POWER-CANCELLATION OF CW-COMPLEXES WITH FEW CELLS

IRENE LLERENA

Dedicated to Pere Menal, in memoriam

Abstract ______

In this paper, we use the fact that the rings of integer matrices have the power-substitution property in order to obtain a powercancellation property for homotopy types of CW-complexes with one cell in dimensions 0 and 4n and a finite number of cells in dimension 2n.

Introduction

Cancellation in homotopy is closely related to the genus. Recall that the genus of a homotopy type X is the set of all homotopy types Y such that the p-localizations of X and Y are homotopy equivalent for all primes $p : X_p \simeq Y_p$ [9]. If X and Y are in the same genus, we shall write $X \sim Y$. All the known examples of non-cancellation occur for homotopy types in the same genus. A relevant result in this line is the following.

Theorem 1 (Wilkerson [12]). Let X, Y, W be nilpotent co-Hcomplexes with finitely generated homology. Then

i) $X \vee Y \simeq X \vee W$ implies $Y \sim W$, and
ii) $\bigvee^k X \simeq \bigvee^k Y$ implies $X \sim Y$.

In $[10]$ Mislin characterized the genus of nilpotent co-H-spaces with finitely generated homology in the following way

$$
X \sim Y \quad \text{if and only if} \quad X \vee \bigvee S^{n_i} \simeq Y \vee \bigvee S^{m_j},
$$

where the dimensions of the spheres are determined by the homotopy groups of X and Y. A similar result had been obtained by Molnar $[11]$

for CW-complexes with two cells, $S^n \cup_f e^m$, with attaching map f of finite order in $\pi_{m-1} (S^n)$. See also [7].

In [1] Bokor develops matricial methods in order to deal with spaces $S^{2n} \cup_f e^{4n}$ such that the attaching map is of infinite order. This lead him to prove the following .

Theorem 2 (Bokor [1]). Let

$$
X_i = S^{2n} \cup_{f_i} e^{4n}, \quad Y_i = S^{2n} \cup_{g_i} e^{4n}, \quad i = 1, ..., H.
$$

k Suppose that f_i , g_j represent elements of infinite order in $\pi_{4n-1}(\bigvee S^{2n})$ if and only if $i \leq h$ and $j \leq h'$. Then

$$
\bigvee^H X_i \simeq \bigvee^H Y_j
$$

if and only if

i)
$$
h = h'
$$

H
H

ii)
$$
\bigvee_{h+1}^{\cdots} X_i \simeq \bigvee_{h+1}^{\cdots} Y_i
$$

 $\begin{aligned} h+1 & h+1 \\ \text{iii)} \quad There \ exists \ a \ permutation \ \tau \ \ of \ \{1,\ldots,h\} \ \ such \ that \ X_i \simeq Y_{\tau(i)} \end{aligned}$ for all $i \leq h$.

In [8] we tried to extend Bokor's result to complexes with one cell in dimensions 0 and 4n and k cells in dimension 2n. For $n \geq 2$, the result turned out not to be true. However, if we restrict ourselves to the p-local case, the theorem holds. The proof uses a technical lemma that is also used in the proof of a cancellation property for the ring $\mathcal{M}_k(\mathbb{Z}_p)$ of matrices over the p-localization \mathbb{Z}_p of the ring \mathbb{Z} ([4, Th.2]). For our purpose, we state the following version of the main theorem in [8].

Theorem 3. Let

$$
X_i = \bigvee^k S^{2n} \cup_{f_i} e^{4n}, \quad Y_i = \bigvee^k S^{2n} \cup_{g_i} e^{4n}, \quad i = 1, ..., H.
$$

Suppose that f_i, g_j represent elements of infinite order in $\pi_{4n-1}(\bigvee^k S^{2n})$ if and only if $i \leq h$ and $j \leq h'$. Then

$$
\bigvee^H X_i \sim \bigvee^H Y_i
$$

if and only if
\ni)
$$
h = h'
$$

\nii) $\bigvee_{H} X_{i} \sim \bigvee_{H} Y_{i}$
\niii) $\bigvee_{h+1} X_{i} \sim \bigvee_{h+1} Y_{i}$.

In this paper we use a property of the rings $\mathcal{M}_k(\mathbb{Z})$, the (left) powersubstitution property, to prove the following theorems.

Theorem I. Let

$$
X = \bigvee^k S^n \cup_f e^m, \quad Y = \bigvee^k S^n \cup_g e^m.
$$

k Assume that f, g are suspension elements of finite order in $\pi_{m-1}(\bigvee S^{n})$. Then if $X \sim Y$, there is a positive integer t such that

$$
\bigvee^t X \simeq \bigvee^t Y.
$$

Observe that the converse holds by Theorem 1.

