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Results of a high-statistics, multivolume lattice QCD exploration of the deuteron, the dineutron, the

H-dibaryon, and the ���� system at a pion mass of m� � 390 MeV are presented. Calculations were

performed with an anisotropic nf ¼ 2þ 1 clover discretization in four lattice volumes of spatial extent

L� 2:0, 2.5, 2.9, and 3.9 fm, with a lattice spacing of bs � 0:123 fm in the spatial direction and

bt � bs=3:5 in the time direction. Using the results obtained in the largest two volumes, the ���� is

found to be bound by B����0 ¼ 14:0ð1:4Þð6:7Þ MeV, consistent with expectations based upon phenome-

nological models and low-energy effective field theories constrained by nucleon-nucleon and hyperon-

nucleon scattering data at the physical light-quark masses. Further, we find that the deuteron and the

dineutron have binding energies of Bd ¼ 11ð05Þð12Þ MeV and Bnn ¼ 7:1ð5:2Þð7:3Þ MeV, respectively.

With an increased number of measurements and a refined analysis, the binding energy of the H-dibaryon is

BH ¼ 13:2ð1:8Þð4:0Þ MeV at this pion mass, updating our previous result.

DOI: 10.1103/PhysRevD.85.054511 PACS numbers: 12.38.Gc

I. INTRODUCTION

A major objective for nuclear physicists is to establish
the technology with which to reliably calculate the prop-
erties and interactions of nuclei and to be able to quantify
the uncertainties in such calculations. Achieving this ob-
jective will have broad impact, from establishing the be-
havior of matter under extreme conditions such as those
that arise in the interior of neutron stars, to refining pre-
dictions for the array of isotopes produced in nuclear
reactors, and even to answering anthropic questions about
the nature of our Universe. While nuclear phenomenology
generally describes experimentally measured quantities, its
ability to make high precision and accurate predictions for
quantities that cannot be accessed experimentally is lim-
ited. This situation is on the verge of dramatically improv-
ing. The underlying theory of the strong interactions is
known to be QCD, and the computational resources now
available are beginning to allow for ab initio calculations
of basic quantities in nuclear physics. With further in-
creases in computational power and advances in algo-
rithms, this trend will continue and our understanding of,
and our ability to calculate, light and exotic nuclei will be
placed on a solid foundation.

In nature, two nucleons in the 3S1 � 3D1 coupled chan-
nels bind to form the simplest nucleus, the deuteron (J� ¼
1þ), with a binding energy of Bd ¼ 2:224 644ð34Þ MeV,
and nearly bind into a dineutron in the 1S0 channel.

However, little is known experimentally about possible
bound states in more exotic channels, for instance, those
containing strange quarks. The most famous exotic channel
that has been postulated to support a bound state (the
H-dibaryon [1]) has the quantum numbers of �� (total
angular momentum J� ¼ 0þ, isospin I ¼ 0, and strange-
ness s ¼ �2). In this channel, all six quarks in naive quark
models, like the MIT bag model, can be in the lowest-
energy single-particle state. Additionally, more extensive
analyses using one-boson-exchange (OBE) models [2] and
low-energy effective field theories (EFT) [3,4], both con-
strained by experimentally measured nucleon-nucleon
(NN) and hyperon-nucleon (YN) cross sections and the
approximate SU(3) flavor symmetry of the strong interac-
tions, suggest that other exotic channels also support bound
states. In the limit of SU(3) flavor symmetry, the 1S0
channels are in symmetric irreducible representations of

8 � 8 ¼ 27 � 10 � 10 � 8 � 8 � 1, and hence the ����,
����, and nn (along with n�� and ����) all transform
in the 27. YN and NN scattering data along with the
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leading SU(3) breaking effects, arising from the light-
meson and baryon masses, suggest that ���� and
���� are bound at the physical values of the light-quark
masses [2–4].

Recently, the first steps have been taken towards calcu-
lating the binding energies of light nuclei directly from
QCD. Early exploratory quenched calculations of the NN
scattering lengths [5,6] performed more than a decade ago
have been superseded by nf ¼ 2þ 1 calculations within

the last few years [7,8] (and added to by further quenched
calculations [9,10]1). Further, the first quenched calcula-
tions of the deuteron [12], 3He, and 4He [13] have been
performed, along with nf ¼ 2þ 1 calculations of 3He [14]

and multibaryon systems containing strange quarks [14].
Efforts to explore nuclei and nuclear matter using the
strong coupling limit of QCD have led to some interesting
observations [15]. Recently, nf ¼ 2þ 1 calculations by us

(NPLQCD) [16], and subsequent nf ¼ 3 calculations by

the HALQCD Collaboration [17,18], have provided evi-
dence that the H-dibaryon (with the quantum numbers of
��) is bound at a pion mass of m� � 390 MeV at the
physical value of the strange quark mass (NPLQCD), and
over a range of SU(3) degenerate light-quark masses with
m� � 469–1171 MeV (HALQCD).2 Extrapolations to the
physical light-quark masses suggest that a weakly bound
H-dibaryon or a near threshold resonance exists in this
channel [19,20].

In this work, which is a continuation of our high-
statistics lattice QCD (LQCD) explorations [8,14,21,22],
we present evidence for ����ð1S0Þ and H-dibaryon (re-
fining our results presented in Ref. [16]) bound states, and
weak evidence, at the�1� level, for a bound deuteron and
dineutron at a pion mass of m� � 390 MeV. The results
were obtained from four ensembles of nf ¼ 2þ 1 aniso-

tropic clover gauge-field configurations with a spatial lat-
tice spacing of bs � 0:123 fm, an anisotropy of �� 3:5,
and with cubic volumes of spatial extent L� 2:0, 2.5, 2.9,
and 3.9 fm.

In Sec. II, a concise description of the specific LQCD
technology and computational details relevant to the
present two-body bound-state calculations are given.
Section III presents the results of the LQCD calculations
of the single-baryon masses and dispersion relations (criti-
cal for understanding bound systems), and in Sec. IV the
results for the bound states are presented. Discussions and
our conclusions can be found in Sec. V.

