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Schrodinger equations for higher order nonrelativistic particles and N-Galilean
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We consider Schrodinger equations for a nonrelativistic particle obeying an N + 1-th order higher
derivative classical equation of motion. These equations are invariant under N (odd)-extended Galilean
conformal algebras in general d + 1 dimensions. In 2 + 1 dimensions, the exotic Schrodinger equations
are invariant under N (even)-Galilean conformal algebras.
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I. INTRODUCTION

The Schrodinger equation for a nonrelativistic free
particle

(ia, 4 ﬁw)w, x) =0 (1

is invariant under the scalar projective representation of the
Galilei group [1,2]. In addition, the maximal symmetry of
(1) is the Schrodinger algebra [3,4] that includes extra
generators associated with dilatation, expansion (special
conformal transformations in one dimension) and a central
charge. The Schrodinger equation is obtained by the ca-
nonical quantization of the nonrelativistic free particle
whose action § = [dr¥(4X)? is also invariant under the
Schrodinger group.

In this paper we will generalize above result (N = 1
case) and show that the higher order nonrelativistic particle
model given by the Lagrangian’

M d(N+l)/2X 2
= ( ) N=1735... 2)

Ly = 2\ g/N+D/2

has the N-Galilean conformal (NGC) symmetry (7,812 M
is the constant with the dimension [M] = (mass)> V.
Furthermore the corresponding Schrodinger equations are
projective representation of the NGC symmetries. For even
N case we consider only 2 + 1 dimensions where the
central extension of the NGC algebra exists.
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'The N = 3 case was considered in [5] as an example of a
realization of the Galilei algebra with zero mass. The model was
also considered in [6].

*In [9] it was conjectured that N + 1-th order free equations of
motion are NGC invariant for any N, odd and even.
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The NGC algebra [7,8] is the finite dimensional exten-
sion of the Galilean algebra for positive integer N. Their
commutators are

[D,H]=iH, [C H]=2iD,

(D, P,] - —i(j - E)?j

2
[C> ?]] = _l(] - N):PjJrl) [Jab’ Tj,c] = iac[b?i,a]’

Wabr Jeal = 18 pdaja — Sappdate)- (3)

It has subalgebras, (H, D, C), one dimensional conformal
algebra and (H, P,, P,, J), the unextended Galilean
algebra and the acceleration extended Galilean algebra
[6] with higher order accelerations ij, (G=2...,N.N
is interpreted in terms of the dynamical exponent z under
the dilation D of the coordinates as

[D, C] = —iC,

[H, Tj] = _ij?j—ly

t— A%, X — AX| 7= % 4
N
Recently it gets much attention on the Galilean conformal
symmetry and its extensions especially in condensed mat-
ter physics and gravity [9-12]. It is interesting to see how
such symmetries are realized in a simple particle models.
In Sec. II we introduce a particle action invariant under
the central extension of the NGC algebra (3). In Sec. I1I we
discuss how the symmetry is realized in the Schrodinger
equation in quantum theory. The even-N cases in
2 + 1 dimensions are briefly commented in Sec. IV and
the summary and discussion are in Sec. V. In the Appendix
we explain how the invariant actions are derived using the
method of nonlinear realization.

II. NGC INVARIANT PARTICLE MODEL

In order to quantize the particle model described by the
Lagrangian (2) we construct the Hamiltonian associated
with it. Since the theory is higher order in time derivative,
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we introduce auxiliary coordinates X/ = X/=! (1 = j =

N>1), X% = X and the Lagrange multipliers Y; to get the
Lagranglan as
(N=3)/2 )
Ly (X(N DR 4N Y X - X (5)
Jj=0
The Ostrogradsky momenta [13] are
N-3
Pj:Yj’ (j:(),...,—),
2 6)
P(N*l)/Z = MX(N_I)/Z.

If we use the second class constraint (Y, P’ y) = (P;,0), the
independent canonical pairs are (X/, P;), (0 = j = ¥,
and the Hamiltonian becomes
(N=3)/2
H = Z P X7+ + —(Pw )t (D

= |

W_1/2
H=—-H, = —tH + Z (N )L 2P i
(N_D/2 X/ P},
— _ 2 _ . ’ J
C=-rH+ ]ZO ((N 22—+

)

N—1
=0,...,—),
(’ 2 )

TN -+ 1)jxf—11>j) -
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Using the canonical commutators
[X]» Pk] = iaj,k) [X]’ Xk] = [P]r Pk] = 0: (8)

the Heisenberg equations

.. ) . . _N-3
XJ:XJ+], Pj+l = _P], (OS‘]ST>’
' 9)
XW=D/2 = _P(Nfl)/z’ Py =0
reproduce the Euler-Lagrangian equation of (2), j}fwll X%=0.

