isospin amplitudes
according to

T�þ�þ ¼ Tð2Þ
��

; T�þ�0 ¼ Tð3=2Þ
��

; TKþp ¼ Tð1Þ
KN;

TKþn ¼ 1

2
ðTð1Þ

KN þ Tð0Þ
KNÞ; T �K0�0 ¼ Tð1Þ

�K�
: (5)

These threshold T-matrices are related to the scattering
lengths a�B through

T�B ¼ 4�

�
1þm�

mB

�
a�B; (6)

where m� is the meson mass and mB is the baryon mass.

III. FINITE-VOLUME CALCULATION OF
SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below
inelastic thresholds can be determined using Lüscher’s
method [32], which entails a measurement of one or

more energy levels of the two-particle system in a finite
volume. For two particles with masses m� and mB in an

s-wave, with zero total three momentum, and in a finite
volume, the difference between the energy levels and those
of two noninteracting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [32]

p cot�ðpÞ ¼ 1

�L
S

�
pL

2�

�
; (7)

where �ðpÞ is the elastic-scattering phase shift, and the
regulated three-dimensional sum is

S ð�Þ � Xjjj<�

j

1

jjj2 � �2
� 4��: (8)

The sum in Eq. (8) is over all triplets of integers j such that
jjj<� and the limit � ! 1 is implicit [33]. This defini-
tion is equivalent to the analytic continuation of zeta-
functions presented by Lüscher [32]. In Eq. (7), L is the
length of the spatial dimension in a cubically-symmetric
lattice. The energy eigenvalue, En, and its deviation from
the sum of the rest masses of the particle, �En, are related
to the center-of-mass momentum pn, a solution of Eq. (7),
by

�En � En �m� �mB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

�

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

B

q
�m� �mB;

¼ p2
n

2��B

þ . . . ; (9)

where ��B is the reduced mass of the meson-baryon

system. In the absence of interactions between the parti-
cles, jp cot�j ¼ 1, and the energy levels occur at mo-
menta p ¼ 2�j=L, corresponding to single-particle
modes in a cubic cavity with periodic boundary conditions.
Expanding Eq. (7) about zero momenta, p� 0, one obtains
the familiar relation4

TABLE I. Particle content, isospin, and valence-quark struc-
ture of the meson-baryon states calculated in this work. As is
clear from the valence-quark content, these meson-baryon states
have no annihilation diagrams.

Particles Isospin Quark Content

�þ�þ 2 uuu �ds
�þ�0 3=2 uu �dss
Kþp 1 uuud�s
Kþn 0 and 1 uudd�s
�K0�þ 3=2 uu �dss
�K0�0 1 u �dsss

3The �þ�0 and �K0�þ systems have the same quantum
numbers, and therefore require a mixed-channel analysis in order
to extract the �K0�þ scattering length. This is discussed in
Section V.

4In order to be consistent with the meson-baryon literature, we
have chosen to use the ‘‘particle physics’’ definition of the
scattering length, as opposed to the ‘‘nuclear physics’’ definition,
which is opposite in sign.
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�E0 ¼ � 2�a

��BL
3

�
1þ c1

a

L
þ c2

�
a

L

�
2
�
þO

�
1

L6

�
; (10)

with

c1 ¼ 1

�

Xjjj<�

j�0

1

jjj2 � 4� ¼ �2:837297;

c2 ¼ c21 �
1

�2

X
j�0

1

jjj4 ¼ 6:375183;

(11)

and a is the scattering length, defined by

a ¼ lim
p!0

tan�ðpÞ
p

: (12)

As the finite-volume lattice calculation cannot achieve p ¼
0 (except in the absence of interactions), in quoting a lattice
value for the scattering length extracted from the ground-
state energy level, it is important to determine the error
associated with higher-order range corrections.

IV. LATTICE CALCULATION AND DATA
ANALYSIS

In calculating the meson-baryon scattering lengths, the
mixed-action lattice QCD scheme was used in which
domain-wall quark [34–38] propagators are generated
from a smeared source on nf ¼ 2þ 1 asqtad-improved

[39,40] rooted, staggered sea quarks [41]. The masses of
the pions computed with the domain-wall propagators in
this study are equal within a few percent to those of the
lightest, staggered pions computed from staggered propa-
gators that were generated with the same parameters as the
given MILC gauge configuration [42]. This process has
been done in several other mixed-action studies by
NPLQCD and by LHP [43]. To improve the chiral sym-
metry properties of the domain-wall quarks, hypercubic-
smearing (HYP-smearing) [44–46] was used in the gauge
links of the valence-quark action. In the sea-quark sector,
there has been significant debate regarding the validity of
taking the fourth root of the staggered fermion determinant
at finite lattice spacing [47–60]. While there is no proof,
there are arguments to suggest that taking the fourth root of
the fermion determinant recovers the contribution from a
single Dirac fermion. The results of this paper assume that
the fourth-root trick recovers the correct continuum limit
of QCD.