II. LATTICE QCD CALCULATIONS

Lattice QCD is a technique in which space-time is dis-
cretized into a four-dimensional grid and the QCD path
integral over the quark and gluon fields at each point in
the grid is performed in Euclidean space-time using
Monte Carlo methods. A LQCD calculation of a given
quantity will differ from its actual value because of the finite
volume of the space-time (with L3 � T lattice points) over
which the fields exist, and the finite separation between
space-time points (the lattice spacing). However, such devi-
ations can be systematically removed by performing calcu-
lations in multiple volumes with multiple lattice spacings,
and extrapolating using the theoretically known functional
dependences on each. In the following subsections, we
review the details of LQCD calculations relevant to the
current work and introduce the ensembles studied herein.

A. Lüscher’s method for two-body systems including
bound states

The hadron-hadron scattering amplitude below the in-
elastic threshold can be determined from two-hadron en-
ergy levels in the lattice volume using Lüscher’s method
[23–25]. In the situation where only a single scattering
channel is kinematically allowed, the deviation of the
energy eigenvalues of the two-hadron system in the lattice
volume from the sum of the single-hadron energies is
related to the scattering phase shift, �ðkÞ, at the measured
two-hadron energies. For energy eigenvalues above kine-
matic thresholds where multiple channels contribute, a
coupled-channels analysis is required as a single phase
shift does not parametrize the S matrix. Such analyses
can be performed, but they are not required in the current
context. The energy shift for two particles A and B, �E ¼
EAB � EA � EB, can be determined from the correlation
functions for systems containing one and two hadrons. For
baryon-baryon systems, correlation functions of the form

CB;�ðp;tÞ¼
X
x

eip�x��
�hB�ðx; tÞ �B�ðx0;0ÞiCB1;B2;�ðp1;p2;tÞ

¼ X
x1;x2

eip1�x1eip2�x2��1�2

�1�2
hB1;�1

ðx1; tÞ

�B2;�2
ðx2; tÞ �B1;�1

ðx0;0Þ �B2;�2
ðx0;0Þi (1)

are used, whereB denotes a baryon interpolating operator,
�i and �i are Dirac indices, and the � are Dirac matrices
that typically project onto particular parity and angular
momentum states. The h. . .i denote averaging over the
gauge-field configurations and x0 is the location of the
source. The interpolating operators are only constrained
by the quantum numbers of the system of interest (angular
momentum, baryon number, isospin, strangeness), and the
forms are

1The HALQCD Collaboration has produced energy-
dependent, local, and sink-operator-dependent quantities from
lattice spatial correlation functions (see, e.g., Refs. [10,11]) that
contain the same, but no more, information than the NN energy
eigenvalues in the lattice volume(s) and the associated phase
shifts via Lüscher’s eigenvalue equation.

2One should note that both calculations were performed at
approximately the same spatial lattice spacing of b� 0:12 fm.
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p�ðx; tÞ ¼ �ijkui�ðx; tÞ½ujTðx; tÞC�5d
kðx; tÞ�;

��ðx; tÞ ¼ �ijksi�ðx; tÞ½ujTðx; tÞC�5d
kðx; tÞ�;

�þ
� ðx; tÞ ¼ �ijkui�ðx; tÞ½ujTðx; tÞC�5s

kðx; tÞ�;
�0

�ðx; tÞ ¼ �ijksi�ðx; tÞ½ujTðx; tÞC�5s
kðx; tÞ�;

(2)

where C is the charge-conjugation matrix and ijk are color
indices. Other hadrons in the lowest-lying octet can be
obtained from the appropriate combinations of quark fla-
vors. The brackets in the interpolating operators indicate
contraction of spin indices into a spin-0 ‘‘diquark.’’ Away
from the time slice of the source (in this case t ¼ 0), these
correlation functions behave as

Cði;fÞ
H A

ðp; tÞ ¼ X
n

ZðiÞ
n;AðpÞZðfÞ

n;AðpÞe�EðAÞ
n ðpÞt; (3)

Cði;fÞ
H AH B

ðp;�p; tÞ ¼ X
n

ZðiÞ
n;ABðpÞZðfÞ

n;ABðpÞe�EðABÞ
n ð0Þt; (4)

where EðAÞ
0 ð0Þ ¼ mA and EðABÞ

n ð0Þ are the energy eigenval-

ues of the two-hadron system at rest in the lattice volume.

The quantities ZðiÞ
n;X (ZðfÞ

n;X) are determined by the overlap of

the source (sink) onto the nth energy eigenstate with the
quantum numbers of X. At large times, the ratio

Cði;fÞ
H AH B

ðp;�p; tÞ
Cði;fÞ
H A

ð0;tÞCði;fÞ
H B

ð0;tÞ!
t!1 ~ZðiÞ

0;ABðpÞ~ZðfÞ
0;ABðpÞe��EðABÞ

0
ð0Þt (5)

decays as a single exponential in time with the energy shift

�EðABÞ
0 ð0Þ. The ~ZðkÞ

0;ABðpÞ are combinations of the two-body

and one-body Z factors in Eq. (3). In what follows, only the
case p ¼ 0 is considered. The energy shift of the nth two-
hadron state,

�EðABÞ
n � EðABÞ

n ð0Þ �mA �mB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

A

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

B

q
�mA �mB; (6)

determines a squared momentum k2n (which can be either
positive or negative). Below inelastic thresholds, this is
related to the real part of the inverse scattering amplitude
via3

kn cot�ðknÞ ¼ 1

�L
S

�
k2n

�
L

2�

�
2
�
; (7)

where

SðxÞ ¼ lim
�!1

Xjjj<�

j

1

jjj2 � x
� 4��; (8)

thereby implicitly determining the value of the phase shift

at the energy �EðABÞ
n [or the momentum of each particle in

the center of momentum frame, kn], �ðknÞ [23–27]. Thus,
the function k cot� that determines the low-energy elastic-
scattering cross section, AðkÞ / ðk cot�ðkÞ � ikÞ�1, is de-

termined at the energy �EðABÞ
n .

