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56bDipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy
57aINFN Sezione di Pisa, I-56127 Pisa, Italy

57bDipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
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We report a search for the rare decays Bþ ! DþK0 and Bþ ! DþK�0 in an event sample of

approximately 465� 106 B �B pairs collected with the BABAR detector at the PEP-II asymmetric-energy

eþe� collider at SLAC National Accelerator Laboratory. We find no significant evidence for either mode
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and we set 90% probability upper limits on the branching fractions ofBðBþ ! DþK0Þ< 2:9� 10�6 and

BðBþ ! DþK�0Þ< 3:0� 10�6.

DOI: 10.1103/PhysRevD.82.092006 PACS numbers: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

Charged B meson decays in which neither constituent

quark appears in the final state, such as Bþ ! DþKð�Þ0, are
expected to be dominated by weak-annihilation diagrams
with the �bu pair annihilating into a Wþ boson. Such
processes therefore can provide insight into the internal
dynamics of B mesons, in particular, the overlap between
the b and the u quark wave functions. Annihilation ampli-
tudes cannot be evaluated with the commonly used facto-
rization approach [1]. As a consequence, there are no
reliable estimates for the corresponding decay rates.
Annihilation amplitudes are expected to be proportional
to fB=mB where mB is the mass of the B meson and fB is
the pseudoscalar B meson decay constant. The quantity fB
represents the probability amplitude for the two quark
wave functions to overlap. Numerically, fB=mB is approxi-
mately equal to �2, where � is the sine of the Cabibbo
angle [1,2]. In addition, these amplitudes are also
suppressed by the Cabibbo-Kobayashi-Maskawa quark-
mixing matrix (CKM) factor jVubj � �3. So far, there
has been no observation of a hadronic B meson decay
that proceeds purely through weak-annihilation diagrams,
although evidence for the leptonic decay B ! �� has been
found [3]. In theoretical calculations of nonleptonic de-
cays, the assumption is often made that these amplitudes
may be neglected.

Some studies indicate that the branching fractions of
weak-annihilation processes could be enhanced by so-
called rescattering effects, in which long-range strong
interactions between B decay products, rather than the
decay amplitudes, lead to the final state of interest [2].
Figure 1 shows the Feynman diagram for the decays

Bþ ! DþKð�Þ0 and Bþ ! Dþ
s �

0 [4], and the hadron-level

diagram for the rescattering of Dþ
s �

0 into DþKð�Þ0.
Significant rescattering could thus mimic a large weak-
annihilation amplitude. It has been argued [2] that rescat-
tering effects might be suppressed by only �4, compared to
�5 for the weak-annihilation amplitudes, rendering the

Bþ ! DþKð�Þ0 decay rate due to rescattering comparable

to the isospin-related color-suppressed B0 ! D0Kð�Þ0
decay rate of approximately 5� 10�6.

Bþ ! DþKð�Þ0 decays are also of interest because
their decay rates can be used to constrain the annihilation
amplitudes in phenomenological fits [1,5]. This allows the

translation of the measurements of the Bþ ! D0Kð�Þþ
amplitudes into estimations of the jVubj suppressed ampli-

tudes B0 ! D0Kð�Þ0 [5,6]. None of the modes studied here
has been observed so far, and a 90% confidence level upper
limit on the branching fraction BðBþ ! DþK0Þ< 5�
10�6 has been established by BABAR [7]. No study of
Bþ ! DþK�0 has previously been published.
The results presented here are obtained with 426 fb�1 of

data collected at the �ð4SÞ resonance with the BABAR

detector at the PEP-II asymmetric eþe� collider corre-
sponding to 465� 106 B �B pairs (NB �B). An additional
44:4 fb�1 of data (‘‘off-resonance’’) collected at a
center-of-mass (CM) energy 40 MeV below the �ð4SÞ
resonance is used to study backgrounds from eþe� ! q �q
(q ¼ u, d, s, or c) processes, which we refer to as contin-
uum events.
The BABAR detector is described in detail elsewhere [8].