The present calculations were performed predominantly
with the coarse MILC lattices with a lattice spacing of b�
0:125 fm, and a spatial extent of L� 2:5 fm. On these
configurations, the strange quark was held fixed near its
physical value while the degenerate light quarks were
varied over a range of masses corresponding to the pion
masses shown in Table II. See Ref. [31] for further details.
Results were also obtained on a coarse MILC ensemble
with a spatial extent of L� 3:5 fm. However, this data is

statistics limited. In addition, calculations were performed
on two fine MILC ensembles at L� 2:5 fm with b�
0:09 fm. On the coarse MILC lattices, Dirichlet boundary
conditions were implemented to reduce the original time
extent of 64 down to 32, which saved a nominal factor of 2
in computational time. While this procedure leads to mini-
mal degradation of a nucleon signal, it does limit the
number of time slices available for fitting meson proper-
ties. By contrast, on the fine MILC ensembles, antiperiodic
boundary conditions were implemented and all time slices
are available.
The correlation function that projects onto the zero

momentum state for the meson-baryon system is

C�BðtÞ ¼ P ij

X
x;y

h�yðt;xÞ �Biðt; yÞ�ð0; 0ÞBjð0; 0Þi; (13)

where P ij is a positive-energy projector. For instance, in

the case ofKþp, the interpolating operators for theKþ and
the proton are

�ðt;xÞ ¼ Kþðt;xÞ ¼ �sðt;xÞ�5uðt;xÞ;
Biðt;xÞ ¼ piðt;xÞ ¼ �abcu

a
i ðt;xÞðubTðt;xÞC�5d

cðt;xÞÞ:
(14)

The masses of the mesons and baryons are extracted using
the assumed form of the large-time behavior of the single-
particle correlators as a function of time. As t ! 1, the
ground state dominates; however, fluctuations of the cor-
relator increase with respect to the ground state. The meson
and baryon two-point correlators, C�ðtÞ and CBðtÞ, behave
as

C�ðtÞ ! A1e
�m�t; CBðtÞ ! A2e

�mBt; (15)

respectively, in the limits t ! 1 and L ! 1. In relatively
large lattice volumes the energy difference between the
interacting and noninteracting meson-baryon states is a
small fraction of the total energy, which is dominated by

4 6 8 10 12 14 16
t/b

0

0.01

0.02

0.03

∆E

SS
SP
SS-αSP

π+Σ+
  C

(SS)
-αC

(SP)

n
J
 = 2

FIG. 1 (color online). Effective �E�þ�þ plot for coarse MILC
ensemble (ii) from correlation functions CðSSÞ, CðSPÞ and CðSSÞ �
	CðSPÞ. By taking the linear combination with 	 tuned to remove
the first excited state, earlier time slices are gained for fitting.
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the masses of the mesons and baryons [1]. In order to
extract this energy difference the ratio of correlation func-
tions, G�BðtÞ, is formed

G�BðtÞ �
C�BðtÞ

C�ðtÞCBðtÞ ¼
X1
n¼0

Dne
��Ent; (16)

where�E � �E0 is the desired energy shift. With�E, and

the extracted masses of the meson and baryon, the scatter-
ing length can be calculated using Eqs. (7) and (9), or, if
a � L, from Eq. (10). For the meson-baryon scattering

lengths calculated in this work, the difference between the

exact and perturbative eigen-equations is negligible.

4 6 8 10 12 14 16

t/b

1.06

1.08

1.1

1.12

1.14

bE
π+Σ+

 Total E m010

mπ+mΣ=1.076
n

J
 = 2

(a)

4 6 8 10 12 14 16

t/b

1.08

1.1

1.12

1.14

1.16

bE

π+Ξ0
 Total E m010

mπ+mΞ=1.124
n

J
 = 2

(b)

4 6 8 10 12 14 16

t/b

1.08

1.1

1.12

1.14

1.16

bE

K
+
p Total E m010

m
K

+m
p
=1.111

n
J
 = 2

(c)

4 6 8 10 12 14 16

t/b

1.08

1.1

1.12

1.14

1.16

bE

K
+
n Total E m010

m
K

+m
p
=1.111

n
J
 = 2

(d)

4 6 8 10 12 14 16

t/b

1.1

1.15

1.2

1.25

1.3

bE

K
0Σ+

 Total E m010

m
K

+mΣ=1.231
mπ+mΞ=1.124
n

J
 = 2

(e)

4 6 8 10 12 14 16

t/b

1.24

1.26

1.28

1.3

1.32

1.34

bE

K
0Ξ0

 Total E m010

m
K

+mΞ=1.279
n

J
 = 2

(f)

FIG. 2 (color online). Effective energy plots of the six meson-baryon processes shown in Table I. The plots are from MILC ensemble
(ii), nJ ¼ 2, and the linear combination CðSSÞ � 	CðSPÞ is plotted. The dashed line is the sum of the meson and baryon masses for each
process, while the error bars represent the jackknife uncertainty. Note that the bE axis of (e) is a factor of 2 larger in span than the other
plots to encompass the dashed line at m� þm� ¼ 1:124.
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A variety of fitting methods have been used, including
standard chi-square minimization fits to one and two ex-
ponentials. Generalized effective energy plots are particu-
larly useful for analyzing the lattice data and for estimating
systematic errors [10]. These plots are constructed by

taking the ratio of the correlators at times t, and tþ nJ
(where nJ is an integer)

meff
�;B ¼ 1

nJ
log

�
C�;BðtÞ

C�;Bðtþ nJÞ
�
;

�Eeff
�B ¼ 1

nJ
log

�
G�BðtÞ

G�Bðtþ nJÞ
�
:

(17)

