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We present the extension to four dimensions of a Euclidean two-dimensional model that exhibits

spontaneous generation of a metric. In this model gravitons emerge as Goldstone bosons of a global

SOð4Þ �GLð4Þ symmetry broken down to SOð4Þ. The microscopic theory can be formulated without

having to appeal to any particular space-time metric and only assumes the preexistence of a manifold

endowed with an affine connection. In this sense the microscopic theory is quasitopological. There are

indications that suggest that the model may be renormalizable, a fact that seems to be due to the

impossibility of constructing counterterms without a preexisting metric. The vierbein appears as a

condensate of the fundamental fermions defining a vacuum that, if the background affine connection is

set to zero, is the Euclidean continuation of de Sitter space-time. If perturbatively small affine connections

are introduced on this background, fluctuations of the metric (i.e., gravitons) appear and are described by

an effective theory at long distances whose more relevant operators correspond to the Einstein-Hilbert

action with a cosmological constant. This effective action is derived in the large N limit, N being the

number of fermion species in the fundamental theory. The counterterms required by the microscopic

theory are directly related to the cosmological constant and Newton constant and their couplings could

eventually be adjusted to the physical values ofMp and �. The relevance of higher-dimensional operators

is also briefly discussed.
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I. INTRODUCTION

It has been pointed out several times in the literature
(see, e.g., [1–4]) that gravitons could perhaps be consid-
ered as Goldstone bosons of some broken symmetry. The
nonrenormalizability of gravity would therefore be analo-
gous to the bad ultraviolet properties of effective models of
hadrons, for instance. This is exactly the point of view that
we adopt in this paper. This work is the extension to four
dimensions of a previous analysis in two dimensions [5].

In our view, concrete implementations of this idea have
been lacking so far (see however [6,7]). By concrete pro-
posal we mean a field theory that does not contain the
graviton field as an elementary degree of freedom. It
should not even contain the tensor ��� either, as this

already implies the use of some background metric and
thus the notion of geometry; gravitons being fluctuations
around this flat background. Instead, one would like to see
all the metric degrees of freedom emerging dynamically,
like pions appear dynamically after chiral symmetry break-
ing in QCD. We would also prefer the underlying theory to
be in some sense ‘‘simpler’’ than gravity, renormalizable if
possible. It was shown in [5] that a theory with all these
characteristics can be found in two dimensions.

The purpose of the present work is to extend the D ¼ 2
model to the far more interesting case ofD ¼ 4. In spite of
complications brought up by the higher dimensionality,

most of the nice features of the D ¼ 2 case seem to persist
in D ¼ 4. The amount of divergent terms remains under
control, at least on shell, and the use of the equations of
motion ensures that the final effective theory is precisely
that of Einstein-Hilbert plus a cosmological term, comple-
mented by higher-dimensional terms (in the sense of terms
containing higher derivatives of the induced metric) nor-
malized by a computable dimensionful constant. We can-
not claim at this point that the model here introduced is
renormalizable, but we will provide some indications in
this direction. Verification of this point beyond the calcu-
lations presented in this work remains a very interesting
issue in our view.
The topic of ‘‘emergent gravity’’ has recently been a

popular one [8] but with the exceptions of the earlier works
of [6,7] we have been unable to find any proposal meeting
our rather restricted criteria of not assuming any preexist-
ing metric structure whatsoever. On the other hand the
proposals in [6,7] appear to be intractable and quantitative
results are hard or impossible to get. Of course, there is
nothing wrong in assuming a preexisting metric (such as
Minkowski or Euclidean), but in a scenario where grav-
itons emerge dynamically it appears natural that the theory
should select itself the vacuum where it chooses to live.
Therefore we shall not assume any predefined metric in
space-time and assume only the minimal structure of en-
dowing space-time with an affine connection. Once a
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metric is spontaneously generated, the equations of motion
relate the induced metric to the connection.

Traditionally a major stumbling block in the program
that will be developed below has been the so-called
Weinberg-Witten theorem [9] (see also [10]). The apparent
pathology of theories intending to generate dynamically
gauge bosons (including gravitons in this category) lies in
the fact that the energy-momentum tensor has to be iden-
tically zero if massless particles with spin � 1 appear and
one insists on the energy-momentum tensor being Lorentz
covariant. However, our results, while not constituting a
mathematical proof, indicate that one can indeed get in
D ¼ 4 an effective low-energy theory with massless com-
posite gravitons, so it is legitimate to ask why the
Weinberg-Witten theorem would not apply. We note some-
thing peculiar to our proposal; namely, the energy-
momentum tensor (derived in [5] for D ¼ 2 and which
is exactly the same in D ¼ 4) does not have tangent
(Lorentz) indices. In fact Lorentz indices are of an internal
nature in the present approach as we will see below. The
connection between Lorentz and world indices appears
only after a vierbein is dynamically generated. But then
one is exactly in the same situation as general relativity
where the applicability of [9] is excluded.

The dynamical generation of geometry, combined with
the usual renormalization group arguments have rather
interesting consequences. Geometry and distance are in-
duced rather than fundamental concepts. At sufficiently
short scales, when the effective action does not make sense
anymore, the physical degrees of freedom are fermionic.
Below that scale there is not even the notion of distance:
in a sense that is the shortest scale that can exist. This
precludes the existence of an ultraviolet fixed point advo-
cated by some [11] but also indicates that at short distances
gravity is non-Wilsonian as suggested by others [12] in an
holographic context.

This paper is organized as follows: in Sec. II we review
the similarities and differences between the D ¼ 2 and
D ¼ 4 theories and discuss possible counterterms. In
Sec. III we study the equations of motion and revise the
calculational set-up. Section IV is devoted to the explicit
one-loop calculation of the one, two and three-point func-
tions of the model. In Sec. V we summarize the divergent
content of the effective theory and make use of the equa-
tions of motion to prove the on shell renormalizability of
the model at leading order. In Sec. VI the final effective
action is written down and the connection between the free
constants of the theory and the physical universal constants
of gravity is discussed. Finally in Sec. VII we summarize
our results and discuss possible extensions.

