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Recently, Gliozzi has shown that, under certain conditions, it is possible to derive the Dirac-Born-Infeld

action for an Abelian gauge field of a D-brane. Also, the action turns out to be invariant with respect to a

nonlinear realization of the full Poincaré group. A crucial role is played by the transformation properties

of the gauge field under the nonlinear realization. The aim of this paper is to point out that these

transformation properties are derived directly from the gauge fixing of the diffeomorphisms of the brane

and the necessary compensating reparametrization when one performs a Lorentz transformation.

DOI: 10.1103/PhysRevD.84.027901 PACS numbers: 11.25.Mj

In a very recent paper [1], Gliozzi has shown that it is
possible to derive the Dirac-Born-Infeld action for a gauge
field lying on a d-dimensional D-brane, by studying the
nonlinear representation of the Poincaré group in a
D-dimensional Minkowski space in terms of the D� d
transverse coordinates of the brane. A crucial point of the
derivation lies in the transformation properties of the brane
gauge field Aa (a ¼ 0; 1; � � � ; d� 1). According to the
author of Ref. [1], ‘‘Actually it appears to be no specific
guiding principle (for deriving the transformations), never-
theless a trial and error method produced a surprisingly
simple solution.’’ Then, the author shows that these prop-
erties generate a nonlinear realization of the Lorentz group
on the gauge field. The aim of this Brief Report is to
observe that the transformation properties of the gauge
field follow simply from the requirement of a gauge com-
pensating transformation, necessary when one fixes the
gauge identifying the longitudinal coordinates with the
brane parameters. Notice that the gauge compensating
transformation is also required in order to get the correct
transformation properties for the transverse coordinates
(Eq. (1) of [1]).

We begin considering, as in [1], a Poincaré invariant
theory in a D-dimensional Minkowski space-time.
Furthermore, we assume the presence of a stable
d-dimensional extended object, a D-brane. We define co-
ordinates X� (� ¼ 0; 1; . . . ; D� 1) in Minkowski space.
X�ð��Þ is a target space vector, depending on the
brane coordinates �� (� ¼ 0; 1; . . . ; d� 1). The covariant

theory must be defined in such a way as to be invariant
under diffeomorphisms. Furthermore, the coordinates
transform under global Lorentz transformations as

�LX
�ð��Þ ¼ !�

�X
�; �; � ¼ 0; 1 . . . ; D� 1;

� ¼ 0; 1; . . . ; d� 1:
(1)

We assume also the presence on the brane of a Born-Infeld
d-dimensional Abelian gauge field, A�ð��Þ, transforming
as a scalar under the previous transformation

�LA�ð��Þ ¼ 0: (2)

On the other hand, under local diffeomorphisms, X� and
A� should transform as a scalar and a vector, respectively,

�DX
�ð��Þ ¼ ��@�X

�;

�DA�ð��Þ ¼ ��@�A� þ @��
�A�;

�� ¼ ��ð��Þ:
(3)

Now, we fix the gauge with respect to local diffeomor-
phisms by letting

Xað��Þ ¼ �a � xa: (4)

Notice that the index � transforms under diffeomorphisms,
whereas the index a transforms under the Lorentz group.
With this choice of gauge, we identify the two kinds of
indices.
Then, in this gauge,

X�¼ðXað�bÞ;Xið�bÞÞ¼ðxb;XiðxbÞÞ; i¼d; . . . ;D�1:

(5)

The transverse coordinates XiðxaÞ describe the long wave-
length fluctuations of the brane—that is, the Goldstone
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modes associated to the breaking of the translational in-
variance along the transverse direction specified by the
index i. Of course, also the Lorentz invariance
SOð1;D�1Þ is broken to SOð1; d� 1Þ � SOðD� dÞ, but
this breaking does not produce any further Goldstone
boson; see, for example, [2]. This has to do with the inverse
Higgs effect; see [3] and the more recent paper [4]. The
Lorentz group SOð1; D� 1Þ is realized nonlinearly in
terms of the transverse coordinates XiðxaÞ. We will show
now how this comes about. First of all, let us notice that,
under transformations of SOð1; d� 1Þ, the coordinates Xa

transform linearly,

�LX
a ¼ !a

bX
b: (6)

Then, let us consider Lorentz transformations along the
planes ða; iÞ, corresponding to the broken directions. In
order to stay in the gauge chosen in (4), we have to
perform, at the same time, a compensating diffeomorphism
transformation such that

