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We construct general models for holographic superconductivity parametrized by three couplings which

are functions of a real scalar field and show that under general assumptions they describe superconducting

phase transitions. While some features are universal and model independent, important aspects of the

quantum critical behavior strongly depend on the choice of couplings, such as the order of the phase

transition and critical exponents of second-order phase transitions. In particular, we study a one-parameter

model where the phase transition changes from second to first order above some critical value of the

parameter and a model with tunable critical exponents.
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I. INTRODUCTION

Recently, the AdS/CFT correspondence [1–3] was ap-
plied to study strongly coupled systems which undergo a
superconducting phase transition below a critical tempera-
ture [4–8]. On the field theory side, in these models super-
conductivity is characterized by the condensation of a
composite charged operator for low temperatures T < Tc.
In the dual gravitational description, the superconducting
phase transition is represented by a transition from the
black hole in anti-de Sitter (AdS) space, with Hawking
temperature equal to T, to a new solution with scalar
‘‘hair,’’ which is thermodynamically preferred below the
critical temperature Tc.

The models studied here are a generalization of the
models introduced in [9,10]. In particular cases, they re-
duce to the 3þ 1 dimensional model studied in [11], or the
4þ 1 dimensional model of [12]. Certain properties of
superconductors, like the London equation or infinite DC
conductivity, follow from Uð1Þ spontaneous symmetry
breaking and are therefore universal (see e.g. [13]). Other
features, like the number of vacua and the detailed dynam-
ics of the phase transition (including critical exponents),
may be model dependent, as will be illustrated by means of
some examples. Therefore the family of models con-
structed here could be used as a setup for model building.

Another motivation in our construction is to have a
framework where one can continuously interpolate be-
tween different models appeared in the literature. Finally,
we also hope that a special choice of couplings could lead
to simpler (perhaps analytical) solutions, and one example
(albeit irrelevant for superconductivity) of a model where
the equations of motions are reduced to first-order differ-
ential equations is given in Appendix A.

This paper is organized as follows. In Sec. II A we
introduce the family of models and describe some basic
conditions that the couplings should satisfy in order to have
AdS/CFT duality at work and a consistent model of holo-
graphic superconductivity. In Sec. II B we write down the

ansatz and the equations of motion. We also describe the
boundary conditions that give rise to the hairy black hole
solutions that lead to a Uð1Þ spontaneous symmetry break-
ing in the boundary field theory. In Sec. III we present a
preliminary discussion on how some aspects of the phase
transitions should be encoded in the couplings. This is
summarized by four conjectures. We then present the
numerical results for the integration of the differential
equations (including the backreaction) in three different
models. These novel models are designed to test the con-
jectures made at the beginning of the section. The models
of Sec. III A and III B give rise to features which already
appeared in inequivalent models in [9,10], like the passage
between first- and second-order phase transitions, and
tunable critical exponents. The model of Sec. III C de-
scribes a physics similar to the model of Hartnoll,
Herzog, and Horowitz [7] (hereafter HHH model).
Section IV contains concluding remarks. Appendix A
gives the equations in a slightly more general gauge and
the expression for the conserved charge which is present
for every model in our family. In this appendix we also
show that for a particular choice of couplings there is an
extra conserved charge which represents an integral of a
combination of the equations of motion. This permits to
write the equations of motion as first-order differential
equations. Finally, Appendix B contains a simple deriva-
tion of the AdS Reissner-Nordström (RNAdS) solution by
the method of the superpotential.

II. GENERALIZED SUPERCONDUCTING MODEL

A. The model

Consider the following Uð1Þ invariant dþ 1 dimen-
sional Lagrangian

ffiffiffiffiffiffiffi�g
p

L ¼ ffiffiffiffiffiffiffi�g
p �

Fð�ÞR� 1

4
Gð�ÞF��F�� � Vð�Þ

� 1

2
Hð�Þð@�Þ2 � 1

2
Jð�Þð@��� A�Þ2

�
; (2.1)
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with �, � ¼ 0; 1; . . . ; d. It represents the most general
covariant Lagrangian with local Uð1Þ symmetry, contain-
ing a metric g��, a Uð1Þ gauge field A�, a real scalar field

�, and a Stückelberg field �, and terms with no more than
two derivatives. The gauge transformations are the stan-
dard ones given by

A� ! A� þ @��; � ! �þ�; (2.2)

with g�� and � being invariant.

For d > 1, by a suitable Weyl rescaling g�� ! fð�Þg��

and a field redefinition � ! Kð�Þ, we can remove two of
the couplings and put the Lagrangian in the following form

ffiffiffiffiffiffiffi�g
p

L ¼ ffiffiffiffiffiffiffi�g
p �

R� 1

4
Gð�ÞF��F�� þ dðd� 1Þ

L2
Uð�Þ

� 1

2
ð@�Þ2 � 1

2
Jð�ÞA�A

�

�
; (2.3)

where we have also fixed the gauge � ¼ 0 and relabeled the
couplings. The Lagrangian (2.3) is our starting point for the
construction of interesting models for holographic super-
conductors. Our aim is to understand the effect that Gð�Þ,
Uð�Þ, and Jð�Þ have on physical quantities and on the
dynamics of the phase transition.