II. TWO-DIMENSIONAL MODEL REVIEWAND
FOUR-DIMENSIONAL EXTENSION

It was shown in [5] that a consistent and apparently
renormalizable D ¼ 2 model reproducing gravity at long

distances could be built. The same model can be consid-
ered in D ¼ 4. The free Lagrangian density is

L0 ¼ i �c a�
að@� þ iwbc

� �bcÞ��

þ i ����að@� þ iwbc
� �bcÞc a; (1)

where c a and �� are two species of fermions transform-
ing, respectively, under Lorentz (a; b . . . are the tangent
indices, which can be considered internal ones for our
purposes) and Diffeomorphisms (�; � . . . are world indices
labelling the manifold coordinates x�, globally defined on
the manifold, with tangent vectors taken to be orthonormal
with respect to the tangent space SOðDÞ metric). A spin
connection is added to the derivative to preserve the
Lorentz� Diff symmetry1 under local coordinate trans-
formations. It is important to notice that there is no need to
have a metric defined in the manifold as long as �� trans-
forms as a spinorial density because then ��

�� does not
enter the covariant derivative, only wab

� . If we keep this

spin connection fixed, i.e., we do not consider it to be a
dynamical field for the time being, there is no invariance
under general coordinate transformations, but only under
the global group G ¼ SOðDÞ �GLðDÞ. Notice once more
that the spin connection is the only geometrical quantity
introduced.
The interaction term in the model, in Euclidean con-

ventions, is provided by

L I ¼ iBa
�ð �c a�

� þ ���c aÞ þ c detðBa
�Þ; (2)

which obviously does not require any metric to be formu-
lated either, assuming that Ba

� transforms as a vector under

Lorentz� Diff. We will assume that we have N species of
the previous fermions but we will not add an additional
index to avoid complicating the notation. We emphasize
that Lorentz symmetry acts as an internal symmetry at
this point.
The object of the interaction (2) is to trigger the sponta-

neous breaking of the global symmetry via fermion con-
densation. Upon use of the equations of motion for the
auxiliary field Ba

�

�c a�
�þ ���c a¼�ic

1

ðD�1Þ!�aa2...aD�
��2...�DBa2

�2
. . .BaD

�D

(3)

and thus

h �c a�
� þ ���c ai � 0 ) hBa

�i � 0: (4)

1We actually use Euclidean conventions but still refer to
SOðDÞ as Lorentz symmetry. Note that (1) is not the usual
Dirac coupling of fermions to a connection (that requires a
metric). The field �� has a spin 1=2 and 3=2 components in
general, although this statement makes little sense unless a
metric in the manifold is defined.
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If a nonzero value for the fermion condensate appears then
the field Ba

� necessarily acquires a nonzero expectation

value Ba
� (the reciprocal is not necessarily true, but it will

be true too in our case). Such condensation was seen to
happen inD ¼ 2 (in the largeN limit) and it will be present
in D ¼ 4 even for finite values of N as we will see in a
moment thus defining a nontrivial vacuum. Small pertur-
bations above this vacuum will yield the effective theory of
the quantum excitations of the theory. We will use a
perturbative approach corresponding to a weak field ex-
pansion around the solution for wab

� ¼ 0; the value of the

connection appears implicitly on the left-hand side of (3).
We shall first consider the case wab

� ¼ 0.

If wab
� ¼ 0 the vacuum of the theory is expected to be

translational invariant, i.e., we should obtain a constant
value for Ba

�, possibly zero. This constant value is obtained

from the gap equation derived from the effective potential

Veff ¼cdetðBa
�Þ�2N

Z dDk

ð2	ÞD trðlogð�ak�þ iBa
�ÞÞ: (5)

Note that the 2N preceding the integral comes from the 2N
species of fermions present. As for the flat measure used
for the integration, this corresponds to the functional trace
of the differential operator.2 As such the trace is indepen-
dent of the particular basis that is used to compute it. Any
other basis, if used correctly, would yield the same result.

Deriving (5) with regard to Ba
� we obtain

c
D

D!
�aa2...aD�

��2...�DBa2
�2

. . .BaD
�D

� 2Ni tr
Z dDk

ð2	ÞD ð�ak� þ iBa
�Þ�1j�a ¼ 0: (6)

This equation has a general nontrivial solution corres-
ponding to Ba

� ¼ M
a
� (or any SOðDÞ �GLðDÞ global

transformations of this). This is analogous to the more
familiar phenomenon of chiral symmetry breaking in
strong interactions and any value of Ba

� in the SOðDÞ �
GLðDÞ orbit is equivalent. For simplicity we will take
Ba
� ¼ M
a

� and then the gap equation reduces to an equa-

tion for M. In D ¼ 4

cM3 � 2N
Z dDk

ð2	ÞD
M

k2 þM2
¼ 0

cM3 þ N
M3

8	2

�
2

�
� log

M2

4	�2
� �þ 1

�
¼ 0;

(7)

whose formal solution is

M2 ¼ �2e8	
2cð�Þ=N; (8)

where � dc
d� ¼ � N

4	2 , making M a renormalization-group

invariant. In the previous, we introduced the usual mass
scale � to preserve the correct dimensionality of the
D-dimensional integral as dimensional regularization is
used. For the solution to actually exist we have to require
c > 0 ifM>�. If�>M the solution exists only if c < 0.
Therefore c > 0 will be the case we are interested in on
physical grounds.
Note that Ba

� has the right structure to be identified as the

vierbein, and as it was shown in [5], it consistently ree-
merges in the D ¼ 2 effective theory to form the determi-
nant of the spontaneously generated metric.
The free fermion propagator of the theory in the broken

phase can then be easily found after replacing Ba
� by its

vacuum expectation value. With a D ¼ 4 matrix notation

��1ðkÞij ¼
�i

M

�

i

j �
�ið6k� iMÞkj
k2 þM2

�
: (9)

A particularity of D ¼ 2 was that the most general form
for Ba

� (in Euclidean conventions) is a conformal factor

times a scale M times a 
a
�. This means that perturbations

around the minimum of the potential can only have one
physical degree of freedom, the conformal parameter. The
other degrees of freedom in Ba

� can be removed by suitable

coordinate transformations and are thus unphysical (recall
that the microscopic theory is fully generally covariant—
even without a metric).
The main difference of the D ¼ 4 case with respect to

the D ¼ 2 case is that the maximum number of possible
physical degrees of freedom for a perturbation around the
value Ba

� ¼ M
a
� grows up to six instead of one, making

the calculation much more complex. Clearly, considering a
uniparametric family of perturbations is far too simple in
D ¼ 4 and does not yield enough information to find the
long-distance effective action unambiguously. To bypass
this difficulty, but still keeping the calculation manageable,
we have chosen to restrict our considerations to diagonal
perturbations, where

Bi
jðxÞ¼M
i

je
�ð�iðxÞ=2Þ ðno sumoveriÞ: (10)

This form contains 4 degrees of freedom (rather than six)
but is rich enough for our purposes.3 The validity of our
conclusions rely on the assumption that the effective action
should be covariant (exactly as the microscopic theory is).
This was actually checked in the D ¼ 2 case using heat
kernel techniques. Here we have performed partial checks
but we have to assume that covariance holds to draw our
conclusions.