0¼�XajXa¼xa ¼ð�LX
aþ�DX

aÞjXa¼xa

¼ð!a
iX

iþ�b@bX
aÞjXa¼xa ¼!a

iX
iðxbÞþ�aðxbÞ; (7)

where �a is the compensating diffeomorphism parameter,

�aðxbÞ ¼ �!a
iX

iðxbÞ; (8)

ensuring that the gauge is preserved. Now, the Lorentz
transformation in the plane ða; iÞ must be supplemented
by the compensating diffeomorphism parametrized by �a.
For the transverse coordinates, we get

�XiðxaÞ ¼ !i
aX

a þ �b@bX
i ¼ !i

ax
a �!b

jX
j@bX

i

¼ �!b
jð�jixb þ Xj@bX

iÞ: (9)

These transformations have been obtained, for example, in
[5–7] and discussed in [1]. The identification of the indices
a and � implies that the gauge field Aa transforms linearly
as a vector under SOð1; d� 1Þ and undergoes an induced
Lorentz transformation in the plane ða; iÞ, due to the diffeo-
morphism necessary to keep the gauge fixed.

�AaðxÞ ¼ �b@bAa þ @a�
bAb

¼ �!b
iX

iðxÞ@bAa � ð@a!b
iX

iðxÞÞAb

¼ �!b
iðXi@bAa þ ð@aXiÞAbÞ: (10)

This equation is the same as Eq. (2) of [1]. Therefore, we
have shown that the transformation properties of Aa have
the same geometrical basis as Eq. (9), expressing the trans-
formation of the transverse coordinates, that is the need of
the gauge compensating term. From this point of view, the
fact that the field Aa supports a nonlinear representation of
the Lorentz group does not come as a surprise.

The transformations (6) and (7) in [1] of the world
tensors g�� and F�� are also understood in the same

manner, since they transform under diffeomorphisms as

�g�� ¼ �	@	g�� þ ð@ð��	Þg	�Þ;
�F�� ¼ �	@	F�� þ ð@½��	ÞF	��

(11)

and they are invariant under transformations in the plane
ða; iÞ. Here, the small round (square) parentheses stay for
symmetrization (antisymmetrization). Then, the gauge
fixed ða; iÞ transformations are

�gab ¼ ð�!c
iX

iÞ@cgab �!c
ið@ðaXiÞgcbÞ

¼ �!c
iðXi@cgab þ ð@ðaXiÞgcbÞÞ;

�Fab ¼ ð�!c
iX

iÞ@cFab �!c
ið@½aXiÞFcb�

¼ �!c
iðXi@cFab þ ð@½aXiÞFcb�Þ:

(12)

We would like also to stress the fact that the transformation
of Aa could have been obtained thinking of it as it would be
a ‘‘matter field’’ by following the standard techniques of
the nonlinear representations.
This can be seen in a more clear way by considering the

general transformation of X� consisting in a translation
plus a generic Lorentz transformation plus a diffeomor-
phism:

�XaðxÞ ¼ !a
bX

b þ!a
iX

i þ 
a þ ��@�X
a; (13)

where 
a are the parameters of the translations. To
obtain the compensating diffeomorphism, we also require
the variation of Xa to be zero in the gauge Xað�Þ ¼ xa

(a ¼ 0; . . . ; d� 1). It gives

�aðxÞ ¼ �ð!a
iX

i þ!a
bx

b þ 
aÞ: (14)

The corresponding general transformations for Xi, Aa

are given by

�XiðxÞ ¼ �!b
jð�jixb þ Xj@bX

iÞ þ!i
jX

j þ 
i

� ð!b
cx

c þ 
bÞ@bXi; (15)

�AaðxÞ ¼ �!b
iðXi@bAa þ ð@aXiÞAbÞ

þ!a
bAb � ð!b

cx
c þ 
bÞ@bAa: (16)

Note that, as expected, the gauge field transforms under
longitudinal transformations. The second-to-last term of
�Aa in (16) is the rotation of Aa, and the last term indicates
the ISOðdÞ transformation of xb in AaðxÞ.
The infinitesimal transformation (16) can be written as

A0
aðxb þ!b

iX
i þ!b

cx
c þ 
bÞ � AaðxÞ

¼ ð!a
b �!b

ið@aXiÞÞAb: (17)

This transformation shows that the Born-Infeld field
is a covariant field of the nonlinear realization of the
Poincaré ISOð1;D�1Þ=ðISOð1;d�1Þ�SOð1;D�dÞÞ,
if we consider that Aa transforms under the vector
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representation of the SOð1; d� 1Þ subgroup of the unbro-
ken group. Therefore, Aa should not be considered as a
Goldstone of some new space-time symmetry but rather as
a covariant field of the nonlinear realization [8,9] of the
Poincaré group in D dimensions.
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