The Lagrangian (5) is invariant under the NGC symmetry
whose Hermitian canonical generators are

s

M (N + 1\2
_< 5 )(X(N—l)/2)2’

=02 -t j .
P;= j’( .tf P, - M Z (=) (N+D/D+€ 5 XN—€>’ (] _ N+ 1’ ,N),
=0 (=0 (=(N+1)/2 (—0! 2
W2 ,
Jab = z (XJbP/a - Xéij), (10)
=0

where {X/, P}, = X/P, + P;X/. These generators, G,
Which have explicit ¢ dependence, are constant of motion,

. :ftG = —i[G, H]+ aG = 0. It proves the transforma-
t10ns generated by G’s are symmetry of the Lagrangian (5).
Transformations of Y; are given by those of P;. Their
commutators are those of the NGC algebra (3). In addltlon
P;’s are no longer commuting and it appears a central
charge Z =M [14],

[Pe, Pb] = —igb SNITk(—1)k=itD2 11z, (11)

In the Appendix we show that in a nonlinear realization
method [15] the Lagrangian (5) appears as the left invariant
one-form associated with the central charge Z in (11).

IIL. SCHRODINGER EQUATION

Now we consider the Schrodinger equation associated
with the Hamiltonian (7). The canonical pairs (X/, P))

satisfying (8) are realized as the Hermitian linear
operators (x/, —iVj) on complex wave functions

i (t, x°,
<¢1|¢2>=[ddxo"'ddX(N_l)/zl/fl(l‘yXj)lﬁz(tyxj), (12)

., xXN=1/2) with the inner product

where ¢ is the complex conjugate function of . The
Schrodinger equation 9,4 = JH i for the wave function
P, x0, ..., xND/2) gg

Dyt x0, ..., xNV=1/2) =, (13)

where @ is the Schrodinger differential operator defined
by

P 9 (N=3)/2
<I>S=i——.9'-[=i—t+<i Z XtV +—(V(N n/2)? )

=0
(14)
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The Schrodinger equation can be deduced from the action

I = | dtd?x/ s (t, x))Dg (1, x7), (15)

which is invariant under NGC transformations in the scalar projective representation of the wave function. The NGC
algebra (3) is realized by the generators (10) in the form of Hermitian vector fields on the wave functions

P, x!, . xVTD2),
H=-H, D=-tH+ (Ng/z(%—j)xf(—ivj) - idw,
——t25{+(Nzl)/2((N 2j)ixd + (N = j+ Djxi ) (—ivy) -2 <N2+1) (x(N-1/2)2 — w
=0
4_]<i & ng)), (j=0,...,NT_1),
— <(NZI)/2(J]'7—;)' —ive)_Me_(gl)/z( )((N+1)/2)+€(j7_2)'XN€)’ (1=NT+1N> Z=M  (16)

where d is the spatial dimensions. They are satisfying the
NGC algebra (3) and (11). These generators commute with
the ®g, showing that they are constant of motion.
Therefore, the Schrodinger Eq. (13) remains invariant
under the NGC transformations. When i (t, x/) is a solu-
tion of the Schrodinger equation, then /(z, x/) =
¢'*G (1, x7) is also a solution for G = (H, D, C, P}, J ;).
Since the generators are Hermitian, the transformations
U = ¢'*Y are unitary. The transformed wave function
J'(t, x7) is also written in a form

lﬂ/(l‘, Xj) = pliaG lp(l, Xj) — eﬂ+i28¢(t/’ Xj’), (17)

using the Schrodinger equation. Here A, B are real func-
tions of the coordinates and the transformation parameters

a’s. (', x/') are the coordinates transformed by the NGC
transformation.
The H transformation is time translation,

(6, x7) = e iy (1,x7) = ™) o (1, x7) = Yy (t + a,x7). (18)

For the finite scale transformation,

l/f'(t, Xj) — ei/\D l//(t, Xj) — e’\d(NH)z/l(’l,[/(e’\t, e)‘((N/Z)fj)Xj)’
19)

under which the action (15) is invariant. For the finite
conformal transformation, «G = kC,

@'t x)) = e Coy(t,x)) = eATByY(d, x7),  (20)
with

g t i Gty i1, Cr o = (1 — ki)~ @D/ +1/27 B — _ﬂ(N + 1)2 &N
1 — «t’ ~ (1 — k)N~ (1 — k)V-H*r ' ’ 2 2 (1 — k1)’
(N-1)/2 N
_ YrY KNS (V= 1)/2)—re (N 1)/2) _
&N = r!sV(r-rf-;-i- D\1 - Kl) WDV Zov-ng2 Cv-r2-r (s /2 Covenye
o rls!
2D
For the finite P; transformations,
(1, x)) = ¢ 20 PPy, x) = e 2moi By (1, %), (22)
The nontrivial projective phase [1] w; associated with the P; transformations is given by
(N=1)/2 Bt
drox B =M 3 ()0 (it B, 23)
k=0

where the transformed coordinates are given by
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» » » d(’ N o
xXV=x0+p8° x=x‘+p" B=—"7DVB. (24
di' &