2Note that ‘‘plane waves’’ are eigenmodes of the differential
operator �ar� if the connection wab

� is set to zero. The connec-
tion itself is treated perturbatively in the subsequent.

3Note that these perturbations do not correspond to pure gauge
degrees of freedom as they lead to nonzero values for the
curvature, which is gauge-invariant; i.e., they necessarily involve
physical degrees of freedom.
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Note that once a dynamical value for ea� is generated

we can write terms such as M �c ae
a
��

�, where ea� would

correspond to the vierbein. A large number of Goldstone
bosons are produced. The original symmetry group

G ¼ SOð4Þ �GLð4Þ has 4ð4�1Þ
2 þ 42 generators. After the

breaking G ! H, with H ¼ SOð4Þ, there are 16 broken
generators, as expected. Since the metric must be symmet-
ric, at most 10 Goldstone bosons can enter the perturbation.
Four of those can be removed by a gauge choice, leaving
the before mentioned six. Finally within each gauge choice
a residual gauge freedom will in general allow for the
removal of four more. In this respect our counting is
analogous to the one in general relativity. The final number
of physical degrees of freedom will be two.

Another difference with respect to theD ¼ 2 case is that
the integrals involved in the perturbative calculation have
potentially a much worse ultraviolet behavior in D ¼ 4.
We postpone to Secs. III and IV the explicit calculations
that indicate that the nice characteristics found in the
D ¼ 2 model, in particular, renormalizability, seem to
persist in the D ¼ 4 case. However the ultimate reason
for the apparent renormalizability lies in the very limited
number of counterterms that can be written without a
metric (and the usual assumption that the ultraviolet be-
havior is unaltered by the phenomenon of spontaneous
symmetry breaking).

A. Possible counterterms

Before tackling the perturbative derivation of the effec-
tive action it is important to list the possible invariants one
can write in this theory without making use of a metric. In
D ¼ 2 we had, as already explained, two invariants that
could be constructed without having to appeal to a metric,
namely L0 and LI. The latter, upon use of the parametri-

zation Ba
� ¼ M
a

�e
�ð�=2Þ, reduces to

1

2!

Z
Ba
�B

b
��

���abd
2x ¼ M2

Z ffiffiffi
g

p
d2x; (11)

i.e., is the cosmological term. In addition, there is the
curvature term which in D ¼ 2 in terms of the connection
is simply

R
d2xdw, purely topological; therefore we do not

expect it to appear in the perturbative calculation. Then,
apart from the free kinetic term for the fermions, there is
only one invariant term that can be written down without a
metric. Or what is tantamount, only one possible counter-
term remains to absorb any divergence appearing in the
perturbative calculation after integrating out the fermions.
This fact enforces the renormalizability of the D ¼ 2
model in the large N limit in spite of the bad ultraviolet
behavior of the integrals. This argument was supported by
the explicit calculations presented in [5].

Now in D ¼ 4 we can write, in addition to L0 and LI,
one more counterterm

S R ¼ 1
2

Z
R½���abBa

�B
b
��

����d4x; (12)

where R½���ab ¼ ½r�ac;r�cb�. After integrating the fer-

mion fields only

S D ¼ 1

4!

Z
Ba
�B

b
�B

c
�B

d
��abcd�

����d4x; (13)

which was already present in LI, and SR can appear
as genuine divergences if general covariance is preserved.
We will denote by LD and LR the respective Lagrangian
densities.
Another counterterm one could write without making

use of a metric, namely, the Gauss-Bonnet topological
invariant in D ¼ 4, which is ofOðp4Þ in the usual momen-
tum counting.
We did not include the term SR in our action to start with

because it does not contain the fermionic fields. It does not
modify the equation of motion (3) for the auxiliary field
Ba
� or the gap Eq. (7) either, if the connection w� is set to

zero as we did in the previous section (recall that we use a
weak field expansion and w� ¼ 0 is used to determine the

vacuum). However, we see that SR is an allowed counter-
term in D ¼ 4 and therefore it needs to be included in the
initial action. In fact, any divergence in the theory must be
reabsorbable in the two terms SD and SR, as they are the
only local counterterms one can write before the symmetry
breaking, i.e., before the generation of the metric.
When the auxiliary field Ba

� is identified with the vier-

bein, the parametrization (10) and the equations of motion
are used the two counterterms reduce to

M4
Z ffiffiffi

g
p

d4x; M2
Z ffiffiffi

g
p

Rd4x; (14)

respectively; i.e., the familiar cosmological and Einstein
terms. This will be explained in more detail in the next
section.

III. EQUATIONS OF MOTION

Let us write explicitly what the D ¼ 4 counterterms
look like once we replace Ba

� by its vacuum expectation

value plus perturbations around it. To keep the notation
simple, let us consider the case in (10) when �iðxÞ ¼ �ðxÞ
(conformally flat perturbation). After substituting the

solution Ba
� ¼ Mea� ¼ Me��=2
a

� we have

L D ¼ 1

4!
Ba
�B

b
�B

c
�B

d
��abcd�

���� ¼ M4e�2� (15)

and

1
2R½���abBa

�B
b
��

����

¼ 1
2ð@�w�

���@�w�
��þw�

�cw�
c��w�

�cw�
c�Þe��M2:

(16)
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Note that because in the vacuum solution ea� ¼ 
a
� we can

use indiscriminately Greek and Latin indices; they are
lowered and raised with a metric proportional to the
identity.

Let us now work out the equations of motion for the full
Lagrangian L0 þLI þLR. In Sec. II we already dis-
cussed the equations of motion for the field Ba

� when

wab
� ¼ 0. In addition we have


L

w�

ab
¼ @�

�

ðL0 þLI þLRÞ


@�w�
ab

�
� 
ðL0 þLI þLRÞ


w�
ab

¼ 1

2
ð�@a�


�
b þ @b�


�
a � 


�
a w�b

�

� 

�
b w�

�
a þ wab

� þ wb
�
aÞe��

� 1

M2
ð �c c�

c�ab�
� þ ����c�abc cÞ ¼ 0: (17)

To solve (17) we will only consider the lowest-order term
in the 1=M2 expansion, following the usual counting rules
in effective Lagrangians based on a momentum expansion.
The solution for the connection in a conformally flat metric
is then

w�
ab ¼ 1

2ð@a�
b
� � @b�
a

�Þ: (18)

This is the relation one obtains from the usual condition
between the spin connection and the vierbein in general
relativity (19), characteristic of the Palatini formalism [13]

wab
� ¼ ea�@�E

�b þ ea�E
�b��

�� (19)

particularized to a conformally flat metric given by

ea� ¼ 
a
�e

�ð�=2Þ (E�b is the inverse vierbein). Making use

of (18) in (16), that is on shell, we are now allowed to
identify the curvature in terms of the scalar field �

