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Spatiotemporal Stochastic Resonance in the Swift-Hohenberg Equation
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We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation.
This phenomenon emerges when a control parameter varies periodically in time around the bifurcation
point. By using general scaling arguments and by taking into account the common features occurring
in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming
systems. [S0031-9007(97)02924-4]

PACS numbers: 05.40.+j, 05.45.+b, 47.27.Te, 47.54.+r

In recent years the phenomenon of stochastic resonanétere the control parameteh(r) = —k + a Sin(wot),
(SR) [1-9] has been the subject of intense activity duavith «, «, and wo constants, reflects the presence
to the great number of applications in different fields ofof an external periodic forcing, due, for instance, to
science. The main result of SR, which in some waysvariations of the temperature difference between the
could be considered counterintuitive, shows a constructivelates of the convective cell [15,18,19]. Moreovaer,
role of noise, since the response of a system to a periodend ¢ are parameters which depend on the characteris-
signal may be enhanced with the addition of an optimizedics of the system, and(r,7) is Gaussian white noise
amount of noise. In this sense, the presence of SR iwith zero mean and second momégi7,1)&é(7,t')) =
well characterized by the appearance of a maximum iRDS(F — r')8(r — t'), defining the noise leveD.
the output signal-to-noise ratio (SNR) at a certain nonzero In order to describe the temporal evolution of the
noise level. system, we will consider the convective heat flux, which

In spite of the fact that spatial heterogeneity is onen this model is given by
of the most common features of systems away from .
equilibrium, up to now there has not been a complete J(t) =c f y(r,0)dr, ()
understanding about the phenomenon of SR in spatiall
extended systems. In this context, only a few recen
results are available from the literature [10-14]. A
remarkable feature of spatial systems is their possibilit
to develop patterns that can form via bifurcations, for
instance, from the spatially uniform state, as a contro
parameter is varied [15,16]. In this situation, stochastic

herec is a constant depending on the physical charac-
eristics of the system. This quantity constitutes the order
arameter of the transition from the homogeneous state
o the state where spatial structures develop. In regards
o spatial order, it can be revealed by the time-averaged
tructure factor

perturbations play a crucial role in the initial stages of N S(k_) - <¢k_¢—k>f’ .(3)
pattern formation to the extent that the system may display’here # is the spatial Fourier transform of the field
macroscopic manifestations of thermal noise. and (), indicates time and noise average. A sharp peak

In this Letter we will show that temporal periodic vari- in this quantity makes the presence of an ordered spatial
ations of the control parameter in the presence of noisétructure manifest. _ _
can lead to spatiotemporal stochastic resonance (STSR)Since we are interested in the effects of noise, we
when the system is close to a bifurcation point. To beWill first analyze how a small amount of noise affects
explicit, we will treat the Swift-Hohenberg (SH) equa- OUr system. In the absence of noise, irrespective of
tion [15,17,18] in detail, which models Rayleigh-Bénardthe initial condition, the field)) goes to zero at large
convection near the convective instability. This examplefimes. For a sufficiently low noise level, and far from the
which constitutes the paradigm of pattern formation, expossmle initial transienty is small and the n'onllrjear'lty
hibits many features common to systems around a bifurcd? EQ. (1) does not play any role. In this situation,
tion point. In this regard, and for the sake of generality, wely Using dimensional analysis it is easy to see how
will outline applications of our results to other situations. the characteristic quantities scale with noise. We note

In the vicinity of the instability point, Rayleigh-Bénard that, when the linearized equation is considered, any
convection can be described by means of the stochastfimensionless parameter cannot depend on the noise level
SH equation, which in dimensionless spatial units is giverPecause onhD involves the dimensions of the field.

by Thus ¢ scales with the noise ag « +/D. The SNR has
dimensions of the inverse of time [9], then fé(:) it is
oYy given by

W _ B 22 03 2
” h(t)y — q(1 + V) — g + £(Fr). (1) SNR = wofi(y), (4)
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where f, is a dimensionless function which depends on Or———— 7 ¢
the set of dimensionless paramet&rgw,, a/wy, and
q/wq, denoted byy. We then conclude that the SNR 30 - 1

does not depend on the noise level. However, both the
signal and output noise scale with the noiseDds This 20 L i
fact indicates that the output signal increases when noise b
increases. Additionally, the structure factor also follows | ]
a scaling law:S(k) « D.

Since, for low noise level, the SNR does not depend
on D, the lowest order correction i to the constant 0 ! : : .
value of the SNR comes from the nonlinear term. To K
elucidate its form, it is convenient to rewrite Eq. (1) in 3 , : ,
the following way: I | b

W _ [—(k + gy?) + asin(wot) — q(1 + V) ]y

ot
+ &(7,1). (5)

Because of the fact that for low noise levgf « D,

in first approximationx + g? can be interpreted as
an effective parametek = k + gwg ' f2(y)D, with f»
being a positive dimensionless function. Consequently,
Eqg. (5) has the same form as the linearized version for
which the scaling law for the SNR [Eq. (4)] has been
derived. By replacingc by & in Eq. (4) and expanding
aroundxk, we then obtain

SNR

10 :

ASNR

SNR = w0fi(y) + L gag oD (6)

which includes the lowest order correction b to
the SNR due to the nonlinear term. An important
consequence of this result is the fact that the knowledge
of the dependence of the SNR on the parametefor
the linearized equation, enables us to predict the presence
of SR when the nonlinear term is considered. fif is
an increasing function ok thendf,/d« is positive, and
consequently the SNR is an increasing functionDofor
low noise level. Since for high the SNR decreases, one
then concludes that it exhibits a maximum, thus indicating
the presence of SR.