The requirement that the model exhibits holographic
superconductivity implies a number of constraints on the
behavior of the couplings G, U, J. In particular, the cou-
plings must be such that the theory contains the usual AdS
solution. This requires that there is an extrema of Uð�Þ at
which Uð�Þ has a finite, positive value. By a suitable shift
in �, with no loss of generality this extrema can be placed
at � ¼ 0 and Uð0Þ can be set to 1 [any other value of
Uð0Þ> 0 can be absorbed into a redefinition of the pa-
rameter L]. Hence, at small �, one must have the behavior
Uð�Þ ¼ 1þOð�2Þ. The potential could also be such that it
admits other extrema. An example is the model with
quartic potential Uð�Þ investigated in [8,14]. On the other
hand, Gð�Þ and Jð�Þ must be positive to ensure that the
kinetic terms for A� and � have the correct signs.

We also request the theory to contain charged black hole
solutions with AdS asymptotics and � ¼ 0 (here we will
not discuss models with dilatonic black holes that may also
exhibit interesting critical phenomena; see [15] for some
examples). This implies that Gð0Þ must be finite and non-
zero and with no loss of generality we can take Gð0Þ ¼ 1
(which fixes the canonical normalization for A�). In addi-

tion, the theory must also contain black hole solutions with
nontrivial scalar hair � with appropriate behavior at infin-
ity, which implies that it must goes to zero in such a way
that the dual field operator takes an expectation value (this
point will be expanded below). In addition, Jð�Þ must
vanish as� ! 0 since wewantUð1Þ to be unbroken at� ¼
0. The condition that the theory contains charged black
hole solutions with � ¼ 0 also implies that @�J and @�G

must vanish as � ! 0, in order to satisfy the � equation of

motion. Thus, in this paper, the couplings will be required
to have the following behavior at small �:

Gð�Þ ¼ 1þ c�2 þOð�3Þ;

Uð�Þ ¼ 1� m2

2dðd� 1Þ�
2 þOð�3Þ;

Jð�Þ ¼ q2�2 þOð�3Þ:

(2.4)

An important subclass are models with Z2 symmetry � !
��, for which the required behavior is

Gð�Þ ¼ 1þ c�2 þOð�4Þ;

Uð�Þ ¼ 1� m2

2dðd� 1Þ�
2 þOð�4Þ;

Jð�Þ ¼ q2�2 þOð�4Þ;

(2.5)

i.e. the expansion contains only even powers of �. The
mass parameterm2 is required to satisfy the Breitenlohner-
Freedman bound for stability, m2 � �d2=4. It should be
noted that it is not necessary to have q � 0 in order to have
holographic superconductivity. In particular, in [9] it was
shown that the choice J ¼ �3 leads to superconductivity as
well.
Different choices of G, U, J reproduce the various

models that appeared in the literature. In particular, the
HHH model [7] corresponds to taking d ¼ 3 and the
choice

Gð�Þ ¼ 1; Uð�Þ ¼ 1þ 1

6
�2; Jð�Þ ¼ q2�2:

(2.6)

For a general model with the asymptotic (2.4) and m2 ¼
�2, the onset of instabilities will occur at the same critical
temperature as in [7], since in this case the linearized
Lagrangian is the same.
Other d ¼ 3 models that appeared in the literature are

obtained by the following identifications. The model of
Franco et al. [9] is the choice

Gð�Þ ¼ 1; Uð�Þ ¼ 1þ 1

6
�2; Jð�Þ ¼ arbitrary:

(2.7)

The M theory model of Gauntlett et al. [11] corresponds to
taking

Gð�Þ ¼ 1; Uð�Þ ¼ 1

6
cosh2

�

2
ð7� cosh�Þ;

Jð�Þ ¼ 1

L2
sinh2�:

(2.8)

The string theory model of Gubser et al. [12] is obtained by
considering the same Lagrangian (2.3) with d ¼ 4 and
setting
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Gð�Þ ¼ 1; Uð�Þ ¼ 1

2
cosh2

�

2
ð5� cosh�Þ;

Jð�Þ ¼ 3

L2
sinh2�:

(2.9)

An even wider class of models can be obtained if one
defines � ¼ e’, with the fundamental degree of freedom
being ’, a real scalar field. In other words, if we assume
that �> 0. This permits a more general dependence on �,
that includes noninteger powers. In particular, the cou-
plings would now be required to have the asymptotic
behavior

Gð�Þ ¼ 1þOð��1Þ;

Uð�Þ ¼ 1� m2

2dðd� 1Þ�
2 þOð��2Þ;

Jð�Þ ¼ q2�2 þOð��3Þ;

(2.10)

with �1, �2, �3 being any real numbers subject to the
condition �1 > 1, �2;3 > 2 (the condition �1 > 1 comes

from the requirement that the RNAdS black hole with � ¼
0 solves the � equation). A particular example of this is the
d ¼ 3 model investigated in [10], which in our notation
reads

Gð�Þ ¼ 1; Uð�Þ ¼ 1þ 1

6
�2;

Jð�Þ ¼ �2 þ c��
� þ c4�

4; 3 � � � 4:

(2.11)

This model exhibits interesting features like tunable criti-
cal exponents, i.e. which change by varying the parameter
�.