LRjðonshellÞ ¼M2 ffiffiffi
g

p
R¼ 3

2

�
h�� 1

2@��@
��

�
e��M2: (20)

Note that in the particular case of a vierbein corresponding
to a conformally flat metric one can integrate by parts
either of the terms in (20) to obtain the other

ffiffiffi
g

p
R ¼ 3

2
M2

�
h�� 1

2
@��@

��

�
e��

¼ 3

4
M2ðh�Þ

�
1� �þ �2

2
� �3

6
þ � � �

�
(21)

This term plus a constant times (15) are the only divergen-
ces that should appear in the final effective theory upon
integration of the fermionic fields for this particular type of
perturbations above the vacuum (i.e., those interpretable as
a conformally flat metric).
As previously mentioned we shall consider a more

general type of perturbations; namely, we will use the
diagonal parametrization of the perturbations around the
vacuum solution given by (10). This is not the most general
one in D ¼ 4, but it is enough for our purposes. After the
identification of Ba

� with the vierbein, this corresponds

to a metric

g�� ¼

e��1ðxÞ 0 0 0

0 e��2ðxÞ 0 0

0 0 e��3ðxÞ 0

0 0 0 e��4ðxÞ

0
BBBBB@

1
CCCCCA: (22)

This parametrization provides enough generality to the
calculation. We can now derive the equivalent expression
to (18) for the general diagonal perturbation using (19) to
obtain4

w�
ab¼1

2

2
66666664

eð�1=2Þ 0 0 0

0 eð�2=2Þ 0 0

0 0 eð�3=2Þ 0

0 0 0 eð�4=2Þ

0
BBBBB@

1
CCCCCA

a� @��1e
�ð�1=2Þ 0 0 0

0 @��2e
�ð�2=2Þ 0 0

0 0 @��3e
�ð�3=2Þ 0

0 0 0 @��4e
�ð�4=2Þ

0
BBBBBB@

1
CCCCCCA

b

�

�

eð�1=2Þ 0 0 0

0 eð�2=2Þ 0 0

0 0 eð�3=2Þ 0

0 0 0 eð�4=2Þ

0
BBBBB@

1
CCCCCA

b� @��1e
�ð�1=2Þ 0 0 0

0 @��2e
�ð�2=2Þ 0 0

0 0 @��3e
�ð�3=2Þ 0

0 0 0 @��4e
�ð�4=2Þ

0
BBBBBB@

1
CCCCCCA

a

�

3
77777775: (23)

Making use of the equations of motion one can compute the correspondingLR for the general case and expand it in the �
fields. The result up to two sigma fields reads

4Again we emphasize that although it may seem strange to see latin indices in the derivatives this should not confuse the reader.
After the symmetry breaking a vierbein is generated relating world indices with tangent space ones through 
a

�. In expression (23) we
have compiled the entries for wab

� in a bimatrix form, but they should not be multiplied; only the index � is summed up.
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LRjðonshellÞ ¼M2 ffiffiffi
g

p
R

¼M2
h
@23�4þ@22�4þ@21�4þ@24�3þ@22�3þ@21�3þ@24�2þ@23�2þ@21�2þ@24�1þ@23�1þ@22�1

� 1
2ð@3�1@3�2þ@4�1@4�2þ@2�1@2�3þ@4�1@4�3þ@2�1@2�4þ@3�1@3�4þ@1�2@1�3þ@4�2@4�3

þ@1�2@1�4þ@3�2@3�4þ@1�3@1�4þ@2�3@2�4ÞþOð�3Þ
i
: (24)

More details on the calculation of (24) can be found in
the Appendix. Ignoring for a moment the Gauss-Bonnet
invariant, the divergent terms from the perturbative calcu-
lation for the general perturbation should match on shell
either with (24) or with

L Djðon shellÞ ¼ M4 ffiffiffi
g

p ¼ M4e
�ðP

i

�i=2Þ
: (25)

An extension to the most general perturbation with the
full 6 degrees of freedom should be possible but would
require much more effort, which we consider unnecessary
at this point as the above parametrization provides enough
redundancy. Since the coefficients for the terms in the
effective action are universal there should be no loss of
generality in the present approach. This of course assumes
that general covariance is kept all along the derivation of
the effective action and by the regulator, as it should be the
case in dimensional regularization.

So far we have explained how the D ¼ 2 model can be
consistently extended to D ¼ 4 preserving the key fea-
tures. We study small perturbations around a constant
vacuum expectation value for the field Ba

� (which does

not need to be small itself) corresponding to the solution of
the gap equation for wab

� ¼ 0. In such a theory one can

write a limited number of counterterms without making
use of a metric. These counterterms are consistent with the
usual terms of GR once used the equations of motion. With
all these ingredients we are ready to move to the actual
perturbative derivation of the effective action.

IV. ONE-LOOP STRUCTURE FOR A GENERAL
DIAGONAL PERTURBATION

The effective action that describes perturbations above
the trivial vacuum

wab
� ¼ 0; Ba

� ¼ M
a
�; (26)

will be given by a polynomial expansion in powers of
w�ðxÞ, �iðxÞ and their derivatives obtained after integra-

tion of the fundamental degrees of freedom. In this section
we will derive this effective action diagrammatically.

We shall use the diagonal perturbation (10) with four
degrees of freedom for the vierbein perturbations. For

simplicity, we will calculate only the one-point and
two-point functions for this rather general case and then
particularize to the conformal case [�iðxÞ ¼ �ðxÞ] to com-
pute some three-point functions.
Since perturbation theory in this model has some

peculiar features (note, in particular, the behavior of the
fermion propagator) in what follows we shall provide
enough details so that the diagrammatic calculation can
be reproduced.
Starting from the Lagrangian density L0 þLI de-

scribed in Sec. II (note that LR plays no role whatsoever
in the integration of the N species of fermions), and using
a parametrization of Ba

� given by (10), the interaction

vertices are

A. One- and two-point functions for the fields �i

With the rules described above and using the propagator
(9) we can calculate the first one-loop diagrams for
D ¼ 4� �. We will not include the factor N in the dia-
grammatic results presented below. The vacuum bubble
diagram is
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We also compute the one-point function for the different vertices

Let us, for this particular diagram, clarify what the origin of the numerical factor is. In the numerator, the 2! comes from the
combinatorial possible connections of the external fields �i. The other 2 is due to the two species of fermions and it is
present in all diagrams. In the denominator, 2!2 � 2 comes from the vertex. Since it is a one-point function there are no
additional factors, however for n-point functions the corresponding n! will be present in the denominator.

