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Spatiotemporal Stochastic Resonance in the Swift-Hohenberg Equation
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We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation.
This phenomenon emerges when a control parameter varies periodically in time around the bifurcation
point. By using general scaling arguments and by taking into account the common features occurring
in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming
systems. [S0031-9007(97)02924-4]
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In recent years the phenomenon of stochastic resona
(SR) [1–9] has been the subject of intense activity d
to the great number of applications in different fields
science. The main result of SR, which in some wa
could be considered counterintuitive, shows a construct
role of noise, since the response of a system to a perio
signal may be enhanced with the addition of an optimiz
amount of noise. In this sense, the presence of SR
well characterized by the appearance of a maximum
the output signal-to-noise ratio (SNR) at a certain nonze
noise level.

In spite of the fact that spatial heterogeneity is on
of the most common features of systems away fro
equilibrium, up to now there has not been a comple
understanding about the phenomenon of SR in spatia
extended systems. In this context, only a few rece
results are available from the literature [10–14].
remarkable feature of spatial systems is their possibil
to develop patterns that can form via bifurcations, f
instance, from the spatially uniform state, as a cont
parameter is varied [15,16]. In this situation, stochas
perturbations play a crucial role in the initial stages
pattern formation to the extent that the system may disp
macroscopic manifestations of thermal noise.

In this Letter we will show that temporal periodic vari
ations of the control parameter in the presence of no
can lead to spatiotemporal stochastic resonance (ST
when the system is close to a bifurcation point. To b
explicit, we will treat the Swift-Hohenberg (SH) equa
tion [15,17,18] in detail, which models Rayleigh-Bénar
convection near the convective instability. This examp
which constitutes the paradigm of pattern formation, e
hibits many features common to systems around a bifur
tion point. In this regard, and for the sake of generality, w
will outline applications of our results to other situations

In the vicinity of the instability point, Rayleigh-Bénard
convection can be described by means of the stocha
SH equation, which in dimensionless spatial units is giv
by

≠c

≠t
­ hstdc 2 qs1 1 =2d2c 2 gc3 1 js$r , td . (1)
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Here the control parameterhstd ­ 2k 1 a sinsv0td,
with k, a, and v0 constants, reflects the presence
of an external periodic forcing, due, for instance, to
variations of the temperature difference between th
plates of the convective cell [15,18,19]. Moreover,g
and q are parameters which depend on the characteri
tics of the system, andjs$r , td is Gaussian white noise
with zero mean and second momentkjs$r , tdjs $r 0, t0dl ­
2Dds$r 2 $r 0ddst 2 t0d, defining the noise levelD.

In order to describe the temporal evolution of the
system, we will consider the convective heat flux, which
in this model is given by

Jstd ­ c
Z

cs$r , td2d $r , (2)

wherec is a constant depending on the physical charac
teristics of the system. This quantity constitutes the orde
parameter of the transition from the homogeneous sta
to the state where spatial structures develop. In regard
to spatial order, it can be revealed by the time-average
structure factor

Sskd ­ kĉkĉ2klt , (3)
where ĉk is the spatial Fourier transform of the fieldc
and k lt indicates time and noise average. A sharp pea
in this quantity makes the presence of an ordered spati
structure manifest.

Since we are interested in the effects of noise, we
will first analyze how a small amount of noise affects
our system. In the absence of noise, irrespective o
the initial condition, the fieldc goes to zero at large
times. For a sufficiently low noise level, and far from the
possible initial transient,c is small and the nonlinearity
in Eq. (1) does not play any role. In this situation,
by using dimensional analysis it is easy to see how
the characteristic quantities scale with noise. We not
that, when the linearized equation is considered, an
dimensionless parameter cannot depend on the noise lev
because onlyD involves the dimensions of the fieldc.
Thusc scales with the noise asc ~

p
D. The SNR has

dimensions of the inverse of time [9], then forJstd it is
given by

SNR ­ v0f1sgd , (4)
© 1997 The American Physical Society
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wheref1 is a dimensionless function which depends
the set of dimensionless parameterskyv0, ayv0, and
qyv0, denoted byg. We then conclude that the SNR
does not depend on the noise level. However, both
signal and output noise scale with the noise asD2. This
fact indicates that the output signal increases when no
increases. Additionally, the structure factor also follow
a scaling law:Sskd ~ D.