Thus the Lagrangian (2.3) provides a universal structure
that embodies various models studied in the literature and
permits a more general approach to the phenomenology of
superconductors.

B. Holographic superconductivity

We now set d ¼ 3 and consider the following ansatz:

ds2 ¼ �gðrÞe��ðrÞdt2 þ dr2

gðrÞ þ r2ðdx2 þ dy2Þ;

A ¼ �ðrÞdt; � ¼ �ðrÞ:
(2.12)

The effective Lagrangian takes the form

ffiffiffiffiffiffiffi�g
p

L ¼ �2e�ð�=2ÞðrgÞ0 þ r2

2
Gð�Þeð�=2Þ�02

þ 6r2

L2
e�ð�=2ÞUð�Þ � r2

2
e�ð�=2Þg�02

þ r2

2g
eð�=2ÞJð�Þ�2; (2.13)

and the equations of motion reduce to

�0 þ r

2
�02 þ r

2g2
e�Jð�Þ�2 ¼ 0; (2.14)

1

4
�02 þGð�Þ

4g
e��02 þ g0

rg
þ 1

r2
� 3

L2g
Uð�Þ

þ 1

4g2
e�Jð�Þ�2 ¼ 0; (2.15)

�00 þ�0
�
2

r
þ �0

2
þ @�G�

0

G

�
� Jð�Þ

gGð�Þ� ¼ 0; (2.16)

�00 þ �0
�
2

r
� �0

2
þ g0

g

�
þ 1

2g
e�@�G�

02 þ 6

L2g
@�U

þ 1

2g2
e�@�J�

2 ¼ 0: (2.17)

In Appendix A we give the equations in a more general
coordinate system and discuss the presence of Noether
charges.
The basic strategy to solve these equations is explained

in detail in [7,8]. Here we summarize the main features.
Black holes with regular event horizon are needed in order
to put the field theory at finite temperature. We require that
g has a simple zero at the event horizon r ¼ rþ, that is,
gðrþÞ ¼ 0 but g0ðrþÞ � 0 and finite. The Hawking tem-
perature of the black hole is

THawk ¼ 1

4�
g0ðrÞe��ðrÞ=2jr¼rþ : (2.18)

On the other hand, g0ðrþÞ is not an independent parameter
in our gauge but it is determined by a combination of
Eqs. (2.14) and (2.15),

ðrge�ð�=2ÞÞ0 ¼ 3r2

L2
e�ð�=2ÞUð�Þ � r2Gð�Þ

4
eð�=2Þ�02:

(2.19)

Substituting this value of g0 into the Hawking temperature
(2.18) we find

THawk ¼ rþ
16�L2

ðe�ð�þ=2Þ12Uð�þÞ
� L2eð�þ=2ÞGð�þÞE2þÞ; (2.20)

where we have defined

�ðrþÞ � �þ; �0ðrþÞ � Eþ; �ðrþÞ � �þ:
(2.21)

Solving the full set of equations involves numerical inte-
gration from the horizon to infinity. Therefore, in order to
have a well-posed Cauchy problem, we have to specify the
remaining initial data at r ¼ rþ. By expanding (2.17) in the
vicinity of the horizon one determines the value of
�0ðrþÞ ¼ �0þ through the relation
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�0þg0ðrþÞ þ
1

2
e�þ@�Gð�þÞE2þ þ 6

L2
@�Uð�þÞ ¼ 0:

(2.22)

In addition, the condition �ðrþÞ ¼ 0 is needed to ensure
that the gauge one-form is well defined at the horizon (see
[4] for a discussion). The solution is therefore specified by
the values rþ, �þ, Eþ and �þ. This set of parameters can
be further reduced by using two scaling symmetries of the
metric, the gauge field and the equations of motion. The
scaling dimensions are summarized in the following table:

Symmetry e� t ~x r g �

I 2 1 0 0 0 -1

II 0 -1 -1 1 2 1

The symmetry II can be used to set rþ ¼ 1. The symmetry
I can be used to set �0 ¼ 0, where �0 is the asymptotic
value of �. Thus the initial value data is completely char-
acterized in terms of two parameters, �þ and Eþ.

Because of the conditions (2.4), the asymptotic behavior
of the solution will be essentially the same as in the HHH
model. At infinity, the solution approaches the AdS ge-
ometry with

g ¼ r2

L2
þ . . . (2.23)

Using (2.16) and (2.17) one can then find the asymptotic
expressions for � and �,

�ðrÞ ¼ �� 	

r
þ . . . ; �ðrÞ ¼ �ð1Þ

r
�
þ �ð2Þ

r
þ
þ . . .