With nJ ¼ 1, the standard effective mass and energy plots

4 6 8 10 12 14 16

t/b

0.22

0.221

0.222

0.223

0.224

0.225

0.226

0.227
bm

π+
 m010

χ2
 per d.o.f = 0.683

bm = 0.22305± 0.00025
n

J
 = 2

(a)

4 6 8 10 12 14 16

t/b
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 m010
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bm = 0.37816± 0.00026
n
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(b)
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(c)
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Ξ0
 m010

χ2
 per d.o.f = 0.814

bm = 0.9009± 0.00134
n

J
 = 2

(e)

FIG. 3 (color online). Single-particle effective mass plots for coarse MILC ensemble (ii). Here we choose nJ ¼ 2, and the linear
combination CðSSÞ � 	CðSPÞ is plotted. The inner shaded bands are the jackknife uncertainties of the fits to the effective masses, and the
outer bands are the jackknife uncertainty and systematic uncertainty added in quadrature over the indicated window of time slices.
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are recovered. Generalized effective masses form a system
of linear equations for each nJ over the time interval where
the data is fit. For instance, if the interval is given by �t ¼
t2 � t1, then there is one equation form

eff at each t, for any
nJ that fits within �t. The equations can be solved for m

eff

by casting them into the form of the so-called normal
equation [61]. Since each nJ constitutes a different effec-

tive mass plot, the number of degrees of freedom is in-
creased significantly. This method provides a fitting routine
that is faster than standard least-squares fitting. Additional
details regarding the utility of generalized effective mass
and energy plots can be found in Ref. [62].
The interpolating operator at the source is constructed

from gauge-invariantly-smeared quark field operators,
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FIG. 4 (color online). Meson-baryon effective energy difference plots for coarse MILC ensemble (ii). Here we choose nJ ¼ 2, and
the linear combination CðSSÞ � 	CðSPÞ is plotted. The inner shaded bands are the jackknife uncertainties of the fits to the effective
energy differences, and the outer bands are the jackknife uncertainty and systematic uncertainty added in quadrature over the indicated
window of time slices.
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while at the sink, the interpolating operator is constructed
from either local quark field operators, or from the same
smeared quark field operators used at the source, leading to
two sets of correlation functions. For brevity, we refer to
the two sets of correlation functions that result from these
source and sink operators as smeared-point (SP) and
smeared-smeared (SS) correlation functions, respectively.
By forming a linear combination of the SP and SS corre-

lation functions, CðSSÞ � 	CðSPÞ, we are able to remove the
first excited state, thus gaining early time slices for fitting
[62]. This effect is illustrated in Fig. 1, which is the
effective �E�þ�þ plot for coarse MILC ensemble (ii).

We plot CðSSÞ, CðSPÞ, and CðSSÞ � 	CðSPÞ with 	 tuned to
remove the first excited state. The effective energies, ef-
fective masses, and energy splittings are plotted for coarse
MILC ensemble (ii) in Figs. 2–4. All of the necessary
quantities needed for extraction of the scattering lengths
are contained in Table III, which also contains the sum of
meson and baryon masses at each quark mass. Figure 5

shows the results for all five processes, and the behavior of
Eq. (7), versus the interaction energy, presented in terms of
the dimensionless quantities p cot�=m� and �E=m�. The
curve shown in Fig. 5 is p cot�=m� for the case of m� ¼
mK, andmB ¼ mp, as�E=m� is varied. Sð�Þ in Eq. (8) is a
function of the meson and baryon masses, so there will be a
unique curve for each combination of m� and mB.

Consequently, the Kþp, and Kþn data points fall on this
curve.

V. THE MIXED CHANNEL

As is clear from Table I, the �þ�0 and �K0�þ states
carry the same global quantum numbers, and therefore
couple to the same energy-eigenstates in the finite lattice
volume. For energies above both kinematic thresholds, a
determination of the three scattering parameters associated
with these states (two phases and one mixing-angle) re-
quires a coupled-channel analysis. Therefore, three energy
levels above both kinematic thresholds must be determined
in the lattice calculation to fully characterize scattering in
this kinematic regime. In the present lattice volumes, the
two-particle energies in these channels are close to the
respective kinematic thresholds, and the energy of the
lower-lying �þ�0 state (which is below the �K0�þ thresh-
old) is determined by the low-energy elastic-scattering
parameters, making it amenable to analysis using
Eqs. (7)–(10).
A priori, one would expect both the �þ�0 and �K0�þ

interpolating operators to couple to a common ground state
(dominantly the �þ�0 state), with a �K0�þ-related level as
the first excited state (for the lattice volumes considered
here, the noninteracting �þ�0 system with two units of
relative momentum has an energy considerably above the
�K0�þ threshold). Interestingly, within our statistical and
systematic uncertainties, we find distinct energy levels
from the two interpolating operators. This is consistent
with strong coupling to the color-singlet constituents of
the interpolating operator and only very weak couplings to
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π
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n

K
+Ξ0

pcotδ/mπ versus ∆E/mπ m010

FIG. 5 (color online). p cot�=m� versus�E�B=m� for the five
elastic-scattering processes from coarse MILC ensemble (ii).
The curve shown is p cot�=m� for the case of m� ¼ mK, and

mB ¼ mp.