Since, for low noise level, the SNR does not depe
on D, the lowest order correction inD to the constant
value of the SNR comes from the nonlinear term.
elucidate its form, it is convenient to rewrite Eq. (1)
the following way:

≠c

≠t
­ f2sk 1 gc2d 1 a sinsv0td 2 qs1 1 =2d2gc

1 js$r, td . (5)

Because of the fact that for low noise levelc2 ~ D,
in first approximationk 1 gc2 can be interpreted as
an effective parameter̃k ­ k 1 gv

21
0 f2sgdD, with f2

being a positive dimensionless function. Consequen
Eq. (5) has the same form as the linearized version
which the scaling law for the SNR [Eq. (4)] has bee
derived. By replacingk by k̃ in Eq. (4) and expanding
aroundk, we then obtain

SNR ø v0f1sgd 1
≠f1

≠k
gv21

0 f2sgdD (6)

which includes the lowest order correction inD to
the SNR due to the nonlinear term. An importa
consequence of this result is the fact that the knowled
of the dependence of the SNR on the parameterk, for
the linearized equation, enables us to predict the prese
of SR when the nonlinear term is considered. Iff1 is
an increasing function ofk then≠f1y≠k is positive, and
consequently the SNR is an increasing function ofD for
low noise level. Since for highD the SNR decreases, on
then concludes that it exhibits a maximum, thus indicat
the presence of SR.

To verify these results we have integrated the previo
equations by discretizing them on a mesh [20] and th
by using a standard method for stochastic differen
equations [21]. In all figures the error bars are sma
than the symbol size. For the sake of simplicity, w
will first consider the one-dimensional case, althou
the previous scaling laws hold independently on t
dimensionality of the system. In Fig. 1(a) we hav
depicted the SNR as a function ofk for particular values
of the remaining parameters. One can see that
quantity has a maximum atkmax. As a consequence
in view of Eq. (6) the SNR may increasesk , kmaxd
or decreasesk . kmaxd with D. In Figs. 1(b) and 1(c)
we have represented the SNR as a function ofD for
k , kmax and k . kmax, respectively. These figure
corroborate the dependence of the SNR on the noise l
and on the parameterg in Eq. (6). This scaling argumen
is robust upon varying the nonlinear term. For examp
n
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FIG. 1. (a) SNR from the linearized SH equation as
function of k for a ­ 1, q ­ 1, v0y2p ­ 0.195, andg ­ 1.
(b) DSNR ­ SNR 2 SNRsD ­ 0d from Eq. (1) as a function
of D for k ­ 0.3, q ­ 1, v0y2p ­ 0.195, and g ­ 0.5
(circles), g ­ 1 (squares), andg ­ 2 (triangles). The points
have been fitted by a power law, obtaining an exponent equ
to 0.99 for the three values ofg. (c) DSNR as in case (b) but
for k ­ 3. In this case, the exponents of the power law ar
0.99, 1.00, and 1.02. (d)DSNR from Eq. (1) when replacing
the nonlinear term bygcjcj, as a function ofD for k ­ 0.3,
q ­ 1, v0y2p ­ 0.195, and g ­ 1. In this case, the scaling
exponent is 0.50. In all figures the size of the system is 32.

if one replaces the termgc3 by gjcjc one obtains a SNR
that increases as

p
D instead of asD. This result is shown

in Fig. 1(d). In this sense, other nonlinearities have als
been successfully tested.
2887
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FIG. 2. (a) SNR and (b)Q as functions of the noise levelD
for a ­ 1, k ­ 0.1, g ­ 1, q ­ 1, andv0y2p ­ 0.024. The
system size is 32.