Next diagram is the two-point function
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The numerical factor in this case is composed by 2! 2 in the
numerator from the possible contractions of external fields
times the two species of fermions. And 2! in the denomi-
nator from the diagram being a two-point function
and finally the 1=2 from each vertex. We will not elaborate
on the combinatorial factors anymore but we write all
factors explicitly, even if the notation may be a bit
cumbersome, in order to facilitate the check of our
results. By Oðp4Þ we mean finite higher order in p2

contributions.

B. Diagrams with wab
�

Now we turn to the diagrams that contain a field wab
� .

The corresponding vertex is

The one- and two-point functions yield

¼ �2Tr
Z dDk

ð2	ÞD i�2�bc�
�1ðkÞ�a

" #
¼ 0 (34)

then

This suggests that diagrams containing only one field wab
� are zero. For two wab

� fields we have

ALFARO, ESPRIU, AND PUIGDOMÈNECH PHYSICAL REVIEW D 86, 025015 (2012)

025015-8



where F��
bcef is a complicated structure composed of

external momenta and Kronecker deltas of order Oðp2Þ.
This divergence is of higher order, in the 1=M2 expansion,
than the one of D��

bcef. Now, taking into account that
wbc

� ¼ �wcb
� , we can show that

D��
bcefw

bc
� wef

� ¼ 4w�b
� w

�b
� � 2wbe

� wbe
� ¼ 0;

E��
bcefw

bc
� wef

� ¼ 4w
�b
� wb�

�

(37)

More details can be found in the Appendix where we will
show how the combination of the divergences proportional

to F��
bcef appearing in this diagram combine to repro-

duce exactly the Oðp4Þ terms of the Gauss-Bonnet
invariant.

C. Three-point functions

In order to keep the calculations simple, we particularize

to the case Ba
� ¼ Me�ð�ðxÞ=2Þ
a

�. The previous results,

(28)–(37) are all valid taking �i ¼ �, i ¼ 1, 2, 3, 4. With
this simplification we can easily further compute more
diagrams. For the field � we have

And also
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On the other hand, for the field wab
� we can compute

And finally

With D��
bcef and E��

bcef being the same as in (36).
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V. SUMMARY OF DIVERGENCES

In the previous section we obtained the results of the
one-, two- and three-point functions for a general diagonal
perturbation, sometimes particularizing to a conformally
flat metric to ease the notation. Let us now summarize
the results.

The divergent part of diagrams (28)–(31) together with
the M4 piece of diagram (32) add up in the effective
action to5

M4e
�
�P

i
�i=2

�
8	2

�
2

�
� log

�
M2

�2

��
: (42)

Note that this term’s dimensionality matches (15).
Furthermore, it can be proved that the divergent terms in
(32) proportional to M2p2 are precisely those correspond-
ing to (24) in momentum space, thus allowing us to recover
the first orders ofLR for the general diagonal perturbation,
which on shell correspond to

ffiffiffi
g

p
R.

Diagram (36) has one divergent term proportional to
F��

bcef which is of higher order, i.e., Oð ffiffiffi
g

p
R2Þ. Before

addressing this apparent new divergence let us particular-
ize to the case of a conformally flat perturbation above the
vacuum. Taking �i ¼ �, (28)–(31) plus (32) add up in the
effective action to

M4e�2�

8	2

�
2

�
� log

�
M2e��

4	�2

�
� �þ 3

2

�

¼ M4e�ð2�þð�=2Þ�Þ

8	2

�
2

�
� log

�
M2

4	�2

�
� �þ 3

2

�
: (43)

An important remark is in order at this point. Note the

peculiar form of e�ð2�þð�=2Þ�Þ: this factor corresponds to
the determinant of a conformally flat metric in D ¼ 4� �
dimensions and it is a remnant of the fact that we used
dimensional regularization to calculate the momentum
integrals. Of course lim�!0

ffiffiffiffiffiffi
gD

p ¼ ffiffiffi
g

p
(where gD is the

determinant of the D-dimensional metric), but this is tell-
ing us that in order to regularize our integrals it is not
enough to add a mass scale to match the dimensionality; an
� power of the determinant of the metric is also needed to
ensure diffeomorphism invariance. That is �2 ! �2e��.
Then (43) would read

M4e�2�

8	2

�
2

�
� log

�
M2

4	�2

�
� �þ 3

2

�
: (44)

Continuing with the divergences, diagrams (38) and (39)
contain terms of orderM4 that are the subsequent orders of
the expansion of (43) in terms of �. As for the terms of
order p2, one has to express them in position space. The
result of diagram (32) for instance is

� �p2�M2

16	2

�
2

�
� log

�
M2

4	

�
� �� 2

3

�
(45)

that in position space reads

�h�M2

16	2

�
2

�
� log

�
M2

4	

�
� �� 2

3

�
: (46)

The next diagrams we consider are (38) plus (39)

M2�2ðp2 þ ðpþ qÞ2 þ q2Þ�
32	2

�
2

�
� log

�
M2

4	

�
� �� 5

3

�
;

(47)

or in position space

� 3M2�2h�

32	2

�
2

�
� log

�
M2

4	

�
� �� 5

3

�
: (48)

Now it is clear that the full calculation at order M2p2

resums to the following term in the effective action

M2h�e��

32	2

�
2

�
� log

�
M2

4	�2

�
� �þ 1

3

�
: (49)

Note that this term has the same structure that
ffiffiffi
g

p
R for a

conformally flat metric. This divergence can be absorbed
by redefiningLR and using the equations of motion. This is
already telling us that the theory is renormalizable only on
shell,6 namely when the spin connection wab

� corresponds

to the Levi-Civita one. In our approach this identification is
forced by the use of the equations of motion.
For a general diagonal perturbation one has to consider

the momentum-dependent Oðp2Þ divergent pieces in (32)
and similar diagrams with more external scalar legs. As a
check we can see that the momentum-dependent terms
with two �i fields faithfully reproduce the Oð�2Þ piece
in the curvature term (24) thus confirming the general
covariance of the effective action. Details are relegated to
the Appendix.
Let us now retake the issue of the apparent new diver-

gences emerging from (36). To see if they really contribute
to the final effective action we have to express them in
terms of the � fields using the available equations of
motion. Then in principle, they must either vanish or
correspond to a valid counterterm. We argued in Sec. II
that there is a third possible counterterm in D ¼ 4, the
Gauss-Bonnet term, which is a total derivative and should
not contribute to the dynamics. In the Appendix it is shown
how the lower-order divergence vanishes and how the
higher-order term indeed corresponds to a piece of the
Gauss-Bonnet term.

5Note that factors 1=n!, where n is the number of identical
external legs, and a sign flip, are needed to reconstruct the term
in the effective action from the diagrammatic calculation.