We have a projective representation of the NGC group.
Under successive P; transformations we get the non-
trivial 2-cocycle w,(8, B'),

UPBUB) = e 2mBAY(B + B)), 25)

( ) (N§/2(_)((N—1)/2)+k
27w, (B, B =M B —
’ k=0 2
X (ﬁkﬁ/N*k _ BlkﬁN*k)' (26)

The projective invariance of the Schrodinger equation is a
one to one correspondence with the fact that the higher
order Lagrangian (2), or the corresponding Lagrangian (5)
is invariant up to a total derivative under the finite P;
transformations [16],

d
where transformations of X/ and Yj are
X=X+ Y=Y+ M(=) WD/ gN=I - (28)

These two properties are related to the fact that NGC
algebra has a central extension (11) [17].

IV. EVEN N MODEL IN 2 + 1 DIMENSIONS

In 2 + 1 dimensions we can construct a local higher
order Lagrangian given by
M, dVDX  gN2FIX,

Lx=5"—Gm Jwma (29)

where N is any positive even integer.” The Lagrangian
equivalent to (29) is

2)—1

M etimews 08 - »
'EX = 56 Xa Xh + YJ(XJ - X/ )

j=0
(30)

The Ostrogradsky momenta [13] are

, N M )
P,=Y, <]=0,...,5—1), Ph == XD e,

/2"
(€20)
Using the second class constraints
M b v/om
X =Py + Ee“ X =0, a=12 (32

3The case N = 2 was analyzed in [18].
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the variables XE,N / 2), (a =1, 2) can be expressed in terms
of the independent Py ), (@ = 1, 2) satisfying

M
[Py 0 Ply /] = —i T €. (33)

Note that the model has built in a noncommutative struc-
ture in phase space. The Hamiltonian is

(N/2)-1

H = 3 pXxit! (34)
j=0

and the equations of motion for X = X° gives j;f;]] X=0.

Note that in this case the order of derivatives, (N + 1), is
odd. The canonical generators of NGC algebra are

H=-3H, D =—tﬂ+z§.’i€>‘1(%—j)—{x”§f}*,

(N/2)—1

C=-rH+ ((N - 2j)t{7Xj’ P}
j=0

2

. N
+(N—j+ 1)jx1*11>j) + N(E + 1)P(N/2)X<N/2>*1,

J j—t

’Pj=j!<2ﬁPg>, <j=0,...,%—1),

=0

P = j1

(N/2) =t
( P — M

=0 (] - 6)'

P>

(=(N/2)+1

(1=3-)
] 2,..., s

(N/2) i
Ja=D. (X}P;,—XiP;), Z=M, (35)
j=0

t/

OG5

N—C _ab
X, e ),

where the central charge Z appears in
[Pe, Pb] = —ie® SNITK(—1)UR/2L1j1Z. (36)

Asin the odd N case we can prove that these generators are
constant of motion verifying the central extended
NGC algebra. We can also prove that the associated
Schrédinger equation is invariant under a scalar projective
representation of the NGC group.

V. SUMMARY AND DISCUSSION

In this paper we have shown that the Schrodinger equa-
tion associated to the higher order nonrelativistic particle is
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invariant under a projective representation of N(odd) GCA
for any dimension. This results generalize the well-known
result [3,4] that the ordinary Schrédinger equation is in-
variant under the Schrédinger (conformal) group. In the
case of 2 + 1 dimensions we have seen that the exotic
Schrodinger equation is invariant under N(even) conformal
algebras. We expect these results could be useful among
other areas in the holographic description of condensed
matter physics.

The Hamiltonians (7) and (34) of present models are
not positive semidefinite as is known in general for
higher time derivative Lagrangian systems.* In quantum
theory generically the system will contain ghost degrees
of freedom. One possible procedure is to change the
scalar product that has been applied to higher order
harmonic oscillator [20] in Ref. [21]. Another possibility
is to eliminate the ghost spectrum by imposing a Becchi-
Rouet-Stora-Tyutin  like operator on the physical
states [22].