(2.24)

Here 
� are the roots of 
ð
� 3Þ ¼ m2. The gauge-
gravity correspondence proceeds as usual (see e.g.
[16,17]). The scalar field is dual to an operator O� of
dimension � equal to the larger root 
þ, while � and 	
are interpreted as the chemical potential and the charge
density of the dual field theory. In order to have sponta-
neous symmetry breaking in the field theory, we have to

consider solutions with �ð1Þ ¼ 0. This condition is, in fact,
equivalent to demanding thatO
þ is not sourced. Form2 in

the interval �9=4<m2 <�5=4 it is also consistent to

swap the role of O
þ and O
� as both modes with �ð1Þ or
�ð2Þ are normalizable.

The set of pairs ð�þ; EþÞ solving the condition

�ð1Þð�þ; EþÞ ¼ 0 define the condensed phase in which
hO
þi � 0. As a result of this condition, the hairy black

hole solution is fully characterized by a single parameter,
which can be taken to be the temperature.

The noncondensed phase is obviously defined by

hO�i ¼ 0, i.e. �ð1Þ ¼ �ð2Þ ¼ 0. This condition implies
� ¼ 0, therefore this phase is dual to the usual AdS
Reissner-Nordström solution

g ¼ r2 � 1

r

�
r3þ þ 	2

4rþ

�
þ 	2

4r2
; � ¼ 	

�
1

rþ
� 1

r

�
;

� ¼ 0; (2.25)

in units where L ¼ 1 (see Appendix B for a derivation).
Superconductivity only exists if the condensed phase is

thermodynamically preferred, namely, if the difference of
free energy,

�fðTÞ ¼ fcondðTÞ � funcondðTÞ; (2.26)

is negative for some range of temperatures. In the next
section we will see typical examples where, at sufficiently
low temperatures, �f is negative and the system is in a
superconductor state; then it increases as the temperature is
increased up to some critical value T ¼ Tc at which
�fðTcÞ ¼ 0. For temperatures above Tc the uncondensed
solution has less free energy and becomes the thermody-
namically favorable; the system turns into a normal state.
The behavior of�f at T ¼ Tc determines the type of phase
transition, according to the standard classification. For our
system the free energy can be expressed in terms of the
energy density, chemical potential, and density charge. The
energy density of the field theory configuration is associ-
ated with the mass � of the black hole solution, which can
be read from the asymptotic expression for the 00 compo-
nent of the metric,

e��g ¼ r2 � �

2r
þ . . . (2.27)

A similar calculation as in [5] gives

f ¼ � �

2
þ�	 (2.28)

for all ðG;U; JÞ models. We will study the temperature
dependence of the free energy in different models by
working at fixed charge density 	.

III. NUMERICAL RESULTS FOR THREE
EXAMPLES

General models with couplings that have the asymptotic
behavior (2.4) are naively expected to exhibit similar dy-
namics near the critical point, where � is small and higher
order terms in the expansion in powers of � are in principle
irrelevant. In particular, this expectation is partly con-
firmed by results obtained in [4,5,8], which show that the
details of the potential U are irrelevant as far as the
existence of a condensed phase is concerned. The mass
parameter in U ¼ 1�m2�2=12þ . . . affects the critical
temperature but the qualitative features of the transition are
essentially the same [18]. Moreover, it was shown in [19]
that for the HHH model the critical exponents take the
standard mean field values.
Nonetheless, this picture does not apply for all models.

First, as shown in [9] for the J ¼ �3 model, for certain
models the transition can be first order and occur at a finite
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(nonsmall) value of �.1 The first example discussed here
will illustrate this fact. It consists of a model obtained by a
choice of nontrivial, one-parameter coupling Gð�Þ in the
Maxwell kinetic term, while having the same couplings
Uð�Þ and Jð�Þ as in the HHH model. The model exhibits a
number of interesting features that we discuss. Second,
there are also models exhibiting second-order transitions
where critical exponents are modified. An example is the
model (2.11) studied in [10]. The critical exponent � for
the order parameter hO2i � ðTc � TÞ� is given by the
relation � ¼ ð�� 2Þ�1. Although � is very small near
the transition, the term �� in (2.11) is not sufficiently
suppressed and it affects the critical behavior near Tc.

By an intuition based on the few known examples, one
may conjecture that

(1) For Z2-symmetric models with the asymptotic be-
havior (2.5), with q � 0, there is a certain range of
parameters where they undergo a second-order
phase transition. They have the standard critical
exponents predicted by mean field theory.

(2) In these models the critical temperature of a second-
order phase transition is sensitive to the values of the
parameters c,m, q and insensitive to the coefficients
of the following powers.

(3) For models which are not Z2 symmetric, with the
asymptotic behavior (2.4), and q � 0, the critical
exponents of second-order transitions can be af-
fected by the powers Oð�3Þ in (2.4) but they are
insensitive to the next terms starting with Oð�4Þ.

(4) Models with �> 0, i.e. having a real scalar field ’
as a fundamental variable, defined by � � e’ > 0,
can have the asymptotic behavior (2.10). In a regime
of parameters where the couplings G, U, and J are
congruent to (2.6), these models have second-order
phase transitions with critical exponents that can
depend on the values of the parameters.