TABLE II. The parameters of the MILC gauge configurations and domain-wall propagators used in this work. The subscript l
denotes light quark (up and down), and s denotes the strange quark. The superscript dwf denotes the bare-quark mass for the domain-
wall fermion propagator calculation. The last column is the number of configurations times the number of sources per configuration.
Ensembles (i)–(iv) have L� 2:5 fm and b� 0:125 fm; Ensemble (v) has L� 3:5 fm and b� 0:125 fm; Ensembles (vi), (vii) have
L� 2:5 fm and b� 0:09 fm.

Ensemble m� (MeV) bml bms bmdwf
l bmdwf

s 103 � bmres
a # of props

(i) 2064f21b676m007m050 291 0.007 0.050 0.0081 0.081 1:604� 0:038 1039� 24
(ii) 2064f21b676m010m050 352 0.010 0.050 0.0138 0.081 1:552� 0:027 769� 24
(iii) 2064f21b679m020m050 491 0.020 0.050 0.0313 0.081 1:239� 0:028 486� 24
(iv) 2064f21b681m030m050 591 0.030 0.050 0.0478 0.081 0:982� 0:030 564� 24
(v) 2864f21b676m010m050 352 0.010 0.050 0.0138 0.081 1:552� 0:027 128� 8
(vi) 2896f21b709m0062m031 320 0.0062 0.031 0.0080 0.0423 0:380� 0:006 1001� 8
(vii) 2896f21b709m0124m031 441 0.0124 0.031 0.0080 0.0423 0:380� 0:006 513� 3

aComputed by the LHP collaboration for the coarse ensembles.
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states that require color rearrangement (see Fig. 2). While
this is suggestive that mixing between the states is small, a
definitive interpretation requires an extraction of three
energy levels above the kinematic thresholds of the
�þ�0 and �K0�þ, and below the next kinematic threshold,
in order to determine the three scattering parameters. The
optimal way to extract these levels is to use the variational
method [63,64], which requires the full matrix of correla-
tion functions to be calculated, and diagonalized. The
extraction of the scattering parameters would then proceed
via an extension of the variational method to the coupled-
channel scenario [65,66].

Because of our incomplete knowledge of the three
mixed-channel energy levels, we do not attempt to extract
any �K0�þ scattering parameters in this work.

VI. SUð3Þ HB�PT EXTRAPOLATION

A. Scattering length formulas

The scattering lengths of the five meson-baryon pro-
cesses listed in Eq. (5) are, to Oðm3

�Þ in SUð3Þ HB�-PT
[15,16],

a�þ�þ ¼ 1

4�

m�

m� þm�

�
� 2m�

f2�
þ 2m2

�

f2�
C1 þY�þ�þð�Þ

þ 8h123ð�Þm
3
�

f2�

�
; (18)

a�þ�0 ¼ 1

4�

m�

m� þm�

�
�m�

f2�
þm2

�

f2�
C01 þY�þ�0ð�Þ

þ 8h1ð�Þm
3
�

f2�

�
; (19)

aKþp ¼ 1

4�

mN

mK þmN

�
� 2mK

f2K
þ 2m2

K

f2K
C1 þYKþpð�Þ

þ 8h123ð�Þm
3
K

f2K

�
; (20)

aKþn ¼ 1

4�

mN

mK þmN

�
�mK

f2K
þm2

K

f2K
C01 þYKþnð�Þ

þ 8h1ð�Þm
3
K

f2K

�
; (21)

a �K0�0 ¼ 1

4�

m�

mK þm�

�
� 2mK

f2K
þ 2m2

K

f2K
C1 þY �K0�0ð�Þ

þ 8h123ð�Þm
3
K

f2K

�
; (22)

where we have defined C01 � C0 þ C1 and h123 � h1 �
h2 þ h3, and the loop functions are given by

TABLE III. Lattice calculation results from the four coarse MILC ensembles which enter the analysis of the meson-baryon
scattering lengths. The first uncertainty is statistical and the second uncertainty is systematic due to fitting. All quantities are in
lattice units.

Quantity m007 (i) m010 (ii) m020 (iii) m030 (iv)

m� 0.18384(31)(03) 0.22305(25)(08) 0.31031(38)(95) 0.37513(44)(13)

mk 0.36783(32)(42) 0.37816(26)(11) 0.40510(33)(37) 0.43091(66)(16)

mp 0.6978(61)(08) 0.7324(31)(10) 0.8069(22)(14) 0.8741(16)(05)

m� 0.8390(22)(03) 0.8531(19)(08) 0.8830(18)(17) 0.9213(13)(03)

m� 0.8872(13)(16) 0.9009(13)(10) 0.9233(18)(04) 0.9461(14)(08)

f� 0.09257(16) 0.09600(14) 0.10208(14) 0.10763(32)

fK 0.10734(10) 0.10781(18) 0.10976(17) 0.11253(31)

�E�� 0.0150(14)(08) 0.0148(08)(13) 0.0111(10)(08) 0.0100(10)(11)

�E�� 0.00646(64)(98) 0.0062(05)(12) 0.00431(68)(43) 0.00421(76)(60)

�EKp 0.0140(22)(30) 0.0146(15)(13) 0.0092(10)(51) 0.0087(16)(16)

�EKn 0.0057(18)(16) 0.0051(14)(09) 0.0036(09)(12) 0.0028(10)(11)