Charged-particle tracking is provided by a five-layer sili-
con vertex tracker (SVT) and a 40 layer drift chamber
(DCH). In addition to providing precise position informa-
tion for tracking, the SVT and DCH measure the specific
ionization, which is used for particle identification of
low-momentum charged particles. At higher momenta
(p > 0:7 GeV=c) pions and kaons are identified by
Cherenkov radiation detected in a ring-imaging device
(DIRC). The position and energy of photons are measured
with an electromagnetic calorimeter (EMC) consisting of
6580 thallium-doped CsI crystals. These systems are
mounted inside a 1.5 T solenoidal superconducting mag-
net. Muons are identified by the instrumented magnetic-
flux return, which is located outside the magnet.

II. EVENT RECONSTRUCTION AND SELECTION

The event selection criteria are determined using
Monte Carlo (MC) simulations of eþe� ! �ð4SÞ ! B �B
(‘‘B �B’’ in the following) and continuum events, and the
off-resonance data. The selection criteria are optimized by
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FIG. 1. Annihilation diagram for the decay Bþ ! DþKð�Þ0
(top). Tree diagram (bottom left) for the decay Bþ ! Dþ

s �
0

and hadron-level diagram (bottom right) for the rescattering
contribution to Bþ ! DþKð�Þ0 via Bþ ! Dþ

s �
0.
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maximizing the quantity S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S and B are

the expected numbers of signal and background events,
respectively. We assume the signal branching fraction to be
5� 10�6 in the optimization procedure.

The charged-particle candidates are required to have
transverse momenta above 100 MeV=c and at least 12
hits in the DCH.

Candidate Dþ mesons are reconstructed in the Dþ !
K��þ�þ (K�� in the following), Dþ ! K0

S�
þ (K0

S�),
Dþ ! K��þ�þ�0 (K���0) and Dþ ! K0

S�
þ�0

(K0
S��

0) modes for the Bþ ! DþK0 decay channel

(DK). Only the first two modes are used for the Bþ !
DþK�0 decay channel (DK� in the following) since we find
that including the K���0 and K0

S��
0 modes in this

channel does not appreciably improve the sensitivity of
the analysis.

The Dþ candidates are reconstructed by combining
kaons (either charged or neutral depending on the channel)
and the appropriate number of pions. The charged kaons
used to reconstruct theDþ and K�0 candidates are required
to satisfy kaon identification criteria obtained using a like-
lihood technique based on the opening angle of the
Cherenkov light measured in the ring-imaging device
(DIRC) and the ionization energy loss measured in the
SVT and DCH. These criteria are typically 85% efficient,
depending on the momentum and polar angle, with mis-
identification rates at the 2% level. Kaons and pions from
D decays are required to have momenta in the laboratory
frame greater than 200 MeV=c and 150 MeV=c, respec-
tively. The reconstructed Dþ candidates are required to
satisfy the invariant mass (MD) selection criteria given in
Table I.

The K0
S candidates are reconstructed from pairs of

oppositely-charged pions with invariant mass within
5–7 MeV=c2 of the nominal K0

S mass [9]. This mass cut

corresponds to 2–2.8 standard deviations of the experimen-
tal resolution and varies slightly among channels due to
the different amounts of background per channel. For the
prompt K0

S candidates from the Bþ ! DþK0
S decay, we

require lnð1� cos�K0
S
ðBþÞÞ<�8, where �K0

S
ðBþÞ is the

angle between the momentum vector of the K0
S candidate

and the vector connecting the Bþ and K0
S decay vertices.

For K0
S daughters of a Dþ decay, we require lnð1�

cos�K0
S
ðDþÞÞ<�6, where �K0

S
ðDþÞ is defined in a similar

way.

The �0 candidates are reconstructed from pairs of pho-
ton candidates each with an energy greater than 70 MeV,
and a lateral shower profile in the electromagnetic calo-
rimeter (EMC) consistent with a single electromagnetic
deposit. These pairs must have a total energy greater than
200 MeV, a CM momentum greater than 400 MeV=c, and
an invariant mass within 10 MeV=c2 (for the K���0

mode) or 12 MeV=c2 (for the K0
S��

0 mode) of the nomi-

nal �0 mass [9].
The K�0 candidates are reconstructed in the decay chan-

nel K�0 ! Kþ��. These charged tracks are constrained to
originate from a common vertex. The reconstructed invari-
ant mass, whose width is dominated by the K�0 natural
width, is required to lie within 40 MeV=c2 of the nominal
K�0 mass [9]. We define �H as the angle between the
direction of flight of the charged K and the direction of
flight of the B in the K�0 rest frame. The probability
distribution of cos�H is proportional to cos2�H for longi-
tudinally polarized K�0 mesons from B ! DK�0 decays,
due to angular momentum conservation, and is approxi-
mately flat for fake (random combinations of tracks) or
unpolarized background K�0 candidates. To suppress fake
and background K�0 candidates we require j cos�Hj> 0:5.
The Bþ candidates are reconstructed by combining one

