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A bstract

POWER-CANCELLATION OF
CW-COMPLEXES WITH FEW CELLS

IRENE LLERENA

Dedicated to Pere Menal, in memoriam

In this paper, we use the fact that the rings of integer matrices
have the power-substitution property in order to obtain a power-
cancellation property for homotopy types of CW-complexes with
one cell in dimensions 0 and 4n and a finite number of cells in
dimension 2n .

Introduction

Cancellation in homotopy is closely related to the genus . Recall that
the genes of a homotopy type X is the set of all homotopy types Y
such that the p-localizations of X and Y are homotopy equivalent for all
primes p : Xp - Yp [9] . If X and Y are in the same genus, we shall write
X - Y . All the known examples of non-cancellation occur for homotopy
types in the same genus . A relevant result in this line is the following .

Theorem 1 (Wilkerson [12]) . Let X, Y, W be nilpotent co-H-
complexes with finitely generated homology . Then

i) X V Y - X V W

	

implies Y - W,

	

and
k

	

k

ii) vX - V Y

	

implies X - Y.

In [10] Mislin characterized the genes of nilpotent co-H-spaces with
finitely generated homology in the following way

X - Y

	

if and only if

	

X V V Sn; - Y V V Smj ,

where the dimensions of the spheres are determined by the homotopy
groups of X and Y. A similar result had been obtained by Molnar [111
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for CW-complexes with two cells, Sn Uf en'., with attaching map f of
finite order in 7r,,_1 (S'). See also [7] .

In [1] Bokor develops matricial methods in order to deal with spaces
S2n Uf el, such that the attaching map is of infinite order . This lead
him to prove the following .

Theorem 2 (Bokor [1]) . Let

xi = s2n U

if and only if

i) h=h'
H H

ii) V xi - V Yi

Theorem 3. Let

Yi,
= S2n U9i

e4n '

H H

Vxi = VY,

H H

VXi - VYi

k
Suppose that fi , gj represent elements of infinite order in 7r4n _ 1(VS2n)
if and only if i < h and j < h' .

	

Then

h+l h+l
iii)

	

There exists a permutation T of {I, . . . , h} such that Xi -- Y,(¡)
foralli<h .

In [8] we tried to extend Bokor's resúlt to complexes with one cell
in dimensions 0 and 4n and k cells in dimension 2n . For n >_ 2, the
result turned out not to be true . However, if we restrict ourselves to the
p-local case, the theorem holds . The proof uses a technical lemma that
is also used in the proof of a cancellation property for the ring Mk(7Lr )
of matrices over the p-localization 7Lr of the ring 7L ([4, Th.2]) . For our
purpose, we state the following version of the main theorem in [8] .

k

	

k

xi = V S2n U fi e4n

	

1ri -V S2n U9i
e4n

	

i = 1) . . . ,H .

Suppose that fi, g7 represent elements of infinite order in 7F4n_1(Vk S2n)
if and only if i < h and j < h' .

	

Then



if and only if
i) h=h'

h h
ii) VXi _ VY,

H H

VXi -VYi.
h+l h+l

In this paper we use a property of the rings Mk(ZL), the (left) power-
substitution property, to prove the following theorems .

Theorem I . Let
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k

	

k

X=VS-Ufe-, Y=VSnU9e- .

k

Assume that f,g are suspension elements offinite order in 7,,_1(VSn) .

Then if X - Y, there is a positive integer t such that

t

	

t

VX-VY.

Observe that the converse holds by Theorem 1 .

Theorem II . Let
k

	

k

Xi - V_

	

S2n uf, e4n

	

Yi = V S2n U9i e4n

	

i = 1 . . . , H .

Assume that fi, gj represent elements of infinite order in 7r4n_ 1(VkS2n)
if and only if i < h,

	

j < h'.