�EK� 0.0118(08)(13) 0.0125(05)(14) 0.0085(08)(31) 0.0086(16)(16)

a�� �2:12ð16Þð09Þ �2:36ð09Þð15Þ �2:30ð15Þð13Þ �2:36ð18Þð19Þ
a�� �1:08ð09Þð14Þ �1:19ð09Þð20Þ �1:08ð15Þð09Þ �1:20ð18Þð15Þ
aKp �2:80ð32Þð44Þ �2:95ð21Þð19Þ �2:3ð0:2Þð1:0Þ �2:27ð31Þð32Þ
aKn �1:41ð37Þð34Þ �1:33ð30Þð21Þ �1:05ð22Þð30Þ �0:89ð27Þð31Þ
aK� �2:62ð13Þð21Þ �2:77ð08Þð23Þ �2:18ð15Þð63Þ �2:29ð30Þð32Þ
m� þmp 0.8817(61) 0.9555(31) 1.1172(23) 1.2492(18)

m� þm� 1.0229(23) 1.0761(20) 1.1933(19) 1.2964(15)

m� þm� 1.0710(14) 1.1240(14) 1.2336(19) 1.3212(16)

mK þmp 1.0657(61) 1.1106(31) 1.2119(23) 1.3050(19)

mK þm� 1.2069(23) 1.2312(20) 1.2881(19) 1.3522(16)

mK þm� 1.2550(14) 1.2791(15) 1.3284(19) 1.3770(17)
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Y�þ�þð�Þ ¼ m2
�
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; (23)
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(27)

In what follows, we choose� ¼ �� ¼ 4�f� and evaluate

f� at its lattice physical value [42], and we take m� from

the Gell-Mann-Okubo formula. These choices modify the
chiral expansion at Oðm4

�Þ and are therefore consistent to
the order we are working. The first mixed-action modifi-
cation to these HB�-PT extrapolation formulas appear as
corrections to these loop functions, Y�B, and to the corre-

sponding counterterms which absorb the scale dependence.
Some of the mesons propagating in the loops appear as
mixed valence-sea combinations, and thus the correspond-
ing meson masses appearing in these functions are heavier
by a known amount [67]. The precise form of the predicted
corrections require a computation of the scattering pro-
cesses with mixed-action/partially quenched �-PT.
Our physical parameters are consistent with Ref. [18]

(note that our decay constant convention differs by
ffiffiffi
2

p
).

Namely, f� ¼ 130:7 MeV, m� ¼ 139:57 MeV, fK ¼
159:8 MeV, mK ¼ 493:68 MeV, mN ¼ 938 MeV, m� ¼
1192 MeV and m� ¼ 1314 MeV. The axial couplings, D
and F, for coarse MILC ensembles (ii)–(iv) are taken from
the mixed-action calculation of Ref. [68], and we extrapo-
late for coarse MILC ensemble (i) using these values.

B. Extrapolation to the physical point

For the purposes of fitting and visualization, it is useful

to construct from the scattering lengths the functions �ð1;2Þ
which are polynomials in m�. For the �þ�þ, Kþp, and
�K0�0 processes one defines5

�ð1Þ
LO � � 2�af2�

m�

�
1þm�

mB

�
¼ 1; (28)

�ð1Þ
NLO � � 2�af2�

m�

�
1þm�

mB

�
¼ 1� C1m�; (29)

�ð1Þ
NNLO � � 2�af2�

m�

�
1þm�

mB

�
þ f2�

2m�

Y�Bð��Þ

¼ 1� C1m� � 4h123ð��Þm2
�; (30)

and for the �þ�0, and Kþn processes one defines

�ð2Þ
LO � � 4�af2�

m�

�
1þm�

mB

�
¼ 1; (31)

�ð2Þ
NLO � � 4�af2�

m�

�
1þm�

mB

�
¼ 1� C01m�; (32)

�ð2Þ
NNLO � � 4�af2�

m�

�
1þm�

mB

�
þ f2�

m�

Y�Bð��Þ

¼ 1� C01m� � 8h1ð��Þm2
�: (33)

5Here we use the standard notation, LO ¼ leading order,
NLO ¼ next-to-leading order and so on.
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Notice that the left-hand sides of these equations are given
entirely in terms of lattice-determined quantities, all eval-
uated under Jackknife, whereas the right-hand side pro-
vides a convenient polynomial fitting function. Plots of
�NLO formed from the lattice data (all ensembles listed in
Table II) versus the Goldstone masses are given in Fig. 6.
We see evidence in this plot that the fine and large-volume
coarse data are statistically limited as compared to the

coarse data. Therefore, we include only the coarse data
in our fits. The fine data is, however, indicative that lattice-
spacing effects are small.
In the three-flavor chiral expansion, we have an over-

determined system at both NLO and NNLO. While there
are five observables, there are two low energy constants
(LECs) at NLO, C0 and C01, and two LECs at NNLO, h1
and h123. Fits of the LECs from each process at NLO are
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FIG. 6 (color online). Plots of �NLO versus the Goldstone masses for the five meson-baryon processes. All lattice data is included.
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given in Table IV and the corresponding values of the
scattering lengths are given in Table V. At NLO, the
LECs are of natural size, and provide a consistent extrac-
tion within uncertainties. Correspondingly, the scattering
lengths appear to deviate perturbatively from the LO val-
ues. The perturbative behavior of the scattering lengths at
NLO is evident from the plots of �NLO versus the
Goldstone masses given in Fig. 7. Clearly the deviations
of the lattice data from unity are consistent with a pertur-
bative expansion.