Theorem II. Let

$$
X_i = \bigvee^k S^{2n} \cup_{f_i} e^{4n}, \quad Y_i = \bigvee^k S^{2n} \cup_{g_i} e^{4n}, \quad i = 1, ..., H.
$$

Assume that f_i, g_j represent elements of infinite order in $\pi_{4n-1}(\bigvee^{\kappa} S^{2n})$ if and only if $i \leq h$, $j \leq h'$. Then if

$$
\bigvee^H X_i \simeq \bigvee^H Y_i
$$

we have $h = h'$ and there exist positive integers s, t_1, \ldots, t_h and a permutation τ of $\{1, \ldots, h\}$ such that

$$
\bigvee^{t_i} X_i \simeq \bigvee^{t_i} Y_{\tau(i)}
$$

for all $i \leq h$, and

$$
\bigvee_{h+1}^{s} (\bigvee_{h+1}^{H} X_i) \simeq \bigvee_{h+1}^{s} (\bigvee_{h+1}^{H} Y_i)
$$

Power-substitution

A ring E satisfies the "(left) power-substitution property" if given $xa +$ $b = 1$ in E there exist a positive integer t and a matrix $T \in \mathcal{M}_t(E)$ such that $I_t a + Tb$ is an unit in $\mathcal{M}_t(E)$. Here I_t is the identity $t \times t$ matrix. All subrings of the rationals Q and in particular Z , as well as all the matrix rings $\mathcal{M}_n(\mathbb{Z})$, $n \geq 1$, satisfy power-substitution ([5, (2.9) and (3.4)]). So, given

$$
XA + B = I_n
$$

in $\mathcal{M}_n(\mathbb{Z})$, there exist a positive integer t and a matrix $T \in \mathcal{M}_{nt}(\mathbb{Z})$ such that

$$
I_t \otimes A + T(I_t \otimes B)
$$

is invertible. Here \otimes denotes the Kronecker product

Power-substitution implies power-cancellation in the following sense. If A, B, C are right R-modules and $\text{End}_{R}(A)$ has the power-substitution property, then $A \oplus B \cong A \oplus C$ implies $B^t \cong C^t$ for some positive integer t.

Proof of Theorem ^I

Since f and g are suspension elements, they represent elements in $\bigoplus \pi_{m-1}(S^{n}) \subset \pi_{m-1}(\bigvee^{\kappa} S^{n}).$ So, f and g are determined by column **Proof of Theorem I**
Since f and g are suspension elements, they represent elements in $\bigoplus_{n=m}^{k} \pi_{m-1}(S^n) \subset \pi_{m-1}(\bigvee^k S^n)$. So, f and g are determined by column matrices $x(f)$ and $x(g)$ with entries in $\pi_{m-1}(S^n)$. matrices $x(f)$ and $x(g)$ with entries in $\pi_{m-1}(S^n)$. It was shown in [7] that the mapping cones of f and g, X and Y, are in the same genus if and only if there exists an integer matrix A such that

$$
x(g)=Ax(f)
$$

and $(\det A, l) = 1$, where l denotes the order of f.

Let B be an integer matrix such that $AB = \det A I_k$, and take r, s such that $r \det A + sl = 1$. Since $\mathbb Z$ has the power-substitution property, there exist an integer c and a matrix C such that

$$
I_c \det A + C l
$$
 is invertible.

Then

$$
I_k \otimes (I_c \det A) + (I_k \otimes C \cdot l) = (I_c \otimes B)(I_c \otimes A) + (I_k \otimes C \cdot l) = V
$$

is invertible and, by the power-substitution property of $\mathcal{M}_{ck}(\mathbb{Z})$, we obtain an integer d and a matrix D such that

$$
I_d \otimes (I_c \otimes A) + D(I_d \otimes V^{-1}(I_k \otimes C)) = U
$$

has an inverse. So applying power-substitution once more, we obtain an invertible matrix of the form

$$
Q = I_e \otimes (I_{cd} \otimes A) + E(I_e \otimes U^{-1}D(I_d \otimes V^{-1}(I_k \otimes C))) = I_t \otimes A + T l
$$

where $t = cde$ and $T = E(I_e \otimes U^{-1}D(I_d \otimes V^{-1}(I_k \otimes C)))$.

Now

$$
Qx(f \vee ... \vee f) = Q \begin{pmatrix} x(f) & 0 & \cdots & 0 \\ 0 & x(f) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x(f) \end{pmatrix} = \begin{pmatrix} Ax(f) & 0 & \cdots & 0 \\ 0 & Ax(f) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & Ax(f) \end{pmatrix} = x(g \vee ... \vee g).
$$