To verify these results we have integrated the previous

ASNR [x10~9]

A

'
[}

equations by discretizing them on a mesh [20] and then o o -

by using a standard method for stochastic differential 'p [><210_5]3
equations [21]. In all figures the error bars are smalleg 5 ¢
than the symbol size. For the sake of simplicity, Wefunction of x for @ = 1, ¢ = 1, wp/27 = 0.195, andg = 1.
will first consider the one-dimensional case, although(b) ASNR= SNR — SNRD = 0) from Eg. (1) as a function
the previous scaling laws hold independently on thedf D for « =03, g =1, wo/2m =0.195, and ¢ = 0.5

(&8 SNR from the linearized SH equation as a

; ; ; ; (circles), g = 1 (squares), ang = 2 (triangles). The points
dlmgnSIOHaIIty of the Syste_m. In Fig. .1(a) we havehave been fitted by a power law, obtaining an exponent equal
depicted the SNR as a function effor particular values 5 0.99 for the three values @f (c) ASNR as in case (b) but

of the remaining parameters. One can see that thifor « = 3. In this case, the exponents of the power law are
quantity has a maximum at,... As a consequence, 0.99, 1.00, and 1.02. (d)SNR from Eq. (1) when replacing
in view of Eq. (6) the SNR may increasé < rmax) the nonlinear term by ||, as a function ofD for x = 0.3,

q > ith D. In Ei 1(b d1 qg =1, wy/27m = 0.195, andg = 1. In this case, the scaling
or decreaséx > Kmax) Wi . In Figs. 1( ) and 1(c) exponent is 0.50. In all figures the size of the system is 32.
we have represented the SNR as a functionDoffor
Kk < kmax and k > kmax, respectively. These figures if one replaces the tergy? by g|#| one obtains a SNR
corroborate the dependence of the SNR on the noise levéiat increases agD instead of ag. This result is shown
and on the parametgrin Eq. (6). This scaling argument in Fig. 1(d). In this sense, other nonlinearities have also
is robust upon varying the nonlinear term. For examplebeen successfully tested.
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FIG. 2. (a) SNR and (bp as functions of the noise levél
fora =1,k =0.1,g =1,9 = 1, andwy/27 = 0.024. The
system size is 32.

The previous analysis has shown the possibility for h(t) r
the appearance of SR in the SH equation. In Fig. 2(a)
we have plotted the SNR faf(r) as a function ofD, FIG. 3. Spatiotemporal evolution of the one-dimensional SH
observing a maximum at a nonzero noise level. It iﬁeq“?t'on ‘l’)‘"ti Opsergdllg_gou%dag _cc(;)n;dgo?g_“for thg hoise
worth pointing out that an optimized amount of noisgeoeg-/exS 1(5‘—)2' and (d)D = 0j5_( )The_valLles of the (rce)mai,;ng
increases the SNR up to 20 dB. As far as the spatigbarameters are = 1, k = 0.1, g = 1, ¢ = 1, and w/27 =
effects are concerned;(k) exhibits a pronounced peak 0.024. The system size is 32. We have also indicated the time
at k =~ 1. The sharpness of this peak can be ana|yze§volution of the control parametéfz). For each pattern, black
by considering its height over its variance, which will f‘gg ;’:’:tt}cgl colors stand for minimum and maximum values,
be denoted byQ. This quantity has also a maximum P y-

[Fig. 2(b)] which is due to the fact that for low noise . .

level Q scales withD in the same way as(k), whereas 1Ot depend on the way in which the nabla operator
for high noise level the noise destroys the spatial structur&Nters the linearized equation. A remarkable example,
An example of the spatiotemporal evolution of the systenWhICh ena_ble§ one to predict the presence of STSR by
is depicted in Fig. 3. For sufficiently low noise level, or_1|y considering scallng arguments, Is the_ _generahzed
the system exhibits neither spatial nor temporal structure&inZburg-Landau equation [15,22]. In addition to the
For intermediate values of the noise, the system show%“b'c term discussed previously, this equation presents a
a spatial pattern and a coherent response to the periodic
variations ofi(z). These patterns are destroyed for higher
values ofD. In this case, noise induces periodic spatial
patterns and ordered temporal behavior, thus playing a
constructive role in both space and time.

The characteristics observed for the one-dimensional
SH equation also hold in two dimensions. To illustrate
the effect of noise in the two-dimensional case, we have :
plotted three patterns for different valuesBfin Fig. 4.  FIG. 4. Representation of the field for the two-dimensional
It becomes clear that there exists an optimum noise levedH equation with periodic boundary conditions. The noise
in order to observe the typical convective rolls. level is (a) D = 0.25 x 101, (b) D = 025 X 10!, and

. . c) D =2.5. The remaining values of the parameters in
Our results can also be applied to a great variety ob .ises arey = L k=01,g=1, =1, and wy/2m =

systems in the vicinity of a bifurcation point. We note (012, and the system size & X 50. Moreover, the figures
in this context that the form of the scaling laws doescorrespond to the same time, for whigty) = 0.82.
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