In a channel for which one pion exchange is allowed by
spin and isospin considerations, the function k cot�ðkÞ is an
analytic function of jkj2 for jkj 	 m�=2, as determined by
the t-channel cut in the scattering amplitude. In this kine-
matic regime, k cot�ðkÞ can be expressed in terms of an
effective range expansion of the form

k cot�ðkÞ ¼ � 1

a
þ 1

2
r0jkj2 þ . . . ; (9)

where a is the scattering length (with the nuclear physics
sign convention) and r0 is the effective range. While the
magnitude of the effective range (and higher terms) is set
by the pion mass, the scattering length is unconstrained.
For scattering processes where one pion exchange does not
contribute, the radius of convergence of the effective range
expansion of k cot� is set by the lightest intermediate state
in the t channel (or by the inelastic threshold).
In the situation where a channel supports a bound state,

the energy of the bound state at rest is determined
by Eq. (7). For k2�1 < 0, and setting k�1 ¼ i	, Eq. (7)
becomes

k cot�ðkÞjk¼i	 þ 	 ¼ 1

L

X
m�0

1

jmj e
�jmj	L ¼ 1

L
Fð0Þð	LÞ;

(10)

where

Fð0Þð	LÞ ¼ 6e�	L þ 6
ffiffiffi
2

p
e�

ffiffi
2

p
	L þ 8ffiffiffi

3
p e�

ffiffi
3

p
	L þ . . . :

(11)

Perturbation theory can be used to solve Eq. (10) when the
extent of the volume is much larger than the size of the
bound system, giving [26,27]

	 ¼ 	0 þ
Z2
c

L
Fð0Þð	0LÞ þOðe�2	0L=LÞ with

Zc ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2	0

d
dk2

k cot�ji	0

q : (12)

	0 is the solution to

3Calculations performed on anisotropic lattices require a
modified energy-momentum relation, and, as a result, Eq. (6)
becomes

�EðABÞ
n � EðABÞ

n �mA �mB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n=�

2
A þm2

A

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n=�

2
B þm2

B

q
�mA �mB;

where �A;B are the anisotropy factors for particle A and particle
B, respectively, determined from the appropriate energy-
momentum dispersion relation. The masses and energy splitting
are given in terms of temporal lattice units and kn is given in
spatial lattice units.
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k cot�ðkÞjk¼i	0
þ 	0 ¼ 0; (13)

which recovers cot�ðkÞjk¼i	0
¼ þi, and is the infinite-

volume binding momentum of the system. This analysis
has recently been extended to bound systems that are
moving in the lattice volume [28,29].

B. Computational overview

Anisotropic gauge-field configurations have proven
useful for the study of hadronic spectroscopy, and as the
calculations required for studying multihadron systems
rely heavily on spectroscopy, considerable effort has
been put into calculations with clover-improved Wilson
fermion actions with an anisotropic discretization. In par-
ticular, the nf ¼ 2þ 1 flavor anisotropic clover Wilson

action [30,31], with two steps of stout-link smearing [32]
of the spatial gauge fields in the fermion action with a
smearing weight of 
 ¼ 0:14, has been used [33,34]. The
gauge fields entering the fermion action are not smeared in
the time direction, thus preserving the ultralocality of the
action in the time direction. Further, a tree-level tadpole-
improved Symanzik gauge action without a 1� 2 rect-
angle in the time direction is used. Anisotropy allows for
a better extraction of the excited states as well as additional
confidence that plateaus in the effective mass plots (EMPs)
formed from the correlation functions have been observed,
significantly reducing the systematic uncertainties. The
gauge-field generation was performed by the Hadron
Spectrum Collaboration (HSC) and by us, and these
gauge-field configurations have been extensively used for
excited hadron spectrum calculations by HSC [35–40].

The present calculations are performed on four ensem-
bles of gauge configurations with L3 � T of 163 � 128,
203 � 128, 243 � 128, and 323 � 256 lattice sites, with an
anisotropy of bt ¼ bs=� with �� 3:5. The spatial lattice
spacing of each ensemble is bs � 0:1227
 0:008 fm, giv-
ing spatial lattice extents of L� 2:0, 2.5, 2.9, and 3.9 fm,
respectively. The same input light-quark-mass parameters,
btml ¼ �0:0840 and btms ¼ �0:0743, are used in the
production of each ensemble, giving a pion mass of m� �
390 MeV. The relevant quantities to assign to each en-
semble that determine the impact of the finite lattice

volume are m�L and m�T, which, for the four ensembles,
are m�L� 3:86, 4.82, 5.79, and 7.71, respectively, and
m�T � 8:82, 8.82, 8.82, and 17.64.
For the four lattice ensembles, multiple light-quark

propagators were calculated on each configuration. The
source location was chosen randomly in order to minimize
correlations among propagators. On the f163 � 128; 203 �
128; 243 � 128; 323 � 256g ensembles, an average of
f224; 364; 178; 174g propagators were calculated on each
of f2001; 1195; 2215; 739g gauge-field configurations, to
give a total number of �f4:5; 4:3; 3:9; 1:3g � 105 light-
quark propagators, respectively.4

III. BARYONS AND THEIR DISPERSION
RELATIONS

The single-hadron masses calculated in the four differ-
ent lattice volumes are given in Table I. Detailed discus-
sions of the fitting methods used in the analysis of the
correlation functions are given in Refs. [8,14,21,41].
Infinite-volume extrapolations of the results obtained
from all four ensembles were performed in Ref. [22], and
are shown in the right-most column in Table I. The differ-
ence between a mass calculated in a finite lattice volume
and its infinite-volume extrapolation is due to contributions
of the form �e�m�L. Such deviations must be small com-
pared to the two-body binding energies to ensure that the
finite-volume bindings are due to the T matrix [42,43] and
not from finite-volume distortions of the forces. It has been
shown [16,22] that the largest two volumes, the 243 � 128
and 323 � 256 ensembles, are sufficiently large to render
the�e�m�L modifications to Lüscher’s eigenvalue relation
negligible at the level of precision we are currently able to
achieve. In what follows, we only consider results from
these ensembles.
Lüscher’s method assumes that the single-hadron

energy-momentum relation is satisfied over the range of
energies used in Eq. (7). In order to verify that the energy-
momentum relation is satisfied, single-hadron correlation

TABLE I. Results from the lattice QCD calculations in four lattice volumes with a pion mass of m� � 390 MeV, a spatial lattice
spacing of bs � 0:123 fm, and with an anisotropy factor of �� 3:5. Infinite-volume extrapolations [22] are shown in the right column.
The masses are in temporal lattice units (t.l.u).