At NNLO the situation changes dramatically. This is
clear from the plots of �NNLO versus the Goldstone masses
given in Fig. 7. The shift of the value of � from NLO to
NNLO is dependent on the renormalization scale �. With
the choice � ¼ �� one would expect this shift to be

perturbative. However, this is not the case and therefore
loop corrections are very large at the scale ��. There are

many strategies that one may take to fit the LECs in the
overdetermined system. Here we fit the LECs to the �þ�þ
and �þ�0 data, and then use these LECs to predict the
kaon processes. Therefore, in Fig. 7, only (a) and (b) are
fits. The fit LECs are given in Table IV. While the NNLO
LECs h1 and h123 appear to be of natural size, the NLO
LECs C0 and C01 are unnaturally large and therefore are
countering the large loop effects. The extrapolated �þ�þ
and �þ�0 scattering lengths are given in Table V and
appear to be perturbative. Table V also gives the extrapo-
lated kaon-baryon scattering lengths with the LECs deter-
mined from the �þ�þ and �þ�0 data. The resulting

NNLO predictions deviate by at least 100% from the LO
values. Other fitting strategies lead to this same conclusion:
the kaon-baryon scattering lengths are unstable against
chiral corrections in the three-flavor chiral expansion,
over the range of light-quark masses that we consider.

VII. SUð2Þ HB�PT EXTRAPOLATION

Given the poor convergence seen in the three-flavor
chiral expansion due to the large loop corrections, it is
natural to consider the two-flavor theory with the strange
quark integrated out. In this way, �� and �� may be
analyzed in an expansion in m� with no fear of corrections
that scale as powers ofmK. The detailed matching of LECs
between the three- and two-flavor theories is described in
detail in Ref. [18]. We make use of the formulation of the
�� and �� T-matrices from [18] to perform the two-
flavor chiral extrapolations for a�þ�þ , and a�þ�0 . As
pointed out in Ref. [18], there are two representations of
the pion-hyperon scattering lengths that are equivalent up
to omitted higher orders in the chiral expansion; one con-
tains a chiral logarithm, and the other is purely a polyno-
mial in m�. Using both forms provides a useful check on
the systematics of the chiral extrapolation.

A. Scattering length formulas I

ToOðm3
�Þ in the two-flavor chiral expansion, a�þ�þ and

a�þ�0 are given by [18]

a�þ�þ ¼ 1
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f2�
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�
; (34)

a�þ�0 ¼ 1
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f2�
þm2

�

f2�
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þ m3
�

2�2f4�
log

m�

�
þm3

�

f2�
h�þ�0ð�Þ

�
; (35)

where the explicit forms—in terms of Lagrangian parame-
ters—of the LECs C�þ�þ , h�þ�þ , C�þ�0 and h�þ�0 are
given in Ref. [18]. As in the three-flavor case, the mixed-
action modification to the SUð2Þ scattering length formula

TABLE IV. SUð3Þ LECs fit from each process at NLO, and
from �þ�þ, and �þ�0 at NNLO. The first uncertainty in
parentheses is statistical, and the second is the statistical and
systematic uncertainty added in quadrature.

Quantity NLO fit each process NNLO fit �þ�þ, �þ�0

C1ð�þ�þÞ 0:66ð04Þð11Þ GeV�1 3:51ð18Þð25Þ GeV�1

C01ð�þ�0Þ 0:69ð06Þð22Þ GeV�1 7:44ð29Þð69Þ GeV�1

C1ðKþpÞ 0:44ð09Þð23Þ GeV�1 -

C01ðKþnÞ 0:56ð11Þð27Þ GeV�1 -

C1ð �K0�0Þ 0:50ð06Þð14Þ GeV�1 -

h1 - �0:59ð08Þð14Þ GeV�2

h123 - �0:42ð10Þð10Þ GeV�2

TABLE V. SUð3Þ extrapolated scattering lengths using the LECs from Table IV. The first
uncertainty in parentheses is statistical, and the second is the statistical and systematic
uncertainty added in quadrature. Note that the NLO (NNLO fit) column is using C1, C01

from the NNLO fit to �þ�þ, �þ�0.

Quantity LO (fm) NLO fit (fm) NLO (NNLO fit) (fm) NNLO (fm)

a�� �0:2294 �0:208ð01Þð03Þ �0:117ð06Þð08Þ �0:197ð06Þð08Þ
a�� �0:1158 �0:105ð01Þð04Þ 0.004(05)(11) �0:096ð05Þð12Þ
aKp �0:3971 �0:311ð18Þð44Þ 0.292(35)(48) �0:154ð51Þð63Þ
aKn �0:1986 �0:143ð10Þð27Þ 0.531(28)(68) 0.128(42)(87)

aK� �0:4406 �0:331ð12Þð31Þ 0.324(39)(54) �0:127ð57Þð70Þ
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would begin with corrections to the m3
� lnðm�Þ terms, with

the mixed valence-sea pions having the known additive
mass shift [67]. We again choose � ¼ �� ¼ 4�f� and

evaluate f� at its lattice physical value. In analogy with the
three-flavor case, we define

�LO � 1; (36)