The examples given below, with three different choices
of Gð�Þ, partly confirm this picture (and complement the
study of [9–11], performed for G ¼ 1 and different Uð�Þ,
Jð�Þ couplings).

A. Model with Gð�Þ ¼ ð1þ b�2Þ�1

Consider a model with the following couplings

G ¼ 1

1þ b�2
; U ¼ 1þ �2

6
; J ¼ q2�2: (3.1)

The special value b ¼ 0 corresponds to the HHH model.
The theory contains a variety of black hole solutions. The
uncondensed � ¼ 0 phase is described as usual by the
RNAdS solution (2.25). When the temperature is below
some critical value Tc, one or more hairy black hole
solutions appear, depending on the value of the parameter
b. For b below some critical value bcr � 3, there is a single
black hole with hair. When b is greater than bcr, new hairy
black holes appear. Remarkably, the picture turns out to be
qualitatively similar as in the model discussed in [10] with
G ¼ 1, U ¼ 1þ 1

6�
2, and J ¼ �2 þ c4�

4, with c4 play-

ing the role of b. One difference is that in the present
case the critical temperature depends on b (in consistency
with conjecture 2), whereas for the model of [10] with
J ¼ �2 þ c4�

4 the critical temperature remains fixed
and independent of c4 (which is also a prediction of con-
jecture 2).
Figure 1(a) shows the condensate hO2i as function of the

temperature for qL ¼ 3 and b ¼ 0:5, 3, 5, 9. One can see
that for b above a critical value bcr � 3 there is a new
branch of the solution. Figure 2(b) shows the difference
between the free energy of the solution and the free energy
of the RNAdS black hole. From this figure one can observe
a number of important features.
For small values of b, the curves reproduce, as expected,

the same qualitative features of the HHH model: there is
only one hairy black hole solution, and the normalized free
energy (i.e. the free energy of the hairy solution minus the
free energy of the RNAdS solution) becomes negative
exactly at T < Tc, showing that the black hole with scalar
hair dominates the thermodynamics in this regime. The
first derivative of the free energy is continuous at the
transition, showing that the transition is second order.
The condensate approaches zero as hO2i � ðTc � TÞ�,
with � � 1=2 for all b < bcr.
For b greater than bcr, the curves become multivalued,

corresponding to the presence of two black hole solutions
with different values of hO2i at the same temperature.
Figure 2(b) shows that the upper branch (i.e. with higher
hO2i) has less free energy than the lower branch, and hence
dominates the thermodynamics.
The critical temperature Tc is the temperature at

which the normalized free energy changes sign. Above
Tc, the normalized free energy becomes positive and the
RNAdS solution becomes thermodynamically favorable.
As can be seen from Figs. 1(a) and 1(b), this temperature is
below the temperature at which the lower and upper
branches of the solution join. This implies that for
T > Tc the thermodynamically relevant solution is
RNAdS, and the vacuum expectation value has a
discontinuous jump from a nonzero positive value to
hO2i ¼ 0.
For b > bcr the normalized free energy is continuous but

not differentiable at T ¼ Tc, proving that the transition
becomes first order.

1In this paper, backreaction on the geometry is neglected—an
assumption that can be justified to some extent by taking a
suitably limit involving large c3 in a J ¼ c3�

3 model. Thus a
natural question is whether these important changes in the
dynamics of the phase transition might be an artifact of the no
backreaction approximation. We have checked that the study of
the phase transition including the complete backreaction repro-
duces essentially the same features observed in [9], even for low
values of c3.
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B. Model with Gð�Þ ¼ ð1þ b��Þ�1

This example illustrates a model with �> 0 and repre-
sents another check of conjecture 4 (the first check is the
model (2.11) of [10] with � ¼ ð�� 2Þ�1). We have used
the value b ¼ 0:5, with three different values of �, � ¼
3:75, 3.5, 3.25. For simplicity—and to achieve greater
numerical precision—the figures have been obtained
ignoring backreaction, but we have verified that the incor-
poration of backreaction gives essentially the same results.
For these values of the parameters the model has second-
order phase transitions. Figure 2(a) shows the order pa-
rameter hO2i in terms of the temperature T for these three
different values of �. We can see that the critical tempera-
ture is independent of �, Tc ffi 0:11843. Figure 2(b) shows
loghO2i vs logð1� T=TcÞ. Near the critical temperature we
have the behavior

hO2i � ðTc � TÞ�; (3.2)

with � ffi 0:58, 0.67, 0.81 for � ¼ 3:75, 3.5, 3.25, respec-
tively. Remarkably, � is related to � by the same law as in
the model (2.11):

� ffi ð�� 2Þ�1: (3.3)

Despite this coincidence, the two models are inequivalent
(though they seem to belong to the same universality
class).