L3 � T 163 � 128 203 � 128 243 � 128 323 � 256 Extrapolation

L (fm) �2:0 �2:5 �2:9 �3:9 1
m�L 3.86 4.82 5.79 7.71 1
m�T 8.82 8.82 8.82 17.64 1
MN (t.l.u.) 0.210 04(44)(85) 0.206 82(34)(45) 0.204 63(27)(36) 0.204 57(25)(38) 0.204 55(19)(17)

M� (t.l.u.) 0.224 46(45)(78) 0.222 46(27)(38) 0.220 74(20)(42) 0.220 54(23)(31) 0.220 64(15)(19)

M� (t.l.u.) 0.228 61(38)(67) 0.227 52(32)(43) 0.227 91(24)(31) 0.227 26(24)(43) 0.227 47(17)(19)

M� (t.l.u.) 0.241 92(38)(63) 0.241 01(27)(38) 0.239 75(20)(32) 0.239 74(17)(31) 0.239 78(12)(18)

4One propagator is defined to include the four spin and three
color degrees of freedom; i.e. it is the propagator for all 12 spin-
color components.
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functions were formed with well-defined lattice spatial
momentum p ¼ 2�

L n for jnj2 	 5. Retaining the leading

terms in the energy-momentum relation, including the
lattice anisotropy �, the energy and mass of the hadron
[in temporal lattice units (t.l.u)], and the momentum in
spatial lattice units (s.l.u.) are related by

ðbtEHðjnj2ÞÞ2 ¼ ðbtMHÞ2 þ 1

�2

�
2�bs
L

�
2jnj2; (14)

using the continuum dispersion relation, and by

ðbtEHðjnj2ÞÞ2 ¼ ðbtMHÞ2 þ 1

�2

X
j

sin2
�
2�bs
L

nj

�
; (15)

using the lattice dispersion relation. The calculated single-
hadron energies (squared) are shown in Fig. 1 as a function
of jnj2, along with the best linear fit. The extracted values
of �H are given in Table II, and are seen to be consistent
with each other within the uncertainties of the calculation
(the value for the nucleon is somewhat larger). Notice that
the lattice dispersion relation gives rise to �H that is

slightly smaller than those from the continuum dispersion
relation, and with somewhat larger uncertainties. The
values of �H from the continuum dispersion relation are
used to convert the two-hadron energies and energy differ-
ences from temporal lattice units into spatial lattice
units which are then used in the Lüscher eigenvalue rela-
tion. In physical units, using the continuum values
of �H given in Table II, the extrapolated baryon
masses are MN ¼ 1170:0ð1:1Þð1:0Þð7:5Þð9:3Þ MeV, M� ¼
1229:5ð0:8Þð1:1Þð8:1Þð11:2Þ MeV, M� ¼ 1264:2ð1:0Þ�
ð1:1Þð8:3Þð13:1Þ MeV, and M� ¼ 1336:3ð0:7Þð1:0Þð8:8Þ�
ð21:9Þ MeV, where the first uncertainty is statistical, the
second is systematic, the third is from the lattice spacing,
and the fourth is from �H.

IV. TWO-BODY BOUND STATES

Of the baryon-baryon channels that we have explored at
this pion mass, the states that have an energy lower than
two isolated baryons in both the 243 � 128 and 323 � 256
ensembles and suggest the existence of bound states are the
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FIG. 1 (color online). The squared energy [in ðt:l:u:Þ2] of the single-baryon states as a function of n2 ¼ jnj2, related to the squared
momentum, jpj2 ¼ ð2�L Þ2jnj2, calculated with the 323 � 256 ensemble. The blue points are the results of the LQCD calculations with

the inner (outer) uncertainties being the statistical uncertainties (statistical and systematic uncertainties combined in quadrature). The
red curves correspond to the best linear fits.

TABLE II. The anisotropy parameter �H of each hadron from the 323 � 256 ensemble using the continuum dispersion relation in
Eq. (14) and the lattice dispersion relation in Eq. (15). The result for the � is included for purposes of comparison.

N � � � �

�H (continuum) 3.559(27)(08) 3.465(31)(06) 3.456(35)(07) 3.4654(55)(14) 3.466(13)(02)

�H (lattice) 3.487(34)(10) 3.399(63)(16) 3.387(72)(15) 3.396(40)(07) 3.435(25)(10)
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deuteron, the dineutron, the H-dibaryon, and the ����.
While a negative energy shift can indicate either a scatter-
ing state with an attractive interaction or a bound state,
Lüscher’s eigenvalue relation allows us to distinguish
between the two possibilities. For a bound system in
the large-volume limit, the calculated value of the
energy splitting (or binding momentum) gives rise to
�i cot� ! þ1. We now examine each of these channels.

A. The deuteron

The deuteron is the simplest nucleus, comprised of a
neutron and a proton. At the physical light-quark masses its
binding energy is B ¼ 2:224 644ð34Þ MeV which corre-
sponds to a binding momentum of 	0 � 45:70 MeV (using
the isospin averaged nucleon mass ofMN ¼ 938:92 MeV).
As it is a spin-1 system composed of two spin- 12 nucleons,

its wave function is an admixture of s waves and d waves,
but at the physical quark masses it is known to be pre-
dominantly s wave with only a small admixture of d wave
induced by the tensor (L ¼ S ¼ 2) interaction.

The EMPs associated with the nucleon and the neutron-
proton system in the 3S1 � 3D1 channel are shown in the

left panels of Figs. 2 and 3 for the two ensembles. The

correlation functions that give rise to these EMPs are linear
combinations of correlation functions generated using
Eq. (1) but with different smearings of the sink operator
(s). The combinations of correlation functions have been
chosen to maximize the extent of the ground-state pla-
teaus.5 Extended plateaus are observed in both the one-
and two-nucleon correlation functions. The right panels of
Figs. 2 and 3 show the binding momentum of each particle
in the center of momentum frame obtained by taking ratios
of the two-baryon and single-baryon correlation functions.
The deuteron binding energies in each volume calculated
with LQCD are
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FIG. 3 (color online). The left panel shows an EMP of the nucleon and of the neutron-proton system in the 3S1 � 3D1 coupled
channels calculated with the 323 � 256 ensemble (in t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the neutron-proton system
calculated with this ensemble, along with the fits.
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FIG. 2 (color online). The left panel shows an EMP of the nucleon and of the neutron-proton system in the 3S1 � 3D1 coupled-
channels calculated with the 243 � 128 ensemble (in t.l.u.). The right panel shows the jkj2 (in ðs:l:u:Þ2) of the neutron-proton system
calculated with this ensemble, along with the fits.