Dþ and one K0
S or K�0 candidate, constraining them to

originate from a common vertex. The probability distribu-
tion of the cosine of the B polar angle with respect to
the beam axis in the CM frame, cos�B, is expected to
be proportional to 1� cos2�B. Selection criteria on
j cos�Bj are channel dependent and are summarized in
Table I.
We measure two almost independent kinematic

variables: the beam-energy substituted mass mES �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððE�2

0 =c2Þ=2þ ~p0 � ~pB=c
2Þ2=ðE2

0=c
2Þ � ðpB=cÞ2

q
, and the

energy difference �E � E�
B � E�

0=2, where E and p are

energy and momentum, the subscripts B and 0 refer to
the candidate B and to the eþe� system, respectively, and
the asterisk denotes a calculation made in the CM frame.
Signal events are expected to peak at the Bmeson mass for
mES and at zero for �E. Channel-dependent selection
criteria on j�Ej are given in Table I. We retain candidates
with mES in the range ½5:20; 5:29� GeV=c2 for subsequent
analysis.
In less than 1% of the cases, multiple Bþ candidates are

present in the same event, and in those cases we choose the

TABLE I. Main selection criteria used to distinguish between signal and background events. MD;PDG is the nominal mass of the Dþ
meson [9].

Bþ ! DþK0 Bþ ! DþK�0
Selection criteria K�� K���0 K0

S� K0
S��

0 K�� K0
S�

jMD;PDGj (MeV=c2) <12ð’ 1:8�Þ <18ð’ 1:5�Þ <14ð’ 1:6�Þ <22ð’ 1:6�Þ <10ð’ 1:6�Þ <10ð’ 1:4�Þ
j cos�Bj <0:76 <0:77 <0:87 <0:85 <0:82 <0:84
j�Ej (MeV) <20ð’ 1:3�Þ <23ð’ 1:5�Þ <25ð’ 1:5�Þ <24ð’ 1:5�Þ <19ð’ 1:3�Þ <19 MeVð’ 1:3�Þ
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one with the reconstructed Dþ mass closest to the nominal
mass value [9]. If more than one Bþ candidate shares the
same Dþ candidate, then we choose the Bþ candidate with
�E closest to zero.

III. BACKGROUND CHARACTERIZATION

After applying the selection criteria described above,
the remaining background is composed of nonsignal B �B
events and continuum events, the latter being the dominant
contribution. Continuum background events, in contrast to
B �B events, are characterized by a jetlike shape, which can
be used in a Fisher discriminant F [10] to reduce this
background component. The discriminant F is a linear
combination of four variables trained to peak at 1 for signal
and at �1 for continuum background. The first variable is
the cosine of the angle between the B thrust axis and the
thrust axis of all the other reconstructed charged tracks and
neutral energy deposits (rest of the event), where the thrust
axis is defined as the direction that maximizes the sum of
the longitudinal momenta of all the particles. The second
and third variables are the event shape moments L0 ¼P

ipi, and L2 ¼
P

ipij cos�ij2, where the index i runs
over all tracks and energy deposits in the rest of the event;
pi is the momentum and �i is the angle with respect to the
thrust axis of the B candidate. These three variables are
calculated in the CM. Finally we use j�tj, the absolute
value of the measured proper time interval between the two
B decays [11]. It is calculated using the measured separa-
tion along the beam direction �z between the decay points
of the reconstructedB and the otherB, and theLorentz boost
between the laboratory and CM frames. The other B decay
point is obtained from the tracks that do not belong to the
reconstructed B, with constraints from the reconstructed B
momentum and the beam-spot location. The coefficients
of F , chosen to maximize the separation between signal
and continuum background, are determined with samples

of simulated signal and continuum events, and validated
using off-resonance data. We denote two regions: the
fit region, defined as 5:20<mES < 5:29 GeV=c2 and
�5<F < 5, and the signal region, defined as 5:27<
mES < 5:29 GeV=c2 and 0<F < 5.
To reduce the importance of the continuum background

in the final sample we divide the events according to their
flavor-tagging category [11]. We define the following
exclusive tagging categories:
(i) lepton category, events contain at least one lepton in

the decay of the other B meson;
(ii) kaon category, events contain at least one kaon in

the decay of the other Bmeson, which do not belong
to the first category;

(iii) other category contains all the events not included
in the two previous categories.