	

Then if

for all i < h, and

H H

V Xi -V Yi

we have h = h' and there exist positive integers s, t1, . . . , th and a per-
mutation T of {1, . . . , h} such that

ti

	

ti

VXi - V Y,(¡)

s H

	

s H

\/(\/ Xi) - V(V
h+l h+l
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Power-substitution

A ring E satisfies the "(left) power-substitution property" if given xa+
b = 1 in E there exist a positive integer t and a matrix T E Mt(E) such
that Ita+Tb is an unit inMt (E) . Here It is the identity t x t matrix .
All subrings of the rationals Q and in particular 7L, as well as all the
matrix rings M,,,(ZL), n >_ 1, satisfy power-substitution ([5, (2.9) and
(3.4)]) . So, given

XA+B=In

inMn (ZZ), there exist a positive integer t and a matrix T EMnt (ZZ) such
that

It ® A + T(It ® B)

is invertible . Here ® denotes the Kronecker product

A 0 . . . 0
0 A . . . 0

It®A=

(0 0 . . .

Power-substitution implies power-cancellation in the following sense.
If A, B, C are right R-modules and EndR(A) has the power-substitution
property, then A®B = A®C implies Bt - Ct for some positive integer
t.

Proof of Theorem I

Since f and g are suspension elements, they represent elements in

®7r-�,_1(Sn) C 7r,n_ 1 (Vk Sn) . So, f and g are determinad by column
matrices x(f) and x(g) with entries in 7r,-1(S').It was shown in [7]
that the mapping tones of f and g, X and Y, are in the same genus if
and only if there exists an integer matrix A such that

x(g) = Ax(f)

and (det A, l ) = l, where l denotes the order of f .
Let B be an integer matrix such that AB = det A Ik , and take r, s

such that r det A + sl = 1 . Since 7L has the power-substitution property,
there exist an integer c and a matrix C such that

I, detA + C 1

	

is invertible .



Then

POWER-CANCELLATION

	

719

Ik®(I~detA)+(Ik®Cl)=(1,0B)(I,®A)+(Ik®Cl)=V

is invertible and, by the power-substitution property of M,k(7Z), we ob-
tain an integer d and a matrix D such that

Id 0(I~®A)+D(Id®V-1(Ik®Cl))=U

has an inverse . So applying power-substitution once more, we obtain an
invertible matrix of the form

Q=Ie®(Icd®A)+E(Ie®U-1D(Id®V-1 (Ik0CI)))=It®A+TI

where t = cde and T= E(I, ®U-1 D(Id ® V-1 (Ik (D C))).
Now

líente

Proof of Theorem II

k
First of all, recall that the homotopy type of each Xi = VS2n Ufi e4n

is determined by the k x k integer matrix H(fi) of the associated Hilton-
Hopf quadratic form and one one-column matrix x(~

	

the entries of
which are suspension elements in 7r4n (S?n+1 ) [1] . Moreover, V

H
Xi -

Y if and only if there exists a homotopy commutative diagram

H

V Son-1

19

HV S4n-1

t

	

t
vX-V Y.

fhv. . .vfH H k

1 v(v S2n)

H k91V.VgH` V(V
S2n)

=x(gV . . .Vg) .
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with d and cp homotopy equivalences . Let Bij be the degree of

H H
Son-1 a

	

V S4n-1

	

19

	

Son-1 ~ S4n-1 .

The matrix (Bit) = 0 characterizes the homotopy class of 19 .
Let now Oil be the matrix of

k

	

H k

	

H k

	

k
S2n 2nj-> V(V S2n) --W-+ V(V S2n) -Pri> VS2n .

The homotopy commutativity of the previous diagram is equivalent to
the following condition [1], [8] .