5The EMPs result from a matrix-Prony analysis [21] of mul-
tiple correlation functions. In particular, the matrix-Prony analy-
sis is used to determine the linear combination of correlation
functions that optimizes the ground-state plateau. The EMPs that
are shown for each system result from these linear combinations
and not from the energy eigenvalues resulting from the matrix-
Prony analysis. In determining the binding energies, multiexpo-
nential fitting and generalized pencil of function methods [44,45]
are used in addition to matrix-Prony, which provides consistent
results in each case.
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BðL¼24Þ
d ¼ 22:3
 2:3
 5:4 MeV;

BðL¼32Þ
d ¼ 14:9
 2:3
 5:8 MeV:

(16)

The known finite-volume dependence of loosely bound
systems, given in Eq. (10), and the perturbative relations
that follow allow for an extrapolation of the results in
Eq. (16) to the infinite-volume limit, as shown in Fig. 4,
giving

BðL¼1Þ
d ¼ 11
 5
 12 MeV; (17)

where the first uncertainty is statistical and the second is
systematic, accounting for fitting, anisotropy, lattice spac-
ing, and the infinite-volume extrapolation. Despite having
statistically significant binding energies in the two lattice
volumes, the exponential extrapolation to the infinite-
volume limit produces a deuteron binding energy with
significance at �1�. From the curvature of the results of
the LQCD calculations in Fig. 4, it is clear that both of
these volumes significantly modify the deuteron at this
pion mass. Calculations in somewhat larger volumes, or
of moving systems [29], would significantly reduce the
uncertainty introduced by the volume extrapolation.

It is interesting to note that while the ground-state en-
ergies obtained in both the 243 � 128 and 323 � 256 en-
sembles are clearly negatively shifted in energy and lie on
the bound-state branch of the S function (k2 < 0 with
k cot� < 0) in Eq. (8), the result from the 203 � 128 en-
semble is consistent with both a bound state and a contin-
uum state. It is important for future LQCD calculations in
this channel to precisely determine the volume dependence
of the ground-state energies in order to better quantify the
exponential corrections to Lüscher’s energy-eigenvalue
relation.

Our nf ¼ 2þ 1 result and the recent quenched (nf ¼ 0)

result of Ref. [12] are shown in Fig. 5, along with the
physical deuteron binding energy. Clearly, the large uncer-
tainty of our present result does not provide much

constraint on the dependence of the deuteron binding
energy as a function of the light-quark masses, other than
to demonstrate that the deuteron is likely bound at m� �
390 MeV, qualitatively consistent with the quenched result
at m� � 800 MeV [12].
A number of groups have attempted to determine how

the deuteron binding energy (and the binding of other
nuclei) varies as a function of the light-quark masses using
EFT [46–49] and hadronic models [50]. Such a variation
impacts the constraints that can be placed on possible time
variations of the fundamental constants of nature from the
abundance of elements produced in big bang nucleosyn-
thesis (BBN) (see Refs. [51,52] for recent constraints from
BBN). With the exception of the analysis of Ref. [49], both
of the EFT analyses, which use naive dimensional analysis
to constrain the quark-mass-dependent dimension-six op-
erators that contribute at next-to-leading order in the chiral
expansion, and the hadronic models of Ref. [50], suggest
that the deuteron becomes less bound as the quarks become
heavier near their physical values. The present LQCD
calculation at a pion mass of m� � 390 MeV is somewhat
beyond the range of applicability of the EFT analyses and
so cannot be directly translated into constraints on the
coefficients of local operators with confidence. Further,
the uncertainty in our calculation is too large to be useful
in a quantitative way. Nevertheless, our result conflicts
with the trend suggested in most of the EFT and model
analyses, and further studies are necessary to resolve this
issue.

B. The dineutron

In nature, the dineutron (nn 1S0) is very nearly bound.

The unnaturally large scattering lengths in the 1S0 channel
indicate that a very small increase in the strength of the
interactions between neutrons would bind them into an
electrically neutral nucleus. If the binding was deep
enough, it would have profound effects on nucleosynthesis.
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FIG. 4 (color online). Results of the lattice QCD calculations
of �i cot� versus jkj2=m2

� in the deuteron channel obtained
using Eq. (7), along with the infinite-volume extrapolation using
Eq. (10). The inner uncertainty associated with each point is
statistical, while the outer corresponds to the statistical and
systematic uncertainties combined in quadrature.
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FIG. 5 (color online). The deuteron binding energy as a func-
tion of the pion mass. The black circle denotes the experimental
value. The blue point and uncertainty result from the quenched
calculations of Ref. [12], while the red point and uncertainty (the
inner is statistical and the outer is statistical and systematic
combined in quadrature) show our present nf ¼ 2þ 1 result.
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Analyses with NNEFT allow for the possibility of both
bound and unbound dineutrons for light-quark masses
larger than those of nature, while indicating an unbound
dineutron for lighter quark masses [46–48]. In contrast, a
model-dependent calculation indicates that the dineutron
remains unbound for all light-quark masses [50].

The EMPs associated with the nucleon and the dineutron
system are shown in the left panels of Figs. 6 and 7. The
dineutron binding energies extracted from the LQCD cal-
culations are

BðL¼24Þ
nn ¼ 10:4
 2:6
 3:1 MeV;

BðL¼32Þ
nn ¼ 8:3
 2:2
 3:3 MeV:

(18)

The volume extrapolation of the results in Eq. (18) is
shown in Fig. 8, and it results in an extrapolated dineutron
binding energy of