The first two categories are expected to be less contami-
nated by continuum background. We fit all three categories
simultaneously. Studies of simulated events show that
using the tagging categories reduces the statistical uncer-
tainty on the measured branching fraction for the K��
mode by 5%, but leads to little gain for the other modes
(which are less statistically significant themselves). Hence,
we use tagging information only for the K�� channel.
The B �B background is divided into two components:

nonpeaking (combinatorial) and peaking. The latter can
occur when one or several particles of a background chan-
nel are replaced by a low-momentum charged �þ and the
resulting candidate still contributes to the signal region.
The largest contributions to the B �B peaking background
for the Bþ ! DþK0 channel arise from the following
decays: �B0 ! Dþ�� with Dþ decaying into signal chan-
nels, B0 ! �D0K0 and B0 ! �D�0K0. To further reduce the
contribution from the �B0 ! Dþ�� background, the vari-
able j cos�K0

S
j has been introduced, where �K0

S
is the K0

S

helicity angle, i.e., the angle between one of the two pions

TABLE II. Reconstruction efficiencies and expected numbers of events in the fit and signal region assuming BðBþ ! DþK0Þ ¼
BðBþ ! DþK�0Þ ¼ 5� 10�6.

Bþ ! DþK0 Bþ ! DþK�0
region K�� K���0 K0

S� K0
S��

0 K�� K0
S�

Signal efficiency fit 18.4% 5.2% 21.3% 6.2% 10.6% 10.5%

signal 12.4% 3.8% 14.7% 4.9% 7.6% 7.4%

Signal fit 14:1� 0:2 2:5� 0:1 1:81� 0:03 2:4� 0:1 15:8� 0:3 1:70� 0:04
signal 9:6� 0:2 1:8� 0:1 1:21� 0:03 1:9� 0:1 11:3� 0:3 1:20� 0:03

Combinatorial B �B background fit 67� 4 157� 4 12� 2 36� 3 400� 10 42:8� 4
signal 7� 2 20� 2 3� 1 8� 2 30� 2 6:4� 1

Peaking B �B background fit 2:0� 0:2 3:3� 0:4 1:1� 0:2 1:8� 0:5 26� 2 2:4� 0:3
signal 0:3� 0:1 1:0� 0:2 0:3� 0:1 0:6� 0:2 5:4� 1 0:7� 0:2

Continuum background fit 2840� 40 4860� 50 640� 20 1600� 30 6100� 50 630� 20
signal 63� 6 104� 8 12� 3 45� 5 129� 8 13� 3
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from the K0
S and the Dþ in the K0

S rest frame. We reject

events with j cos�K0
S
j greater than 0.8 for the K�� mode

and 0.9 for all other modes. Based on MC studies, we
expect no more than 1 B �B peaking background event per
mode in the signal region, after applying all selection
criteria (see Table II). A similar study is performed for
the Bþ ! DþK�0 decay modes. The main peaking back-
grounds arise from �B0 ! Dþ��, �B0 ! DþK��, and �B0 !
Dþa�1 . In all cases, the Dþ decays into the signal decay
modes. The number of B �B peaking background events
expected in the signal region for the DK� mode are shown
in Table II.

Charmless B decays may also contribute to the peaking
background. These decays can produce � and K mesons
with characteristics similar to those of signal events
without forming a real D meson. The charmless back-
ground is evaluated from data using the Dþ sidebands:
events are required to satisfy the criteria 1:774<MD <
1:840 GeV=c2 or 1:900<MD < 1:954 GeV=c2. We
obtain �1:7� 1:0 events for DK decays and �0:7� 2:1
events forDK� decays. We estimate the charmless peaking
background contribution to be negligible and assign a
systematic uncertainty based on this assumption.

The overall reconstruction and selection efficiencies for
signal events, as well as the numbers of expected events for
each background category, are given in Table II.