O7iH(fi)oji = e7iH(g9)

	

for all

	

i, j
(*)

	

OjiH(fi)Oli = 0

	

if

	

l :,A j
O9ix(1: fi) = e7ix(Egj)

	

for all

	

i, j

where Oji is the transpose of Oji .
We know that fi is of finite order if and only if H(fi) = 0 . Hence,

B;ti = 0 for j < h' , i > h . Thus, det 0 = f 1 implies h >_ h' and by
symmetry h = h' .
Now write the matrices of í9 and cp in the form

They are invertibles . Thus

=
C 61

0)

	

C4>1 'P2 /63 64

	

_ ~D3 ~D4

C1-P1+CA3=I 034)2+C4'P4 = I

where

	

C3

	

C4

	

=0-1 . By the power-substitution property of Mkh(Z)
and Mk(H-h) (7L), we can find positive integers r, s and matrices R, S such
that

A= I,.®<D1 +R(I,0CA3 )
B = Is ®'D4 + S(Is ® C3~D2)

are invertibles . Consider the diagrams



and
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r h
r

	

h

	

(V fi)

	

r

	

h

	

k
V(V S4n-1 )_V(V(V S2n))

V(V
S4n-1 ) V

	

V(V(V S2n ))

S HV(V S4n-1)
h+l

s H

r h

H

V(V fi)

s H

h+1 S H k

V(V (V S2n))
h+l

la

V(V gi)

V(V
S4n-1 )

	

V(V (V S2n
))

h+l

	

h+l

S H k

where (, ~, a and 0 are homotopy equivalentes with matrices Ir
01 , I,, ® 194, A and B respectively. By checking the matricial condi-
tions mentioned above (*), we can see that these diagrams are homotopy
commutative . (See [81 for the details in a quite similar case) . So, these
diagrams induce homotopy equivalentes

r h

	

r h

	

S H

	

S H

V(VXi) =V(VYj) and V(V Xi ) -V(V Yi)
h+l h+l

We may now assume that all the given spaces Xi and Y¡,

	

i =
1, . . . , H , have attaching maps of infinite order .

	

Let r be the maxi-
mum rank of the matrices H(fi ) and H(gi) and assume that the rank
of

	

H(g1) is r.

	

Since det e = ± l,

	

0,1 :7~ 0, for some l and, hence,
01,H(fl)oil = 011H(g1) has rank r . Thus rkH(fl ) = r . Now, from
the rest of the matricial conditions (*), one gets 9jl = 0 if j :~ 1, and
0,1 = tl. For simplicity we suppose l = 1 .

Let us write the matrices of 99 and ~p in the form

_

	

011

	

C3 )

	

0 _ ( 011

	

<1>2
0 84

	

<D3 'D4
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and let 0-1 =

	

Cl

	

C2

	

. Thus
~!3 ~!4

01011 + CA3 = I

	

and

	

C3>2 +C4 -4 = I .

As before, we can find invertible matrices of the form

A=I,00,1+R(Ir ®C2'P3) and B=Is ®<D4+S(Is ®C3)2) .

Consider homotopy commutative diagrams

rV S4n-1

rV S4n-1

s H

V(V S4n-1)
2

s H

V(V S4n-1)
2

r

	

r
VXl=VY, and

r
V f1

	

r

	

kV(V S2n)

s H

V(vf2)

V(V(V S2n))
2

s H

V(vg2)

V(V(V S2n))
2

10

where (, ~, a and,3 are homotopy equivalentes with matrices B11Ir,, I5
04 , A and B respectively. These diagrams induce homotopy equiva-
lences

s H

	

s H

V(V Xi)=V(VY) .
2

	

2

This, by induction, completes the proof of Theorem II .
Remark. The following question naturally arises in the study of can-

t

	

t
cellation : is X -Y equivalent to V X - V Y? (See [61 for an algebraic
result of this kind) . Theorem I and Theorem 1 give a positive answer
for some co-H-spaces with few cells . For mapping tones X and Y of
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elements of infinite order in 7r4n_1(VkS2n), it follows from [8] Theo-
t

	

t
rem 1 that V X _ V Y implies X - Y.

	

In this case, however, the
converse is not always true . If, for instance, f and g are such that

H(f)= (

	

0
) , H(g) =

(0

	

2pq) , Ef =0 and L.g=0,0 2q

where p :,~ q are prime integers, then X - Y and X 9~ Y (see [2]) . But,
since H(f) and H(g) are of maximum rank, it follows from [8] Theorem 2

t

	

t
that V X 9~VY for all integers t .
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