BðL¼1Þ
nn ¼ 7:1
 5:2
 7:3 MeV; (19)

where the first uncertainty is statistical and the second is
systematic. This result is suggestive of a bound dineutron
at this pion mass, but at the present level of precision, an
unbound system is also possible. In the L� 2:5 fm vol-
ume, the dineutron ground state is found to be positively

shifted in energy at the 1� level [8], consistent with both a
bound state and a continuum state. Further computational
resources devoted to the smaller-volume ensemble would
allow for better understanding of the volume dependence
of this state and, in general, would be a valuable compo-
nent of future studies.
Our nf ¼ 2þ 1 result and the recent quenched (nf ¼ 0)

result of Ref. [12] are shown in Fig. 9. Clearly, the large
uncertainty of our present result does not provide a signifi-
cant constraint on the binding of the dineutron as a function
of the light-quark masses. However, the LQCD results
suggest that the dineutron is bound at quark masses greater
than those of nature. This has implications for future
LQCD calculations, as there are likely light-quark masses
for which the dineutron unbinds, and hence the scattering
length becomes infinitely large. This implies that, at some
point in the future, LQCD may be able to explore strongly
interacting systems of fermions near the unitary limit.
However, if the deuteron remains bound at heavier quark
masses, as suggested by the current work, it may not be
possible to tune the light-quark masses (including isospin
breaking) to produce infinite scattering lengths in the
3S1 � 3D1 and 1S0 channels simultaneously, hence elimi-

nating the possibility of the triton having an infinite
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FIG. 6 (color online). The left panel shows an EMP of the neutron and of the neutron-neutron system calculated with the 243 � 128
ensemble (in t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the neutron-neutron system calculated with this ensemble, along with
the fits.
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FIG. 7 (color online). The left panel shows an EMP of the neutron and of the neutron-neutron system calculated with the 323 � 256
ensemble (in t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the neutron-neutron system calculated with this ensemble, along with
the fits.
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number of bound states for such a specific choice of light-
quark masses (unless the deuteron is also unbound for an
intermediate range of quark masses).6

C. The H-dibaryon

The prediction of a relatively deeply bound system with
the quantum numbers of �� (called the H-dibaryon) by
Jaffe [1] in the late 1970s, based upon a bag-model calcu-
lation, started a vigorous search for such a system, both
experimentally and also with alternate theoretical tools. As
all six quarks, uuddss, can be in an s wave and satisfy the
Pauli principle, such a channel may support a state that is
more deeply bound than in channels with different flavor
quantum numbers. Reviews of experimental constraints
on, and phenomenological models of, the H-dibaryon can
be found in Refs. [54–57]. While experimental studies of

doubly strange (s ¼ �2) hypernuclei restrict the
H-dibaryon to be unbound or to have a small binding
energy, the most recent constraints on the existence of
the H-dibaryon come from heavy-ion collisions at the
Relativistic Heavy Ion Collider [58], effectively eliminat-
ing the possibility of a loosely bound H-dibaryon at the
physical light-quark masses. However, the analysis that led
to these constraints was model dependent, in particular, in
the production mechanism, and may simply not be reliable.
Recent experiments at KEK indicate that a near threshold
resonance may exist in this channel [59].
A number of quenched LQCD calculations [60–65] have

previously searched for the H-dibaryon, but without suc-
cess. Recently, we and the HALQCD Collaboration have
reported results that show that the H-dibaryon is bound for
a range of light-quark masses that are larger than those
found in nature [16,17]. At present, neither of these calcu-
lations is extrapolated to the continuum, with both calcu-
lations being performed at a spatial lattice spacing of
bs � 0:12 fm. Chiral extrapolations in the light-quark
masses of these two LQCD calculations were performed
in Refs. [19,20] to make first QCD predictions for the
binding energy of the H-dibaryon at the physical light-
quark masses.7

In the absence of interactions, the ����N � ��
coupled system (all three have the same quantum numbers)
is expected to exhibit three low-lying eigenstates, as the
mass splittings between the single-particle states are (from
the 323 � 256 ensemble)

2ðM� �M�Þ ¼ 0:013 17ð13Þð19Þ t:l:u:;
M� þMN � 2M� ¼ 0:003 397ð61Þð65Þ t:l:u:

(20)

However, if the interaction generates a bound state, it is
unlikely that a second or third state will also be bound, and
therefore the splitting between the ground state and the two
additional states will likely be larger than estimates based
upon the single-baryon masses. The EMPs associated with
the� and the system with the quantum numbers of the��
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FIG. 8 (color online). The results of the lattice QCD calcula-
tions of �i cot� versus jkj2=m2

� in the dineutron channel ob-
tained using Eq. (7), along with the infinite-volume extrapolation
using Eq. (10). The inner uncertainty associated with each point
is statistical, while the outer corresponds to the statistical and
systematic uncertainties combined in quadrature.
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FIG. 9 (color online). The dineutron binding energy as a
function of the pion mass. The blue point and uncertainty result
from the quenched calculation of Ref. [12], while the red point
and uncertainty (the inner is statistical and the outer is statistical
and systematic combined in quadrature) show our present
nf ¼ 2þ 1 result.

6Such bound states would be the manifestation of an infrared
renormalization group limit cycle in QCD, as conjectured by
Braaten and Hammer [53].

7These extrapolations are significantly less reliable (rigorous)
than the chiral extrapolation of simple quantities (such as hadron
masses) calculated with LQCD. While for a deeply bound
H-dibaryon with a radius that is much smaller than the inverse
pion mass it is possible to arrive at a chiral EFT construction
with which to calculate the light-quark-mass dependence of
H-dibaryon mass in perturbation theory, the same construction
would not be valid when the radius becomes comparable to or
larger than 1=m�. A weakly bound state can only be generated
nonperturbatively, and consequently, the quark-mass dependence
of the binding energy is nontrivial, as is clear from the analyses
in the two-nucleon sector; see e.g. Refs. [46–48,66]. As a result,
the assumption of compactness of the state made in Ref. [20] is
difficult to justify over a significant range of predicted binding
energies. Further, the simple polynomial extrapolations in
Ref. [19] are meant to provide estimates alone and cannot be
used to reliably quantify extrapolation uncertainties.
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are shown in the left panels of Figs. 10 and 11. The binding
energies extracted from the LQCD calculations are

BðL¼24Þ
H ¼ 17:52
 0:88
 0:68 MeV;

BðL¼32Þ
H ¼ 14:5
 1:3
 2:4 MeV;

(21)

which agree within uncertainties with the values given in
our earlier paper [16]. The volume extrapolation of the
results in Eq. (21) is shown in Fig. 12, and gives an
extrapolated H-dibaryon binding energy of

BðL¼1Þ
H ¼ 13:2
 1:8
 4:0 MeV; (22)

where the first uncertainty is statistical and the second is

systematic. In Ref. [16], BðL¼1Þ
H was assigned a volume

extrapolation uncertainty of
1 MeV. In the present analy-
sis, this systematic uncertainty has been reduced to