Possible extensions of the work is to consider the case of
the NGC algebra for even N in any dimensions. We could
also study the symmetry properties of the fourth order
derivative harmonic oscillator [20], and its generalizations.
We expect in this case that we will have a realization of the
Newton-Hooke NGC algebra [14]. There are also possible
higher order extensions of the Levy-Leblond equation [23]
and the associated superconformal algebra [24].
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APPENDIX: PARTICLE MODEL ACTION FROM
NONLINEAR REALIZATION

Here we show how the NGC invariant action (5), for
odd N, is derived using the nonlinear realization of the
group G/H [15] (see also [25] and references therein),
where G is the centrally extended algebra (3) with (11).
The left invariant Maurer Cartan (MC) form () =
—ig~'dg is expanded as

Q=HLy+DLp+ CLc+P;Lp, +3),,L5" + ZLy
(Al)
and is satisfying the MC equation d{) +iQ) A Q = 0.

Using the NGC algebra (3) and (11) their components
satisfy the MC equations

“A fourth order gravity in (2 + 1) dimensions without ghost
has been studied in [19].

PHYSICAL REVIEW D 85, 045023 (2012)

dLH: _LDLH’ dLD= _2LCLH’ dLCZLDLc,
. a . N a
Ly =(j+DLyLy + (1 -~ E)LDLPj
+(j=1=N)LcLy | —L§,Lh,
a yc — 1 - (_1)j
dLJb - _LJL‘LJb’ dLZ _EJ;)N—QLP/ /\LPN—j' (A2)

They are closed under ’d”’ that is equivalent with that the
Jacobi identities of the algebra are satisfied. The right-hand
side of dL, is the Wess-Zumino two-form closed and
invariant in the nonextended algebra.

We parametrize the coset element as
g= etheinX-"eiCO'eiDpeiZc. (A3)

(¢, X) for the generators (H, Py) are identified to the D =
d + 1 dimensional space-time coordinates. The left invari-

ant MC form components are
LH:eipdt, LDZ(dp—ZO'dt), LC:ep(d0'+ O'th),

(A4)

J
Lp,=ei~W2e Y C. (=) (dX = (k+ )X ),
k=0

ab N /(_1)J
Lz=dc—8b2(( s

XJdX)
=AY
(—1Y)

NYi-1

+

Xy ‘f“X{,dz). (A5)
Here and hereafter when X! and XV*! appear , they are
understood to be zero by definition. Note in the present
parametrization of the coset L does not depend on p and o

In the method of nonlinear realization the particle action
is constructed from J invariant one-forms. They are Ly,
Lp, Lc, Ly and we can use their linear combination as
the invariant action

I= f(fc + Lx), L.=(byLy + bpLp + bcLc)',

Lx = (aLz)", (A6)

where * means pullback to the particle world line parame-
trized by 7. The first term L, depends only on the su(l, 1)
variables, (¢, o, p), and giving one-dimensional conformal
mechanics Lagrangian [26].

We take the second term Ly as the particle Lagrangian
now depending on ¢ and X/ in the present parametrization
of the coset (A3). Using (AS5)

e
2 j=0 ch

N P

Y N

+ z( C)JXQV -’“X{,t)]dr
=1 NY =1

‘£X = G[C

(A7)
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and subtracting a surface term, it becomes

N=3)/2(_1Vi(;
£y- S NG

=0 ~Cj
(=DWDREZNDZ vy
- - X 2 |dr.
2N ( ) ] T

Here X"~/ in the first term runs over X(NH)/Z, ..., X" and
they play the roles of Lagrange multipliers giving their
equations of motion,

- 1 X N-3
XJ“=—<—.), 0., M2 (A9
jri\i / 2 (63)
XV*D/2 equation of motion determines XV /2 ag
WN-1)/2
g — 2 (_X , ) (A10)
N +1 t

Using it in the Lagrangian (A8) the second term can be
dropped. XW*1/2 . X! are solved iteratively in terms of
X and its derivatives,
U B 1d N+1
X/=.—'D/XO, D=- j=1,...,—2 .

; T (ALD)

o (o1
XN (Xf+1t eS| 1(X])> +

PHYSICAL REVIEW D 85, 045023 (2012)

—1\N=1)/2(N+1 )2 .
(=1 (2 D) (X(N-H)/Zt'_ 2 )~((N—1)/2)2

2Nt N +1
(A8)
If we use them in the Lagrangian (A8) we obtain
(— 1)(N+1)/2 B )
Ly=a—F— (DWHD/2XO0V2 7. (A12)

2N

In a static gauge 7 = 1 the Lagrangians (A8) and (A12)
become (5) and (2), respectively, by identifications a =
(=1)WHD2N1M and

L. X/ N -1
X (0 )
J! 2

X./:(il).N YN, <j=N 3,...,N).
aj! 2

(A13)

For the even N case the central extension is possible only
in D = 1 + 2 dimensions (36). Applying similar discus-
sions, we arrive at the actions (29) and (30).
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