C. Model with Gð�Þ ¼ cosh�

Our third example illustrates the fact that there are as
well nontrivial choices of Gð�Þ defining models which
share essentially the same physics as the HHH model,
even when the coupling becomes exponentially large at
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FIG. 2 (color online). (a) Value of the condensate as a function of the temperature for the model with G ¼ ð1þ 0:5��Þ�1, U ¼
1þ �2

6 , J ¼ �2, for (from top to bottom) � ¼ 3:75 (orange), � ¼ 3:5 (red), � ¼ 3:25 (blue). (b) hO2i vs ð1� T=TcÞ in logarithmic

scale, showing that different values of � have different slopes [conventions as in (a)].
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FIG. 1 (color online). (a) Value of the condensate as a function of the temperature for the model with G ¼ ð1þ b�2Þ�1, U ¼
1þ �2

6 , J ¼ 9�2, for b ¼ 0:5; 3; 5; 9 (from bottom to top, the b ¼ 0:5 case being described by the undermost curve at T ¼ 0).

(b) Normalized free energy for the same model and same values of b (the b ¼ 0:5 case being described by the rightmost curve). The
lower branches of the b ¼ 5 and b ¼ 9 curves correspond to the upper branches in Fig. 1(a).
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large �. We consider the model defined by the couplings

G ¼ cosh�; U ¼ 1þ �2

6
; J ¼ q2�2: (3.4)

In a sense, this model is complementary to the model of
Sec. III A, whereGwas suppressed at large �. If � is small
in the whole space rþ < r <1, then cosh�� 1 and the
couplings are essentially the same as in the HHH model. If
�þ is large, then G becomes exponentially large near the
horizon region and in principle one may expect some
different physics. The results we have found, summarized
by Fig. 3(a) and 3(b), are as follows.

The uncondensed � ¼ 0 phase is as usual described by
the RNAdS solution. Below some critical temperature
Tc � 0:188 we again find a hairy black hole solution.
This critical temperature is slightly above the one of the
HHH model. In general, we have checked that for a model
with Gð�Þ ¼ cosh�� the critical temperature depends on
the coefficient �. This is consistent with the above con-
jecture 2.

Figure 3(a) shows the value of the condensate as a
function of the temperature, whereas Fig. 3(b) shows the
normalized free energy. Below the critical temperature Tc,
a black hole solution with scalar hair appears. Figure 3(b)
shows that this has less free energy than the RNAdS
solution, implying the existence of a phase transition.
The free energy has a continuous derivative at the critical
point, which shows that the transition is second order. A fit
of the curve near the critical point shows that the critical
exponent is given by the mean field value, � � 1=2, in
consistency with conjecture 1.

IV. CONDUCTIVITY

In this section we briefly discuss the setup for studying
conductivity in the general model (2.3). We will consider
d ¼ 3 and G, U, J with the asymptotic conditions (2.4)

with m2 ¼ �2. Following [4,5,7], we consider time-
dependent perturbations of Ax ¼ axðrÞe�i!t and gtx ¼
fðrÞe�i!t. In our general model, these fluctuations are
governed by the following equations

a00x þ
�
g0

g
� �0

2
þ @�G�

0

G

�
a0x þ

�
!2

g2
e� � J

gG

�
ax

¼ �0

g
e�
�
�f0 þ 2

r
f

�
; (4.1)

f0 � 2

r
fþG�0ax ¼ 0: (4.2)

Substituting the second into the first equation, we find

a00x þ
�
g0

g
� �0

2
þ @�G�

0

G

�
a0x

þ
��
!2

g2
�G�02

g

�
e� � J

gG

�
ax ¼ 0: (4.3)

The asymptotic behavior of the perturbations is found to be

ax ¼ að0Þx þ að1Þx

r
þ . . . ; f ¼ r2fð0Þ þ fð1Þ

r
þ . . .

(4.4)

The conductivity can then be found by the formula


 ¼ Jx
Ex

¼ � iað1Þx

!að0Þx

; (4.5)

where in the second equality we have used the AdS/CFT
dictionary.
At this point, we can now examine under which con-

ditions the general class of models (2.3) lead to infinite DC
(i.e. at ! ¼ 0) conductivity. The emergence of infinite DC
conductivity is a general feature that follows after the Uð1Þ
symmetry breaking due to a mass term for the photon. In
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FIG. 3 (color online). (a) Value of the condensate as a function of the temperature for the model with G ¼ cosh�, U ¼ 1þ �2

6 ,
J ¼ 9�2. (b) Normalized free energy for the same model.
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the present case, the Maxwell equation has a term J
gG ax

which is the one to be interpreted as a (London) current. As
long as this is nonvanishing, one expects as usual infinite
DC conductivity. The other terms in the above Maxwell
equation are due to backreaction or interaction of the
Maxwell field with the geometry. To be more precise, we

need that að1Þx =að0Þx is a real, nonvanishing number in the
limit that ! ! 0, so that the imaginary part of the con-
ductivity contains a pole, Imð
Þ � 1=!. Then, by virtue of
the Kramers-Kronig relation,

Im ð
ð!ÞÞ ¼ � 1

�
P
Z Reð
ð!0ÞÞd!0

!0 �!
; (4.6)

one finds that a pole in Imð
Þ is associated with a Dirac
delta function in Reð
ð!ÞÞ. Typically, one expects that any
J which vanishes at � ¼ 0 (i.e. in the normal, AdS
Reissner-Nordström phase) and does not vanish for � �
0 should lead to superconductivity, if it also leads to a
phase transition like those described in the previous
sections.