6Please note that this is quite unrelated to the well known fact
that pure gravity at one loop is finite on shell. The latter result
corresponds to performing a one-loop calculation with gravitons.
Here instead we integrate the microscopic degrees of freedom
that supposedly generate the gravitons after spontaneous sym-
metry breaking and generation of the metric degrees of freedom.
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VI. EFFECTIVE ACTION AND
PHYSICAL CONSTANTS

We are now ready to write the effective action we obtain
on shell; that is once the spin connection is set to the value
obtained after use of the equations of motion and the gap
equation is used. We shall present details only for a vier-
bein corresponding to a conformally flat metric but as
previously discussed we have a good check of its validity
for the divergent parts of a general diagonal perturbation
above the vacuum.

We recall our conventions. We have used Euclidean
conventions so that the (emerging) metric has signature
(þ , þ, þ, þ). The effective action at long distances is
defined by the functional integralZ

½dg� expð�S½g�Þ; (50)

where

g�� ¼ �abe
a
�e

b
� ¼ 1

M2
�abB

a
�B

b
�; (51)

according to our discussion in Sec. II.
The effective action obtained after the diagrammatic

calculation of the previous sections is

Seff ¼
Z

d4x

�
c0M4e�2� � N

M4

8	2
e�2�

�
log

�
M2

�2

�
� 3

2

�
þ A0M2h�e��

� N
M2

32	2
h�e��

�
log

�
M2

�2

�
� 28

3

��
þ . . . ; (52)

where c0 ¼ cþ N
8	2 ð2� þ log4	� �Þ and A0 ¼ Aþ N

8	2 �
ð2� þ log4	� �Þ are renormalized coupling constants that

have absorbed the divergences. The MS subtraction
scheme is assumed. Note that the finite part of the term
proportional to M2 has received a contribution from the
diagrams containing only wab

� fields, see the Appendix.

Making use of the gap Eq. (6) we can write the previous
expression as

Seff ¼
Z

d4x

�
N

M4

16	2
e�2� þ A0h�e��M2

� N
M2

32	2
h�e��

�
log

�
M2

�2

�
� 28

3

��
þ � � � : (53)

The resulting effective theory thus describes a geometry
with a cosmological term. Sometimes it is stated in the
literature, see the first reference of [4], that if gravity is an
emergent phenomenon and gravitons are Goldstone bosons
all interactions should be of a derivative nature and the
cosmological constant problem would be in a sense solved.
This is not so, as we see a cosmological terms is generated
necessarily (both in D ¼ 2 and D ¼ 4), at least in the
present approach.

The previous result is not exact of course. The effective
action is in fact an infinite series containing higher-order
derivatives, starting with terms of Oð ffiffiffi

g
p

R2Þ and so on,

which are represented by the dots in the previous expres-
sion. In fact, as we have seen, a counterterm proportional to
Gauss-Bonnet [of order Oð ffiffiffi

g
p

R2Þ] is required; finite terms

will appear too. The effective action should also contain a
nonlocal finite piece corresponding to the conformal anom-
aly (of dimension four in D ¼ 4 [14]). The conformal
anomaly was indeed reproduced in the previous work in
D ¼ 2 [5]. Note that any dimension four term that is
generated will be accompanied by a factor of N. The
dimension six terms will be of OðN=M2Þ and so forth. It
would be natural to redefine the constant A0 to include this
factor of N in order to keep the counting of powers of N
homogeneous.
Appealing to covariance arguments we can now express

(52) in terms of invariants

Seff ¼
Z
d4x

�
N

16	2
M4 ffiffiffi

g
p þ

�
A0 � N

48	2

�
log

�
M2

�2

�
�28

3

��

�M2 ffiffiffi
g

p
Rþ . . .

�
: (54)

Next we recall that the classical Einstein action corre-
sponding to the Euclidean conventions is [15]

S ¼ � M2
P

32	

Z
d4x

ffiffiffi
g

p ðR� 2�Þ: (55)

Now identifying

N

16	2
M4 ¼ 2�

M2
P

32	

M2

�
A0 � N

48	2

�
log

�
M2

�2

�
� 28

3

��
¼ � M2

P

32	
;

(56)

we indeed obtain

Seff ¼ � M2
p

32	

Z
d4x

ffiffiffi
g

p ðR� 2�Þ þOðp4Þ: (57)

As we see from the previous discussion, the integration of
the fermions (assumed to be the fundamental degrees of
freedom in the theory) yields a positive cosmological
constant. As for the value ofM2

P, the Planck mass squared,
the sign is not really automatically defined. More on this
latter.

A. Fine-tuning and running of the constants

To ensure that the action is renormalization-group-
invariant, thus observable, the following beta function for
each free constant in the theory must be obeyed

�
dc0

d�
¼ � N

4	2
�
dA0

d�
¼ � N

24	2
: (58)
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This running has nothing to do with the one generated by
graviton exchange and it is thus unrelated to the presence
or absence of asymptotic safety that some authors advocate
for gravity. At scales � � M the relevant degrees of free-
dom are not gravitons, but the 2N fermions appearing in
the microscopic Lagrangian. On the other hand, at the
moment that fermions become the relevant degrees of
freedom, geometry loses its meaning. There is then no
‘‘shorter’’ distance than M�1, or at the very least this
regime cannot be probed. Note that to realize our physical
assumption of having the fermions as fundamental degrees
of freedom we should have c > 0 as discussed in Sec. II.

These equations do not reflect the complete running of
the dimensionless couplings associated with LD and LR,
i.e., the constants associated with the cosmological and
Einstein-Hilbert terms, but only the one obtained at leading
order in N. That is, the ‘‘graviton’’ loops are not included
here; they are suppressed by one power of N if N is large.
To see this last statement we recall that the usual power
counting rules show that the exchange of the vierbein
degrees of freedom would be accompanied by a factor of
M�2

P , suppressed by 1=N. Leaving these corrections aside,

we note that the two free couplings of the theory have a
running that is opposed in sign to the one found in D ¼ 2.

It is probably useful to appeal to the QCD analogy.
At long distances strong interactions are well-described
by the pion chiral Lagrangian, parametrized by f	 or the
Oðp4Þ coefficients, generically named low-energy con-
stants (LEC). The LEC are a complicated function of �s,
the coupling constant of QCD. The microscopic theory
proposed in this paper is the analogous of QCD, while
the resulting effective theory (57) is the counterpart of the
chiral effective Lagrangian. ThenMP and� are the LEC of
the present theory. The running of �s does not have an
immediate translation on the LEC while in the present
model, because of its simplicity, the consequences of the
running in the microscopic particle reflects directly in �
andMP. But in addition these constants have an additional
running (analogous to doing pion loops in the chiral
Lagrangian). The counting of powers of N disentangles
both types of running.