The previous analysis has shown the possibility fo
the appearance of SR in the SH equation. In Fig. 2(
we have plotted the SNR forJstd as a function ofD,
observing a maximum at a nonzero noise level. It
worth pointing out that an optimized amount of nois
increases the SNR up to 20 dB. As far as the spat
effects are concerned,Sskd exhibits a pronounced peak
at k ø 1. The sharpness of this peak can be analyze
by considering its height over its variance, which wil
be denoted byQ. This quantity has also a maximum
[Fig. 2(b)] which is due to the fact that for low noise
level Q scales withD in the same way asSskd, whereas
for high noise level the noise destroys the spatial structu
An example of the spatiotemporal evolution of the syste
is depicted in Fig. 3. For sufficiently low noise level,
the system exhibits neither spatial nor temporal structure
For intermediate values of the noise, the system sho
a spatial pattern and a coherent response to the perio
variations ofhstd. These patterns are destroyed for highe
values ofD. In this case, noise induces periodic spatia
patterns and ordered temporal behavior, thus playing
constructive role in both space and time.

The characteristics observed for the one-dimension
SH equation also hold in two dimensions. To illustrat
the effect of noise in the two-dimensional case, we hav
plotted three patterns for different values ofD in Fig. 4.
It becomes clear that there exists an optimum noise lev
in order to observe the typical convective rolls.

Our results can also be applied to a great variety
systems in the vicinity of a bifurcation point. We note
in this context that the form of the scaling laws doe
2888
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FIG. 3. Spatiotemporal evolution of the one-dimensional SH
equation with periodic boundary conidtions for the noise
levels (a) D ­ 0.5 3 10215, (b) D ­ 0.5 3 1024, (c) D ­
0.5 3 1022, and (d) D ­ 0.5. The values of the remaining
parameters area ­ 1, k ­ 0.1, g ­ 1, q ­ 1, andv0y2p ­
0.024. The system size is 32. We have also indicated the tim
evolution of the control parameterhstd. For each pattern, black
and white colors stand for minimum and maximum values
respectively.

not depend on the way in which the nabla operato
enters the linearized equation. A remarkable example
which enables one to predict the presence of STSR b
only considering scaling arguments, is the generalize
Ginzburg-Landau equation [15,22]. In addition to the
cubic term discussed previously, this equation presents

FIG. 4. Representation of the fieldc for the two-dimensional
SH equation with periodic boundary conditions. The noise
level is (a) D ­ 0.25 3 10210, (b) D ­ 0.25 3 1021, and
(c) D ­ 2.5. The remaining values of the parameters in
all cases area ­ 1, k ­ 0.1, g ­ 1, q ­ 1, and v0y2p ­
0.012, and the system size is50 3 50. Moreover, the figures
correspond to the same time, for whichhstd ­ 0.82.
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quintic one responsible for saturation effects. Since in th
situation the coefficient of the cubic term may be positiv
or negative, there will be a case in which the SNR is a
increasing function of the noise level, giving rise to th
appearance of STSR.

In summary, for the first time, we have shown the pre
ence of STSR arising when the system undergoes a
furcation, a usual mechanism for pattern formation. O
aspect to be emphasized is the fact that, in spatial n
linear systems, the presence of noise in combination w
a periodic signal may give rise to ordered spatiotempo
structures which are not present in the absence of no
We have also explicitly shown the presence of STSR
the SH equation, due to its great importance as a mode
pattern formation. However, our results can be straigh
forwardly applied to a wide variety of systems, provide
they exhibit the common characteristics of this bifurca
tion. These findings therefore open up new perspectiv
about the general consideration of the phenomenon of
to the field of pattern-forming systems.
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