V. CONCLUDING REMARKS

Summarizing, we have presented a large class of models
which can be used as a phenomenological setup for super-
conductivity or for model building. The general models
interpolate between different models appeared in the lit-
erature. We have discussed general conditions that the
couplings must satisfy for the theory to holographically
describe superconducting phase transitions. In Sec. III we
have also conjectured how some aspects of the dynamics of
the phase transition are encoded in the couplings G, U, J.
The concrete examples investigated here partly confirm
this picture, but a more thorough investigation would
clearly be necessary to substantiate these conjectures, pos-
sibly by analytic, rather than numerical, techniques. We
have explored models with nontrivial Gð�Þ. From a more
fundamental standpoint, such models might arise from M
theory or string theory compactifications, or by quantum
effects, since such couplings are compatible with Uð1Þ
local symmetry and general covariance.

There are, of course, other aspects of superconducting
phase transitions which have not been discussed here.
There may be many surprises in the space of models
parametrized by the couplings Gð�Þ, Uð�Þ, Jð�Þ and our
analysis only explores a small corner of this space. In
particular, one feature that emerges in certain regions of
the parameter space for some models is the appearance of
critical curves where the sign of the second derivative
d2hO2i=dT2 changes at some T < Tc. In some cases this
(probably unphysical) feature is cured by the incorporation
of backreaction, but we have found cases where this feature
persists even after including backreaction effects.

Another interesting problem is to look for models with
special couplingsGð�Þ, Uð�Þ, Jð�Þ which could allow one
to find analytical solutions. The general system (2.14),

(2.15), (2.16), and (2.17) of four coupled differential equa-
tions contains two first-order equations and two second-
order equations (2.15). Using the conserved charge dis-
cussed in the Appendix A, one can replace the equation for
� (2.16) by a first-order one. A natural question is then if
there is some choice of couplings where all equations are
first order. This would render the numerical analysis sim-
pler and perhaps lead to an analytic treatment of at least
some aspects of the phase transitions. A simple example is
presented in Appendix A, where we show that indeed there
is one model which has an extra conserved charge and the
equation for � can be substituted by a first-order equation.
Although this particular model does not seem to be rele-
vant for holographic superconductivity, it would be inter-
esting to see if there are other choices of Gð�Þ, Uð�Þ, Jð�Þ
where the equations can also be integrated to a first-order
form (see also the superpotential method described in
Appendix B).
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APPENDIX A: GENERAL ANSATZ AND
CONSERVED CHARGES

Consider the following ansatz

ds2 ¼ �gðrÞe��ðrÞdt2 þ dr2

gðrÞ þ a2ðrÞðdx2 þ dy2Þ;

A ¼ �ðrÞdt; � ¼ �ðrÞ
(A1)

which is slightly more general than the ansatz (2.12)
adopted in Sec. II B. The Lagrangian (2.3) takes the form

ffiffiffiffiffiffiffi�g
p

L ¼ 2e�ð�=2Þa0ððagÞ0 � ag�0Þ þ a2

2
Gð�Þeð�=2Þ�02

þ 6a2

L2
e�ð�=2ÞUð�Þ � a2

2
e�ð�=2Þg�02

þ a2

2g
eð�=2ÞJð�Þ�2: (A2)

The equations of motion are given by

2a00 þ a0�0 þ a

2
�02 þ a

2g2
e�Jð�Þ�2 ¼ 0; (A3)
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1

4
�02 þGð�Þ

4g
e��02 þ a0g0

ag
þ a02

a2
þ 2a00

a
� 3

L2g
Uð�Þ

þ 1

4g2
e�Jð�Þ�2 ¼ 0; (A4)

�00 þ�0
�
2a0

a
þ �0

2
þ @�G�

0

G

�
� Jð�Þ

gGð�Þ� ¼ 0; (A5)

�00 þ �0
�
2a0

a
� �0

2
þ g0

g

�
þ 1

2g
e�@�G�

02 þ 6

L2g
@�U

þ 1

2g2
e�@�J�

2 ¼ 0: (A6)

One can show, generalizing the similar derivation given
in [14], that the following quantity,

Q1 ¼ a2e�=2
�
a2
�
e��g

a2

�0 �Gð�Þ��0
�
; (A7)

is a constant. This is a conserved charge associated with the
following scaling symmetry

� ! c2�; a ! a

c
; � ! �� 4 logðcÞ; (A8)

g ! g; � ! �: (A9)

A natural question is if there is a particular choice of the
couplings G, U, J for which the system has some extra
conserved charge. We found that the system with

G ¼ e��; J ¼ q2e��; U ¼ 1; (A10)

enjoys the following scaling symmetry:

� ! c�; � ! �� 2

�
logc; (A11)

with trivial transformation rules for �, a, g, under which
G ! c�2G, J ! c�2J and the action remains invariant.
The corresponding Noether charge is given by

Q2 ¼ a2e�=2Gð�Þ��0 þ 2

�
a2e�ð�=2Þg�0: (A12)

It is easy to check that Eqs. (A7) and (A12) are integrals of
the equations of motion. Combining (A7) and (A12) one
finds that, in the model (A10), the following combination is
also conserved

Q3 � Q1 þQ2 ¼ a4e�=2
�
e��g

a2

�0 þ 2

�
a2e�ð�=2Þg�0:

(A13)

By choosing the gauge a ¼ r the Eqs. (A3) and (A4)
become first order. Thus, in this gauge, one is left with a
system of four coupled, independent, first-order differen-
tial equations (A3), (A4), (A7), and (A13).