IV. FIT PROCEDURE

The signal and background yields are extracted by max-
imizing the unbinned extended likelihood

L ¼ ðe�N0
=N!Þ � N0N �YN

j¼1

fðxjj�;N0Þ: (1)

Here xj ¼ fmES;F g, � is a set of parameters, N is the

number of events in the selected sample, N0 is the expec-
tation value for the total number of events, and

fðxj�;N0Þ ¼
Nsigfsigðxj�Þ þP

i
NBi

fBi
ðxj�Þ

N0 ; (2)

with fsigðxj�Þ and fBi
ðxj�Þ the probability density func-

tions (PDFs) for the hypothesis that the event is a signal
or a background event, respectively. The Bi are the differ-
ent background categories used in the fit: continuum
background, combinatorial B �B background, and peaking
B �B background. Nsig is the number of signal events,

and NBi
is the number of events for each background

species Bi.
The individual probability density functions are defined

by the product of the one-dimensional distributions of mES

and F . Absence of the correlations between these distri-
butions is checked using the MC samples. The signal mES

distribution is modeled with a Gaussian function.
The continuum and nonpeaking B �B background mES

distributions are modeled with two different threshold
ARGUS functions defined [12] as follows:

AðxÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
x

x0

�
2

s
� ecð1�ðx=x0Þ2Þ; (3)

where x0 represents the maximum allowed value for the
variable x and c accounts for the shape of the distribution.
The mES distribution of the peaking B �B background is
modeled with a Crystal Ball (CB) function [13]. The CB
function is a Gaussian modified to include a power-law
tail on the low side of the peak. The F distributions are
modeled as the sum of two asymmetric Gaussians for
signal and continuum background events, and with a
Gaussian for the combinatorial B �B background. For the
peaking B �B background we use a Gaussian distribution for
theDK mode. For theDK� mode, an asymmetric Gaussian
is used for the K�� mode and a sum of two asymmetric
Gaussians for the K0

S� mode. The shape parameters of the

threshold function for continuum background are deter-
mined from data. All other PDF parameters are derived
from the simulated events.
In the fits we fix the numbers of peaking B �B back-

ground events, which are estimated from the Particle
Data Group (PDG) branching fractions [9] and MC effi-
ciency evaluations.
The number of signal events determined by the fit (Nsig)

is used to calculate the branching fraction as

B ðBþ ! DþK0Þ ¼ Nsig

NBþ � 	sig �
2

BD �BK0
S

;

TABLE III. Expected errors on the branching fractions from
toy MC studies depending on the branching fractions generated.
The combined errors are obtained as results of likelihood com-
bination per each toy (see text for details). All the numbers are
given in units of 10�6.

B ¼ 5 B ¼ 0
Decay mode Mean error [95% range]Mean error [95% range]

Bþ ! DþK0

K�� þ3:3 [2.7, 4.0] þ2:8 [2.2, 3.6]

�3:0 [2.2, 3.6] �2:4 [1.6, 3.2]

K���0 þ20 [14, 25] þ19 [13, 24]

�17 [10, 23] �17 [9.4, 22]

K0
S� þ12 [7.3, 16] þ11 [7.1, 16]

�8 [4.6, 14] �8 [4.5, 14]

K0
S��

0 þ14 [8.9, 18] þ13 [8.3, 17]

�12 [6.2, 16] �11 [5.6, 15]

combined �2:9 [2.1, 3.6] �2:5 [1.5, 3.2]

Bþ ! DþK�0
K�� þ3:5 [2.5, 4.0] þ3:3 [2.5, 4.0]

�3:2 [1.8, 3.6] �2:8 [1.6, 3.8]

K0
S� þ15 [9.8, 19] þ14 [7.9, 17]

�11 [5.8, 16] �7:7 [3.8, 14]

combined �3:3 [2.1, 4.2] �3:0 [1.8, 3.9]
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where NBþ is the total number of charged B mesons in the
data sample (equal to the total number of all B �B pairs
produced, since we assume equal production of BþB�
and B0 �B0), BD and BK0

S
are the branching fraction for

each D meson decay channel and for K0
S ! �þ�� respec-

tively [9], and 	sig is the reconstruction efficiency for each

D decay channel evaluated from MC events. The expres-
sion for BðBþ ! DþK�0Þ is obtained replacing BK0