0:3 MeV by keeping the first three terms in the volume
expansion [29] given in Eq. (11) [only the first term in
Eq. (11) was used in the extrapolation performed in
Ref. [16]]. The uncertainty in the energy-momentum rela-
tion is unchanged and is estimated to be 
0:6 MeV. The
updated result in Eq. (22) at m� � 390 MeV and the result
of the nf ¼ 3 calculation at m� � 837 MeV [17]8 are
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FIG. 10 (color online). The left panel shows an EMP of the � and of the lowest state in the ����N ��� system calculated with
the 243 � 128 ensemble (in t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the ����N ��� system calculated with this
ensemble, along with the fits.
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FIG. 11 (color online). The left panel shows an EMP of the � and of the lowest state in the ����N ��� system calculated with
the 323 � 256 ensemble (in t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the ����N ��� system calculated with this
ensemble, along with the fits.
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FIG. 12 (color online). The results of the LQCD calculations
of �i cot� versus jkj2=m2

� in the H-dibaryon channel obtained
using Eq. (7), along with the infinite-volume extrapolation using
Eq. (10). The inner uncertainty associated with each point is
statistical, while the outer corresponds to the statistical and
systematic uncertainties combined in quadrature.

8In extrapolating to the physical values of the light-quark
masses, and in the absence of an extrapolation form that de-
scribes the full three-flavor dependence, we use the result from
the HALQCD Collaboration with a strange quark mass that is
closest to its physical value, and perform an extrapolation in the
up- and down-quark masses in the isospin limit. For further
discussion of this selection, see Ref. [19].
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shown in Fig. 13. Also shown in this figure are two naive
extrapolations, one that is linear in m� and one that is
quadratic in m�, as discussed in Ref. [19]. The extrapola-
tions indicate that the LQCD calculations are presently not
at sufficiently small quark masses to determine if the
H-dibaryon is bound at the physical light-quark masses.

D. ����

Experimental information on the hyperon-hyperon in-
teractions in the s <�2 sector does not exist, presenting
a significant handicap to studies of the composition of
neutron star matter. As an example of the importance of
these interactions, Ref. [67] shows that when a strongly
attractive �� interaction is used in the Tolman-
Oppenheimer-Volkoff equation, new stable solutions ap-
pear, corresponding to compact hyperon stars with masses
similar to neutron stars but with smaller radii. From the
theoretical point of view, the approximate flavor SU(3)
symmetry of QCD indicates that a bound state in the
���� channel is likely. Phenomenological analyses of
NN scattering and YN scattering provide a determination
of the strength of the interaction for two baryons in the 27
irreducible representation of flavor SU(3) that also con-
tains the���� system. The OBE model developed by the
Nijmegen group, NSC99 [2],9 which includes explicit
breaking of flavor SU(3) symmetry by using the physical
meson and baryon masses, and chiral EFT [68], predicts a
bound state in the���� channel [3,4] at the physical pion
mass.10 However, only moderate attraction is obtained
within a constituent quark model [69]. A small ����
interaction was calculated in the 203 � 128 ensemble [8]

used in this work but may be subject to significant finite-
volume uncertainties. LQCD calculations performed in the
flavor SU(3) limit [70], in volumes of 163 � 32 with a
lattice spacing of bs � 0:12 fm and at pion masses of
1014 and 835 MeV, found attractive interactions in the
flavor singlet t channel responsible for���� interactions.
Our present LQCD calculations provide clear evidence

for a bound���� state at a pion mass ofm� � 390 MeV.
The EMPs associated with the � and the ���� system
are shown in the left panels of Figs. 14 and 15.
The ���� binding energies extracted from the LQCD

calculations are

BðL¼24Þ
���� ¼ 11:0
 1:3
 1:6 MeV;

BðL¼32Þ
���� ¼ 13:0
 0:5
 3:9 MeV:

(23)

The volume extrapolation of the results in Eq. (23) is
shown in Fig. 16, and it results in an extrapolated ����
binding energy of

BðL¼1Þ
���� ¼ 14:0
 1:4
 6:7 MeV; (24)

where the first uncertainty is statistical and the second is
systematic. This indicates that, at the �2� level, the
���� channel supports a bound state. The fact that the
binding energy calculated in the 243 � 128 ensemble has
k cot� * 0 indicates that this volume is significantly mod-
ifying the ���� bound state and that calculations in
larger volumes, or with nonzero total momentum, would
refine the volume extrapolation. A positively shifted
ground-state energy at the 2� level was obtained from
the 203 � 128 ensemble [8], which appears to be incon-
sistent with the results obtained from the 243 � 128 and
323 � 256 ensembles. We attribute this discrepancy to a
combination of the L� 2:5 fm volume being too small to
accommodate a ���� bound state, to the exponential
corrections to Lüscher’s energy-eigenvalue relation being
large for this system, and to statistical fluctuations. The
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FIG. 13 (color online). Extrapolations of the LQCD results for the binding of the H-dibaryon. The left panel corresponds to an
extrapolation that is quadratic in m�, of the form BHðm�Þ ¼ B0 þ d1m

2
�. The right panel is the same as the left panel except with an

extrapolation of the form BHðm�Þ ¼ ~B0 þ ~d1m�. In each panel, the blue point and uncertainty result from the nf ¼ 3 LQCD

calculation of Ref. [17], while the red point and uncertainty are our present nf ¼ 2þ 1 result. The green dashed vertical line

corresponds to the physical pion mass.

9The recently developed extended soft-core models do not yet
include the s <�2 sectors.
10The ��ð3S1Þ and NN ð3S1Þ states belong to different irre-
ducible representations (10 and 10, respectively), and therefore
SU(3) flavor symmetry alone is unable to predict whether an
analog of the deuteron in the s ¼ �4 sector exists.
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later contribution could be explored with increased com-
putational resources being devoted to the ensemble. One
further possibility for the positively shifted ground-state
energy in the 203 � 128 ensemble is that it was the lowest-
lying continuum state and not the ground state of the
system that had been identified. An important component
of future work on these systems will be a systematic

exploration and quantification of each of the possible
issues.
This result and the predictions of OBE models and

LO EFT are shown in Fig. 17. It is important to note that
the uncertainty (and significance) of the LQCD result is
comparable to that of the OBE models and EFT results.
Further, this result demonstrates that LQCD is rapidly
approaching the situation where it will provide more pre-
cise constraints on exotic systems than can be achieved in
the laboratory. It will be interesting to see whether J-PARC
[71] or FAIR [72] can provide constraints on the s ¼ �3
and s ¼ �4 systems, as well as on the possible H-dibaryon
[73]. The binding energy in Eq. (24) provides strong
motivation to return to OBE models and EFT frameworks
and determine the expected dependence on the light-quark
masses.