At some scale, q�M the effective theory stops making
sense. At that moment the relevant degrees of freedom
change and, as a result, the metric disappears. Exactly in
the same way as for large momentum transfers we do not
see pions but quarks. Of course, if there is no metric there is
no geometry and, in particular, the notion of distance
disappears altogether at length scales below M�1. From
this point of view, gravity is non-Wilsonian.

Let us now try to make contact with the value that the
LEC take in gravity. Clearly, there is enough freedom in
the theory (by adjusting A0 andM) to reproduce any values
of � and MP. But we also want higher-order terms to be
small for the effective theory to make sense in a reasonable
range of momenta. We may even get rid of all of the high

order [Oðp4Þ and beyond] if we take M ! 1 and at the
same time we take N ! 0 in a prescribed form. Then,
in the actual limit, which corresponds to a ‘‘quenched’’
approximation, we exactly reproduce Einstein-Hilbert
Lagrangian, with a cosmological constant, and nothing
else. Of course in this limit, the presumed fundamental
degrees of freedom disappear completely and we have all
the way up to � ¼ 1 Einstein’s theory —with all its
ultraviolet problems; there are no fundamental degrees of
freedom providing form factors to cut off the offending
divergent integrals.7

Of course the N ! 0 limit is just the opposite one to the
one we have used. All our diagrammatic results are exact in
theN ! 1 limit and presumably get large corrections asN
approaches zero, but the general features of the model
should survive.
Note that M is a fixed quantity in the model and if M2

P

increases, � decreases. Taking the actual observed or
estimated values of these two parameters we get the value
NM4 � 1018 m�4, which is a very low scale. One may
think that this may already represent unacceptably large
corrections from higher-order operators. However, this is
not necessarily so because the bounds on R2 terms are very
weak. For instance, the bound k < 1074 has been quoted for
a generic coefficient [16] k of the Oðp4Þ terms. Thus, a
relatively low scale for M cannot be really excluded ob-
servationally by studying gravitational effects alone and
one should be aware of this. However, our own intuition
tells us thatM should be much larger than the value quoted
above as the notion of metric certainly makes sense at
much shorter distances. We can increase the value of M
as much as we want by decreasing the value of N, as
previously indicated. We shall not elaborate further on
this as it seems too premature an speculation.
Finally we note that the sign of Newton’s constant is not

determined a priori in this theory due to the subtraction
required from the counterterm inLR. This ties nicely with
some of the early discussions on induced gravity [17].

VII. SUMMARY

Let us summarize our findings and comment on possible
implications of our work. We have proposed a model
where D ¼ 4 gravity emerges from a theory without
any predefined metric. The minimal input is provided by
assuming a differential manifold structure endowed with
an affine connection. Nothing more. The Lagrangian can
be defined without having to appeal to a particular metric
or vierbein.

7Note that resolving the vertices’ sigularities is not enough to
mitigate the divergences of gravity as a loop of, e.g., Dirac
fermions generates itself new divergences of Oðp4Þ. It is the
combination of this with the absence of a metric tensor in the
unbroken phase that might help, as in the mechanism proposed
here.
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Gravity and distance are induced rather than fundamen-
tal concepts in this proposal. At sufficiently short scales,
when the effective action does not make sense anymore,
the physical degrees of freedom are fermionic. At such
short scales there is not even the notion of a smaller scale.

The relative technical simplicity of this proposal
constitutes its main virtue when compared with previous
proposals [6,7], where even semiquantitative discussions
appear impossible. Here one is able to derive in full detail
the effective action.

A very important aspect of the model is the apparent
improvement of the ultraviolet behavior. After integration
of the fundamental degrees of freedom all the divergences
that appear to the order we have computed in external fields
can seemingly be absorbed in the redefinition of the cos-
mological constant and the Planck mass (as seen from the
effective theory point of view, even though the respective
counterterms do not have this meaning in the underlying
theory). With the running, dictated by the corresponding
beta functions, both quantities are renormalization-
group-invariant. In addition the Gauss-Bonnet invariant is
renormalized too. This mitigation of the short-distance
divergences happens in spite of the bad ultraviolet
behavior of the propagator and the ultimate reason, we
think, is that these are the only counterterms that can be
written without having to assume an underlying metric that
does not exist before spontaneous symmetry breaking
takes place.

At long distances the fluctuations around the broken
vacuum are the relevant degrees of freedom and are de-
scribed by an effective theory whose lowest-dimensional
operators are just those of ordinary D ¼ 4 gravity. They of
course exhibit the usual divergences of quantum gravity
but this now poses in principle no problem as we know that
at very high energies this is not the right theory. For q�M
one starts seeing the fundamental degrees of freedom.
Gravitons are the Goldstone bosons of a broken global
symmetry. We have seen how the barrier of the
Weinberg-Witten no-go theorem could be overcome.

In a sense the fundamental fermions resolve the point-
like 3-graviton, 4-graviton, etc., interactions into extended
form factors and this is the reason for the mitigation of the
terrible ultraviolet behavior of quantum gravity. However
this is only part of the story, because this could be equally
achieved by using Dirac fermions coupled to gravity (or
any other field for that matter). This would in fact be just a
reproduction of the old program of induced gravity [17]
and therefore not that interesting. The really novel point in
this proposal is that the microscopic fermion action does
not contain any metric tensor at all. Then not only is the
metric and its fluctuations —the gravitons— spontane-
ously generated, but the possible counterterms are severely
limited in number.

We stop short of making any strong claims about the
renormalizability of the model. We can just say that, from

our calculations and our experience with the model, renor-
malizability is a plausible hypothesis (our results actually
amount to an heuristic proof in the large N limit). Likewise
we do not insist in that the one presented is the sole
possibility to carry out the present program, although it
looks fairly unique. Clearly a number of issues need further
study before the present proposal can be taken seriously
but we think that the results presented here are of sufficient
interest to make them known to researchers in the field.
A number of extensions and applications come to our

mind. Perhaps the most intriguing one from a physical
point of view would be to investigate in this framework
singular solutions in GR such as black holes. A more in-
depth study of the renormalizability issue is certainly
required too as there are issues related to the renormaliza-
tion group to be addressed in the present setting.
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We list here a few errors found in [5] in order to facilitate
the comparison. The equations cited in what follows refer
to [5]. The first term on the left-hand side of Eq. (34)
should be divided by n!. The second term on the left-
hand side of Eq. (35) has to be multiplied by 2. In the
result of Eq. (56), the term proportional to M2has to be
multiplied by 2. Equation (60) has to be multiplied by a
global factor of 2, since we refer to the total contribution to
the effective action. In Eq. (63), the three terms not pro-
portional to M2 need to be divided by 2. Finally there is a
typo in the second paragraph after Eq. (63); the expressions
are valid as long as the characteristic momenta are k <M.