S
=2

with the branching fraction of K�0 ! Kþ��, BK�0 . The
likelihoods for individual channels are combined to
derive average branching fractions for Bþ ! DþK0 and
Bþ ! DþK�0.
The fit procedure is validated using an ensemble of

simulated experiments (toy MC studies) with all yields
generated according to Poisson distributions. The nonfloat-
ing parameters of the fits as well as the shapes of the
background threshold functions are fixed to the values
obtained from the MC samples. We define the pull for a
variable x as the difference between the fitted xfit and the
mean generated value hxgeni, divided by the error �err,

xpull ¼ ðxfit � hxgeniÞ=�err. We use the negative errors for

fitted values that are smaller than the generated ones and
the positive errors in the opposite case. The procedure
gives Gaussian-like pull distributions for each channel
and thus no biases of the fit model were found. In

TABLE IV. Branching fraction fit results in units of 10�6, with
statistical uncertainties. Ni are the yields of the fitted species, and
B represents the calculated branching fraction for each channel.

Decay mode Nsig NB �B Ncont B

Bþ ! DþK0

K�� �11:9þ6:7
�5:6 70� 27 2690� 57 �4:2þ2:4�2:0

K���0 10þ10
�9 111� 51 6516� 94 20þ20

�17

K0
S� 0:6þ5:3

�4:5 20� 14 381� 23 0:7þ15
�13

K0
S��

0 �6:7þ4:5
�2:8 36� 22 1270� 41 �14þ9:2

�6:2

combined � � � � � � � � � �3:4þ2:2
�1:8

Bþ ! DþK�0
K�� �15:6þ8:7

�7:1 463� 63 6338� 98 �5:0þ2:9
�2:1

K0
S� �11:4þ3:5

�2:4 35� 15 547� 27 �33þ10:2
�7:0

combined � � � � � � � � � �5:3þ2:3
�2:0
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FIG. 2 (color online). Projections of the 2D likelihood function onto the mES (top two rows) and F (bottom two rows) axes for
(a) K��, (b) K���0, (c) K0

S� and (d) K0
S��

0 for the Bþ ! DþK0
S mode, and (e) K�� and (f) K0

S� for the Bþ ! DþK�0 mode. The

data are indicated with black dots and error bars and the (blue) solid curve is the projection of the fit.
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Table III we show resulting expectations of asymmetric
errors for each channel. The 95% probability ranges for
these errors obtained from toy MC studies are also shown.
Tests of the fit procedure performed on the full MC
samples give values for the yields compatible with the
generated ones.

The main results of the fit to the data are reported in
Table IV, which gives the values of the fitted param-
eters for each D channel and for the combination of fits.
The background yields are close to the expectations and the
errors obtained on the branching fractions are in good
agreement with the values reported in Table III. The lead-
ing contribution (as expected) is obtained from the
K�� mode. Likelihood fit projections of the mES and F
distributions are shown in Fig. 2. In Fig. 3 we also show
for illustrative purposes the fit projection for mES,
after requiring F > 0, to visually enhance any possible
signal.

V. SYSTEMATIC ERRORS

We consider various sources of systematic error. One of
the largest contributions comes from the uncertainties on
the PDF parameterizations. To evaluate the contributions
related to the mES and F PDFs, we repeat the fit varying
the MC-obtained PDF parameters within their statistical
errors, taking into account correlations among the parame-
ters (labeled as ‘‘PDF—MC’’ in the final list of systematic
error sources). Differences between the data and MC
(labeled as ‘‘Data—MC PDF shapes’’ in the final list of
systematic error sources) for the shapes of mES and F
distributions are studied for signal components using data

control samples. �B0 ! Dþ�� and �B0 ! Dþ�� selected
events are used to obtain themES andF parameters for the
DK and DK� modes, respectively. The analysis strategy is
the same as for the signal events except for specific criteria
to select K0

S or K�0. For the continuum background, we

estimate this uncertainty by repeating the fit using the PDF
parameters obtained from off-resonance data instead of
those from continuumMC. Finally, for the B �B background,
we estimate this uncertainty by leaving the parameters that
describe the B �B combinatorial background as free varia-
bles in the fit (separately for mES and F ). The systematic
uncertainty is defined as the difference in the branching
fraction results from the nominal and alternative fits
summed in quadrature.
The systematic errors on the signal reconstruction effi-

ciency include the uncertainty due to limited MC statistics,
uncertainties on possible differences between data and
MC in tracking efficiency, K0