E. ����

As the ���� (1S0) system is in the 27 irreducible

representation of flavor SU(3), it is also expected to be
bound, but by somewhat less than the ���� system.
While the NSC97a-NSC97f models [2] estimate the
���� binding, B���� , to lie in the range 1:5 MeV &
B���� & 3:2 MeV, large and negative scattering lengths
are found in the ���� channel with LO EFT [74] in the
absence of Coulomb interactions and isospin breaking
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FIG. 14 (color online). The left panel shows an EMP of the � and of the���� system calculated with the 243 � 128 ensemble (in
t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the ���� system calculated with this ensemble, along with the fits.
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FIG. 15 (color online). The left panel shows an EMP of the � and of the���� system calculated with the 323 � 256 ensemble (in
t.l.u.). The right panel shows the jkj2 [in ðs:l:u:Þ2] of the ���� system calculated with this ensemble, along with the fits.
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FIG. 16 (color online). The results of the lattice QCD calcu-
lations of�i cot� versus jkj2=m2

� in the���� system obtained
using Eq. (7), along with the infinite-volume extrapolation using
Eq. (10). The inner uncertainty associated with each point is
statistical, while the outer corresponds to the statistical and
systematic uncertainties combined in quadrature.
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(these results exhibit non-negligible dependence on the
momentum cutoff). On the other hand, the constituent
quark model of Ref. [69] finds strong similarities between
the behavior of the ���� and nn interactions, leading to
similar values for the phase shifts. Our LQCD calculations
in this channel are inconclusive. While the ground state in
the 243 � 128 ensemble is negatively shifted at the 1�
level, the ground state in the 323 � 256 ensemble is con-
sistent with zero, and thus is consistent with both a scat-
tering state and a bound state. However, the large and
positive energy shift obtained from the 203 � 128 en-
semble [8] suggests that the���� state we have identified
is a scattering state and not a bound state, assuming that the
exponential volume modifications to Lüscher’s energy-
eigenvalue relation are small.

V. CONCLUSIONS

We have performed precise lattice QCD calculations of
baryon-baryon systems at a pion mass of m� � 390 MeV
in four ensembles of anisotropic clover gauge-field con-
figurations with a spatial lattice spacing of bs � 0:123 fm,
an anisotropy of �� 3:5, and cubic spatial lattice volumes
with extent L� 2:0, 2.5, 2.9, and 3.9 fm. These calcula-
tions have provided evidence, with varying levels of sig-
nificance, for the existence of two-baryon bound states
from QCD, which are summarized in Table III. Our

LQCD calculations were performed at one lattice spacing,
bs � 0:123 fm, but discretization effects are expected to
be small as they scale as Oðb2sÞ for the clover action.
Consequently, we do not expect them to significantly alter
our conclusions. A second lattice spacing is required to
quantify this systematic uncertainty.
By far the most significant result is that the H-dibaryon

is bound at the 3� level at this pion mass, improving on
results we have already presented in Ref. [16]. At the�2�
level of significance, we find that the���� system is also
bound, which is qualitatively consistent with an array of
hadronic models and EFT analyses of this system at the
physical light-quark masses. It is interesting to note that the
level of precision of the ���� binding from LQCD is
comparable to the level of precision associated with the
phenomenological predictions. With increasing computa-
tional resources directed at these two-baryon systems, the
QCD prediction will become more precise and eventually
become input for phenomenological models and be used to
constrain the coefficients appearing in the effective field
theories.
A major goal of lattice QCD is to postdict the anom-

alously small binding energy of the deuteron. We have
presented �1� level evidence for a bound deuteron from
QCD, which is well below ‘‘discovery level,’’ and our
result should be considered a first step toward a definitive
calculation. Nevertheless, it is now unambiguously clear
that a precise determination of the deuteron binding energy
can be performed with sufficient computational resources.
Our result hints that the deuteron is bound, as does the
result of a previous quenched calculation, at heavy pion
masses, in contrast with phenomenological analyses and
with EFT predictions. We also find suggestions of bound
dineutrons which are far from definitive, but are consistent
with the quenched result at a heavier pion mass [12]. If this
remains the case when the calculation is refined, there are
light-quark masses between m� � 140 MeV and m� �
390 MeV for which the scattering length in this channel
would be infinite and the system would be scale invariant at
low energies.
Phenomenology based upon flavor SU(3) symmetry in-

dicates that the ���� system should be more bound than
the ���� system, which in turn should be more bound
than the dineutron (which is nearly bound) at the physical
light-quark masses, as these three systems are all members
of the same 27 irreducible representation of SU(3). Our
results are consistent with this within the uncertainties of
the LQCD calculations, but further work is required before
definitive conclusions can be drawn.

TABLE III. A summary of the two-body binding energies determined in this work.

Deuteron Dineutron H-dibaryon ����

Binding energy (MeV) 11(05)(12) 7.1(5.2)(7.3) 13.2(1.8)(4.0) 14.0(1.4)(6.7)
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FIG. 17 (color online). The ���� binding energy as a func-
tion of the pion mass. The black line denotes the predictions of
the NSC97a-NSC97f models [2] constrained from nucleon-
nucleon and hyperon-nucleon scattering data. The orange line
denotes the range of predictions by Miller [3], and the green line
denotes the leading order EFT prediction by Haidenbauer and
Meißner (HM) [4]. The red point and uncertainty (the inner is
statistical and the outer is statistical and systematic combined in
quadrature) are our present nf ¼ 2þ 1 result. The OBE model

and EFT predictions at the physical pion mass are displaced
horizontally for the purpose of display.
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The results of the lattice QCD calculations presented
in this paper, which refine and broaden our previous work
[16], provide clear evidence for bound states of two
baryons directly from QCD. With the suggestion of a
deuteron and a bound dineutron at this heavier pion
mass, there is compelling motivation to invest larger com-
putational resources into pursuing lattice QCD calculations
at light-quark masses, and to perform such calculations in
multiple volumes and with multiple lattice spacings. It is
clear that enhanced computational resources will enable
calculations of the properties and interactions of nuclei
from QCD with quantifiable and systematically removable
uncertainties.
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