One could try to use this first-order system to find, if not
analytic, at least numerically simpler solutions for � and

�. Unfortunately, this model does not seem to exhibit
holographic superconductivity. The basic reason is that
any solution asymptotic to AdS with� ! �0 (in particular,
� ! 0) at infinity gives a mass to the photon; see Eq. (2.3).

APPENDIX B: ADS REISSNER-NORDSTRÖM
SOLUTION VIA SUPERPOTENTIAL

Here we provide a simple derivation of the AdS
Reissner-Nordström solution using the superpotential
method. We hope that this type of approach may also be
useful for the search of analytic black hole solutions with
nontrivial scalar hair �. In general, one considers a
Lagrangian of the type

L ¼ 1

2
Gij

d�i

dr

d�j

dr
� Vð�iÞ; (B1)

where Gij is a symmetric matrix, that may depend on the

fields �i. The equations of motion are given by

d

dr

�
Gij

d�j

dr

�
¼ 1

2

�
@

@�i Gjk

�
d�j

dr

d�k

dr
� @V

@�i : (B2)

One then assumes that a superpotentialWð�iÞ exists, which
is such that it satisfies the following relation:

V ¼ � 1

2
Gij @W

@�i

@W

@�j : (B3)

IfW is found, then one can show that the first-order system,

d�i

dr
¼ 	Gij @W

@�j (B4)

automatically solves the equations of motion (the converse
is in general not true; not all solutions of the second-order
system solve the first-order system).
We now apply this procedure to our case. We consider

the ansatz

ds2 ¼ � S

R
dt2 þ R

S
dr2 þ R2ðdx2 þ dy2Þ;

A�dx
� ¼ �ðrÞdt;

(B5)

where S ¼ SðrÞ, R ¼ RðrÞ, and � ¼ �ðrÞ. The Lagrangian
then becomes

ffiffiffiffiffiffiffi�g
p

L ¼ 2R0S0 þ R2

2
Gð�Þ�02 þ 6

L2
R2Uð�Þ � 1

2
RS�02

þ 1

2

R3

S
Jð�Þ�2: (B6)

The equations of motion are given by

R0S0

RS
¼ � 1

4

R

S
G�02 þ 1

4
�02 þ 3

L2

R

S
Uþ 1

4

R2

S2
J�2;

(B7)

R00 þ R

4
�02 þ R3

4S2
Jð�Þ�2 ¼ 0; (B8)
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�00 þ�0
�
2R0

R
þ @�G�

0

G

�
� RJ

SG
� ¼ 0; (B9)

�00 þ
�
R0

R
þ S0

S

�
�0 þ R

2S
@�G�

02 þ 6

L2

R

S
@�U

þ R2

2S2
@�J�

2 ¼ 0: (B10)

Combining Eqs. (2.14) and (2.15) one can write the simpler
relation

1

R2
ðR0SÞ0 ¼ 3

L2
Uð�Þ � 1

4
Gð�Þ�02: (B11)

The relation (B3) becomes

@RW@SW þ 1

R2Gð�Þ ð@�WÞ2 � 1

RS
ð@�WÞ2

¼ 12R2Uð�Þ þ R3

S
Jð�Þ�2: (B12)

A superpotential satisfying this relation can be found for
� ¼ 0. We choose units such that L ¼ 1. In this case (B12)
reduces to [we assume Uð0Þ ¼ Gð0Þ ¼ 1]

@RW@SW þ 1

R2
ð@�WÞ2 ¼ 12R2: (B13)

We have found two simple solutions to Eq. (B13)

W1 ¼ 2ðR3 þ SÞ � R

2
ð���Þ2; (B14)

W2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 �M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� 1

4
Rð���Þ2

s
: (B15)

It is easy to see that the AdS Reissner-Nordström solution
arises from these superpotentials. Consider, for example,
the case of W1. The first-order system (B4) then becomes

R0 ¼ 1; S0 ¼ 3R2 � 1

4
ð���Þ2;

�0 ¼ � 1

R
ð���Þ:

(B16)

This is easily solved giving

R ¼ r; S ¼ r3 �Mþ 	2

4r
; � ¼ �� 	

r
; (B17)

where M and 	 are an integration constants. This repro-
duces the RNAdS solution (2.25). Clearly, it would be
interesting to find a generalization of W1 or W2 to include
� dependence. This could allow one to have more analytic
control over the hairy black hole solution and thus over the
properties of the phase transition.
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