S and �0 reconstruction, and

charged-kaon identification. In addition, there are addi-
tional contributions to these uncertainties originating
from the disagreement between data and MC distributions
for all the variables used in the selection. These are esti-
mated by comparing the data and simulation performance
in control samples. To evaluate the uncertainties arising
from peaking background contributions, we repeat the fit
by varying the numbers of these events within their statis-
tical errors. The uncertainties on the branching fractions of
the subdecay modes are also taken into account. The
uncertainty on NB �B (1.1%) has a negligible effect on the
total error.
The systematic uncertainties on the branching fractions

are summarized in Table V. All the uncertainties are
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FIG. 3 (color online). From top left to bottom right: mES projection for (a) K��, (b) K���0, (c) K0
S�, and (d) K0

S��
0 for the

Bþ ! DþK0
S mode and (e) K�� and (f) K0

S� for the Bþ ! DþK�0 mode. The data are indicated with black dots and error bars and

the different fit components are shown: signal (black solid curve), combinatorial B �B (green dotted), continuum (magenta dot-dashed)
and B �B peaking background (red dotted) and the blue solid curve is the projection of the fit. We require F > 0 to visually enhance the
signal component. Such a cut has an approximate efficiency of 70% for signal, while it rejects more than 80% of the continuum
background.
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considered to be uncorrelated and are treated separately for
each channel.

VI. RESULTS FOR BRANCHING FRACTIONS

The final likelihood for each decay mode is obtained by
convolving the likelihoods for the measured branching
fractions with Gaussian functions of width equal to the
systematic uncertainty.

The final results including systematic uncertainties are

B ðBþ ! DþK0Þ ¼ ð�3:8þ2:5
�2:4Þ � 10�6;

BðBþ ! DþK�0Þ ¼ ð�5:3� 2:7Þ � 10�6:

Since the measurements for the branching fractions are
not statistically significant, following a Bayesian approach
and assuming a flat prior distribution for the branching
fractions, we integrate over the positive portion of the
likelihood function to obtain the following upper limits at
90% probability:

B ðBþ ! DþK0Þ< 2:9� 10�6;

BðBþ ! DþK�0Þ< 3:0� 10�6:

The Bþ ! DþK0 result represents an improvement over,
and supersedes, our previous result [7], while the Bþ !
DþK�0 result is the first for this channel.

VII. CONCLUSIONS

In summary, we have presented a search for the
rare decays Bþ ! DþK0 and Bþ ! DþK�0, which are

predicted to proceed through annihilation or rescattering
amplitudes. We do not observe any significant signal and
we set 90% probability upper limits on their branching
fractions.

ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of
our PEP-II colleagues in achieving the excellent luminos-
ity and machine conditions that have made this work
possible. The success of this project also relies critically
on the expertise and dedication of the computing organ-
izations that support BABAR. The collaborating institutions
wish to thank SLAC for its support and the kind hospitality
extended to them. This work is supported by the US
Department of Energy and National Science Foundation,
the Natural Sciences and Engineering Research Council
(Canada), the Commissariat à l’Energie Atomique and
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TABLE V. Systematic errors on branching fractions for Bþ ! DþK0 and Bþ ! DþK�0 decay
channels. All quantities are given in units of 10�6.

Bþ ! DþK0 Bþ ! DþK�0

K�� K���0 K0
S� K0

S��
0 K�� K0

S�
PDF—MC þ0:8

�0:8
þ6:2
�3:4

þ5:3
�4:4

þ7:3
�8:8

þ0:6
�0:9

þ3:1
�3:6

Data-MC PDF shapes:

Continuum background 0.2 0.4 1.4 0.5 0.1 1.7

B �B background 0.7 1.6 2.5 5.0 1.0 4.4

Signal <0:05 9.2 5.6 0.9 0.9 3.1

Efficiency error:

Reconstruction efficiency (MC) 0.1 0.6 <0:05 0.9 0.1 0.5

Data-MC 0.2 0.8 <0:05 0.5 0.2 0.3

Peaking background <0:05 0.5 0.2 0.2 <0:05 0.1

B errors 0.3 0.3 <0:05 0.4 <0:05 0.1

Combined þ1:1
�1:3

þ11:3
�11:8

þ8:2
�9:3

þ9:0
�12:5

þ1:5
�1:8

þ6:4
�7:4
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