�NLO � 1� C�þBm�; (37)

�NNLO � 1� C�þBm� � h�þBð��Þm2
�; (38)

where B is either�þ or�0. In Fig. 8 we give plots of �NLO

and �NNLO versus the pion mass for the two-flavor case.
Clearly the deviations of � from unity are consistent with a
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FIG. 7 (color online). Plots of �NLO and �NNLO versus the Goldstone masses. The line at � ¼ 1 is the leading order curve, and dotted
line is the physical meson mass. The innermost error bar is the statistical uncertainty and the outermost error bar is the statistical and
systematic uncertainty added in quadrature. The inner and outer filled bands correspond to the statistical and systematic uncertainty,
respectively, of the fits to the LECs at NLO and NNLO using �þ�þ, and �þ�0 only, for the SUð3Þ case.
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perturbative expansion at both NLO and NNLO, showing
that the loop corrections are much smaller at the scale ��

than in the three-flavor case. All extracted LECs are of
natural size and given in Table VI. The extrapolated�þ�þ
and �þ�0 scattering lengths are given in Table VII. The
results are consistent with what was found in the three-
flavor extrapolation. The NLO and NNLO LECs are highly
correlated in the NNLO fit. Figure 9 shows the 68% and
95% confidence interval error ellipses in the h-C plane for

TABLE VII. SUð2Þ extrapolated scattering lengths using the LECs from Table VI. The first uncertainty in parentheses is statistical,
and the second is the statistical and systematic uncertainty added in quadrature.

Quantity LO (fm) NLO (fm) NLO (NNLO fit) (fm) NNLO (fm)

a�� �0:2294 �0:208ð01Þð03Þ �0:166ð05Þð08Þ �0:197ð06Þð08Þ
a�� �0:1158 �0:105ð01Þð04Þ �0:083ð04Þð11Þ �0:098ð05Þð12Þ
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FIG. 8 (color online). �NLO, �NNLO plots for the �þ�þ, and �þ�0 processes versus the pion mass. The line at � ¼ 1 is the leading
order curve, and the dotted line is the physical pion mass. The innermost error bar is the statistical uncertainty and the outermost error
bar is the statistical and systematic uncertainty added in quadrature. The inner and outer filled bands correspond to the statistical and
systematic uncertainty, respectively, of the fits to the LECs at NLO and NNLO using �þ�þ, and �þ�0 for the SUð2Þ case.
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FIG. 9 (color online). The 68% (light) and 95% (dark) confidence interval error ellipses for fits for the �þ�þ (left), and �þ�0

(right) processes using Eqs. (34) and (35).

TABLE VI. SUð2Þ LECs fit from each process at NLO and at
NNLO. The first uncertainty in parentheses is statistical, and the
second is the statistical and systematic uncertainty added in
quadrature.

NLO fit NNLO fit

C�þ�þ 0:66ð04Þð11Þ GeV�1 1:98ð17Þð24Þ GeV�1

C�þ�0 0:69ð06Þð22Þ GeV�1 2:01ð24Þð68Þ GeV�1

h�þ�þ - �0:65ð36Þð40Þ GeV�2

h�þ�0 - �0:6ð0:5Þð1:1Þ GeV�2
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both �þ�þ and �þ�0. Exploring the full 95% confidence
interval error ellipse in the h-C plane yields

a�þ�þ ¼ �0:197� 0:017 fm; (39)

a�þ�0 ¼ �0:098� 0:017 fm: (40)

These are the numbers that we quote as our best determi-
nations of the pion-hyperon scattering lengths.

B. Scattering length formulas II

Reference [18] makes the interesting observation that
replacing f� with its chiral limit value, f, yields

a�þ�þ ¼ 1

2�

m�

m� þm�

�
�m�

f2
þm2

�

f2
C�þ�þ

þm3
�

f2
h0
�þ�þ

�
;

h0
�þ�þ ¼ 4

f2
‘r4 þ h�þ�þ ;

(41)

a�þ�0 ¼ 1

4�

m�

m� þm�

�
�m�

f2
þm2

�

f2
C�þ�0

þm3
�

f2
h0
�þ�0

�
;

h0
�þ�0 ¼ 4

f2
‘r4 þ h�þ�0 ;

(42)

where ‘r4 is the LEC which governs the pion mass depen-
dence of f� [69]. Note that the chiral logs have canceled,
and in this form, valid to order m3

� in the chiral expansion,
the scattering lengths have a simple polynomial depen-
dence on m�. Taking the standard value f ¼ 122:9 MeV
[18,69] and refitting the LECs yields the results tabulated
in Table VIII. The extrapolated �þ�þ and �þ�0 scatter-
ing lengths are given in Table IX. These results are clearly
consistent with what was found in the two-flavor extrapo-
lation with the chiral logarithm explicit. Figure 10 shows
the 68% and 95% confidence interval error ellipses in the
h-C plane for both �þ�þ and �þ�0. Exploring the full
95% confidence interval error ellipse in the h-C plane

TABLE VIII. SUð2Þ LECs fit from each process at NLO and at
NNLO. The first uncertainty in parentheses is statistical, and the
second is the statistical and systematic uncertainty added in
quadrature.