APPENDIX

In this Appendix we include the explicit calculation of
the different terms appearing in (36) showing how they
correspond on shell to different terms in the action. We also
include, for completeness, how the result of (32) in the
diagonal parametrization of the metric used in the text
yields precisely (24).

1. D��
bcef , E

��
bcef and F��

bcef

We saw in Sec. (4.2) that diagram (36) contains three
different terms, two of them being divergent, let us show
how they either cancel or can be accommodated in the
available counterterms. Let us write them down together
with the wab

� fields.
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D��
bcefw

bc
� wef

� ¼ 4w�b
� w

�b
� � 2wbe

� wbe
�

¼ 2ðw12
1 Þ2 � 2ðw21

1 Þ2 þ 2ðw13
1 Þ2 � 2ðw31

1 Þ2
þ 2ðw14

1 Þ2 � 2ðw41
1 Þ2 þ � � �

þ 2ðw34
4 Þ2 � 2ðw43

4 Þ2 ¼ 0: (A1)

So this divergence cancels regardless of the parametriza-
tion we choose.

Let us write the second one now considering a confor-
mally flat parametrization of the metric

g�� ¼ e��ðxÞ
��: (A2)

Then we have

E��
bcefw

bc
� wef

� ¼ 4w
�b
� wb�

� : (A3)

Making use of Eq. (18), that is,

w�
ab ¼ 1

2ð@a�
b
� � @b�
a

�Þ; (A4)

we obtain

E��
bcefw

bc
� wef

� ¼�9½ð@1�Þ2þð@2�Þ2þð@3�Þ2þð@4�Þ2�
¼�9@��@��:

(A5)

Recall this term appeared both in (36) and in (41). Summing their contributions in the way we did to reconstruct the
effective action for the � field diagrams we obtain

9M2

32	2
@��@��ð1� �þ � � �Þ ! 9M2

32	2
@��@��e

�� ! 9M2

32	2
e��h�: (A6)

This is just a finite contribution to
ffiffiffi
g

p
R and it is reflected in (52).

The Gauss-Bonnet term corresponding to such a metric perturbation reads

LGB ¼ ffiffiffi
g

p ðR2 þ 4R��R
�� � R����R

����Þ
¼ �4@3@4�@3@4�þ 4@24�@

2
3�� 4@2@4�@2@4�þ 4@24�@

2
2�� 4@2@3�@2@3�þ 4@23�@

2
2�� 4@1@4�@1@4�

þ 4@24�@
2
1�� 4@1@2�@1@2�þ 4@22�@

2
1�� 4@1@3�@1@3�þ 4@23�@

2
1�� 3@4�@4�@

2
4�� @24�@3�@3�

� 4@4�@3�@3@4�� @4�@4�@
2
3�� 3@3�@3�@

2
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The last term we have to explore is the piece 1
� F

��
bcef. Let us explicitly write this term together with the wbc

� fields
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1

�
F��

bcefw
bc
� wef

� ¼ 6

	2

1

�
½�@24�@

2
1�þ @1@4�@1@4�� @23�@

2
4�þ @3@4�@3@4�� @22�@

2
4�þ @2@4�@2@4�

� @22�@
2
3�þ @2@3�@2@3�� @23�@

2
1�þ @1@3�@1@3�� @22�@

2
1�þ @1@2�@1@2��: (A9)

Now it is easy to see that (A9) corresponds to the second
and third lines in (A7). This divergent contribution is part
of the Gauss-Bonnet term, which, although being a total
derivative, is a valid counterterm. The rest of (A7) contains
three sigma fields and is not present in (36) as should be the
case. These remaining terms would be generated in the
triangular diagramwith three externalwab

� fields and would
come with a divergent coefficient (we have not computed
such diagram). Note also that both (A9) and the first two
lines of (A7) can be integrated by parts to make them
vanish. This happens because in the conformally flat
metric perturbations terms from the diagrams with two
and three external w fields can not be related to each
other integrating by parts. Therefore, they must vanish
independently as the Gauss-Bonnet term is a total deriva-
tive after all.

This is a particularity of the conformally flat parametri-
zation of the metric perturbation and would not hold for a
generally diagonal parametrization. In that case terms

generated in the two-point function can be transformed
into the terms appearing in the three-point function
by integration by parts and one would require a full calcu-
lation to show there is a match with an independent calcu-
lation of the Gauss-Bonnet term.

2.
ffiffiffi
g

p
R for the general diagonal

parametrization of the metric

Let us consider a generally diagonal metric with 4
degrees of freedom

g�� ¼

e��1ðxÞ 0 0 0

0 e��2ðxÞ 0 0

0 0 e��3ðxÞ 0

0 0 0 e��4ðxÞ

0
BBBBB@

1
CCCCCA: (A10)

We saw that the corresponding expression for the curvature
is Eq. (24)

LRjðon shellÞ ¼ M2 ffiffiffi
g

p
R

¼ M2
h
@23�4 þ @22�4 þ @21�4 þ @24�3 þ @22�3 þ @21�3 þ @24�2 þ @23�2 þ @21�2 þ @24�1 þ @23�1

þ @22�1 � 1
2ð@3�1@3�2 þ @4�1@4�2 þ @2�1@2�3 þ @4�1@4�3 þ @2�1@2�4 þ @3�1@3�4

þ @1�2@1�3 þ @4�2@4�3 þ @1�2@1�4 þ @3�2@3�4 þ @1�3@1�4 þ @2�3@2�4Þ þOð�3Þ
i
: (A11)

We consider now the divergent part proportional to M2 of the result of (32)

2
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48	2
þ �j�lðp2
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l ÞM2

48	2

�
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þ �1�2ðp2
1 þ p2

2Þ þ �1�3ðp2
1 þ p2

3Þ þ �1�4ðp2
1 þ p2

4Þ þ �2�3ðp2
2 þ p2

3Þ
þ �2�4ðp2

2 þ p2
4Þ þ �3�4ðp2

3 þ p2
4Þ�

¼ 2

�

M2

48	2
½��1�2ðp2

3 þ p2
4Þ � �1�3ðp2

2 þ p2
4Þ � �1�4ðp2

2 þ p2
3Þ

� �2�3ðp2
1 þ p2

4Þ � �2�4ðp2
1 þ p2

3Þ � �3�4ðp2
1 þ p2

2Þ�: (A12)

This last expression, when expressed in position space, corresponds exactly to (A11) except for a numerical factor
and minus the second derivatives of the fields which are total derivatives and do not appear in the perturbative
calculation.
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