NLO fit NNLO fit

C�þ�þ 1:28ð09Þð11Þ GeV�1 1:90ð10Þð17Þ GeV�1

C�þ�0 1:84ð23Þð25Þ GeV�1 1:93ð12Þð48Þ GeV�1

h0
�þ�þ - �1:33ð21Þð26Þ GeV�2

h0
�þ�0 - �1:36ð27Þð75Þ GeV�2

TABLE IX. SUð2Þ extrapolated scattering lengths using the LECs from Table VIII. The first uncertainty in parentheses is statistical,
and the second is the statistical and systematic uncertainty added in quadrature.

Quantity LO (fm) NLO (fm) NLO (NNLO fit) (fm) NNLO (fm)

a�� �0:2294 �0:212ð03Þð04Þ �0:190ð04Þð06Þ �0:197ð04Þð09Þ
a�� �0:1158 �0:106ð04Þð05Þ �0:095ð02Þð09Þ �0:102ð02Þð09Þ
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FIG. 10 (color online). The 68% (light) and 95% (dark) confidence interval error ellipses for fits for the �þ�þ (left), and �þ�0

(right) processes using Eqs. (41) and (42).
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yields

a�þ�þ ¼ �0:197� 0:011 fm; (43)

a�þ�0 ¼ �0:102� 0:004 fm: (44)

Comparison of these determinations with those of Eq. (40)
give an estimate of the systematic error due to truncation of
the chiral expansion at order m3

�. We have also ‘‘pruned’’
the data; that is, we have redone all fits omitting the
heaviest mass ensemble. While this procedure inflates the
errors, we see very little shift in the central values.

In order to plot the scattering length versus m�, we
define

�a �þ�þ ¼ a�þ�þ

�
m� þm�

m�

�

¼ 1

2�

�
�m�

f2
þm2

�

f2
C�þ�þ þm3

�

f2
h0
�þ�þ

�
; (45)

�a �þ�0 ¼ a�þ�0

�
m� þm�

m�

�

¼ 1

4�

�
�m�

f2
þm2

�

f2
C�þ�0 þm3

�

f2
h0
�þ�0

�
: (46)

In Fig. 11 we plot the scattering lengths versus the pion
mass. The shaded bands in these plots correspond to the
standard error in the determination of the LECs, as given in
Table VIII.

Additional systematic errors arising from the specific
lattice formulation that we employ are discussed in detail
in Ref. [1], and are expected to be well-encompassed by
our error bars. As discussed in Sec. III, there is a systematic
error in extracting the scattering length from the phase
shift. We find that range corrections affect the scattering
length at the 5% level for �þ�þ, and at the 1% level for
�þ�0. Finally, we reiterate that there are unquantified

systematic errors due to finite-volume and lattice-spacing
effects, however, these errors are likely encompassed by
our quoted errors.

VIII. CONCLUSIONS

In this paper we have presented the first fully-dynamical
lattice QCD calculation of meson-baryon scattering. While
the phenomenologically most-interesting case of pion-
nucleon scattering involves annihilation diagrams, and
therefore, requires more resources than we currently have
available, we have calculated the ground-state energies of
�þ�þ, �þ�0, Kþp, Kþn, and �K0�0, which involve no
annihilation diagrams.
An analysis of the scattering lengths of these two-body

systems usingHB�PT has led us to conclude that the three-
flavor chiral expansion does not converge over the range of
light-quark masses that we investigate. While the kaon-
baryon scattering lengths appear perturbative at NLO, a
comparison of NNLO with NLO calls into question the
convergence of the three-flavor chiral expansion.
Therefore, we do not quote values for the kaon-baryon
scattering lengths at the physical point. On the other
hand, the �þ�þ and �þ�0 scattering lengths appear to
have a well-controlled chiral expansion in two-flavor
HB�PT. Our results, a�þ�þ ¼ �0:197� 0:017 fm, and
a�þ�0 ¼ �0:098� 0:017 fm, deviate from the LO (cur-

rent algebra) predictions at the one- and two-sigma level,
respectively. We look forward to confirmation of these
predictions from other lattice QCD calculations and pos-
sibly from future experiments.
The HB�PT analyses performed in this work support a

general observation about convergence in the three-flavor
chiral expansion, at least for the processes studied here. As
the pion masses considered in this lattice calculation are
comparable to the physical kaon mass, the distinct con-
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FIG. 11 (color online). �a plots for the �þ�þ, and �þ�0 processes versus the pion mass. The diagonal line is the leading order
curve, and the dotted line is the physical pion mass. The innermost error bar is the statistical uncertainty and the outermost error bar is
the statistical and systematic uncertainty added in quadrature. The filled bands are the fits to the LECs in the SUð2Þ case at NNLO as in
Eqs. (45) and (46).
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vergence patterns of the two- and three-flavor chiral ex-
pansions found in this work are suggestive that the break-
down in the three-flavor case is not due to the relative
largeness of the strange-quark mass as compared to the
light-quark masses, but rather due to some other enhance-
ment in the coefficients of the loop contributions, possibly
related to a scaling with powers of nf, the number of

flavors.
While in this paper we have not considered the lowest-

lying baryon decuplet, one interesting process for future
study is the ���� system. It does not involve discon-
nected diagrams since the pions have no valence quarks
with the same flavor as the �� constituents. It has been
argued that there is a bound state [70] in this channel, and
therefore, it would be of interest to determine whether this
state appears bound on the lattice at the available quark
masses.
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