Hence

$$
\bigvee^t X \simeq \bigvee^t Y. \quad \blacksquare
$$

Proof of Theorem II

First of all, recall that the homotopy type of each $X_i = \bigvee^{\kappa} S^{2n} \cup_{f_i} e^{4n}$ is determined by the $k \times k$ integer matrix $H(f_i)$ of the associated Hilton-Hopf quadratic form and one one-column matrix $x(\sum f_i)$, the entries of which are suspension elements in $\pi_{4n}(S^{2n+1})$ [1]. Moreover, $\bigvee^H X_i \simeq$ $\bigvee^H Y_i$ if and only if there exists a homotopy commutative diagram

$$
\bigvee_{j=1}^{H} S^{4n-1} \xrightarrow{f_1 \vee \dots \vee f_H} \bigvee_{j=1}^{H} \bigvee_{j=1}^{k} S^{2n} \bigvee_{j=1}^{n} \bigvee_{j=1}^{H} S^{4n-1} \xrightarrow{g_1 \vee \dots \vee g_H} \bigvee_{j=1}^{H} \bigvee_{j=1}^{k} S^{2n}
$$

with ϑ and φ homotopy equivalences. Let $\theta_{i,j}$ be the degree of

$$
S^{4n-1} \xrightarrow{in_j} \bigvee^H S^{4n-1} \xrightarrow{\vartheta} \bigvee^H S^{4n-1} \xrightarrow{pr_i} S^{4n-1}.
$$

The matrix $(\theta_{ij}) = \theta$ characterizes the homotopy class of ϑ .

Let now ϕ_{ij} be the matrix of

$$
\bigvee^k S^{2n} \xrightarrow{in_j} \bigvee^H (\bigvee^k S^{2n}) \xrightarrow{\varphi} \bigvee^H (\bigvee^k S^{2n}) \xrightarrow{pr_i} \bigvee^k S^{2n}.
$$

The homotopy commutativity of the previous diagram is equivalent to the following condition [1], [8] .

$$
\phi_{ji}H(f_i)\phi_{ji}^t = \theta_{ji}H(g_j) \quad \text{for all } i,j
$$
\n
$$
\phi_{ji}H(f_i)\phi_{li}^t = 0 \quad \text{if } l \neq j
$$
\n
$$
\phi_{ji}x(\sum f_i) = \theta_{ji}x(\sum g_j) \quad \text{for all } i,j
$$

where ϕ_{ji}^t is the transpose of ϕ_{ji} .

We know that f_i is of finite order if and only if $H(f_i) = 0$. Hence, $\theta_{ji} = 0$ for $j \le h'$, $i > h$. Thus, $\det \theta = \pm 1$ implies $h \ge h'$ and by symmetry $h = h'$.

Now write the matrices of ϑ and φ in the form

$$
\theta = \begin{pmatrix} \Theta_1 & 0 \\ \Theta_3 & \Theta_4 \end{pmatrix} , \quad \phi = \begin{pmatrix} \Phi_1 & \Phi_2 \\ \Phi_3 & \Phi_4 \end{pmatrix} .
$$

They are invertibles. Thus

$$
C_1\Phi_1 + C_2\Phi_3 = I \qquad C_3\Phi_2 + C_4\Phi_4 = I
$$

where $\begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} = \phi^{-1}$. By the power-substitution property of $\mathcal{M}_{kh}(\mathbb{Z})$ and $\mathcal{M}_{k(H-h)}(\mathbb{Z})$, we can find positive integers r, s and matrices R, S such that

$$
A = I_r \otimes \Phi_1 + R(I_r \otimes C_2 \Phi_3)
$$

$$
B = I_s \otimes \Phi_4 + S(I_s \otimes C_3 \Phi_2)
$$

are invertibles. Consider the diagrams

and

$$
\bigvee_{h+1}^{s} \left(\bigvee_{h+1}^{H} S^{4n-1}\right) \xrightarrow{\begin{array}{c} s \ H \\ k+1 \end{array}} \bigvee_{h+1}^{s} \left(\bigvee_{h+1}^{H} f_{i}\right) \xrightarrow{\begin{array}{c} s \ H \\ k+1 \end{array}} \left(\bigvee_{h+1}^{H} \left(\bigvee_{h+1}^{k} S^{2n}\right)\right)
$$
\n
$$
\bigvee_{h+1}^{s} \left(\bigvee_{h+1}^{H} g_{i}\right) \xrightarrow{\begin{array}{c} s \ H \\ k+1 \end{array}} \bigvee_{h+1}^{s} \left(\bigvee_{h+1}^{H} \left(\bigvee_{h+1}^{k} S^{2n}\right)\right)
$$

where ζ , ξ , α and β are homotopy equivalences with matrices $I_r \otimes$ Θ_1 , $I_s \otimes \Theta_4$, A and B respectively. By checking the matricial conditions mentioned above (*), we can see that these diagrams are homotopy commutative. (See $[8]$ for the details in a quite similar case). So, these diagrams induce homotopy equivalences

$$
\bigvee^r (\bigvee^h X_i) \simeq \bigvee^r (\bigvee^h Y_i) \text{ and } \bigvee^s (\bigvee^h X_i) \simeq \bigvee^s (\bigvee^h Y_i)
$$

$$
h+1
$$

We may now assume that all the given spaces X_i and Y_i , $i =$ $1, \ldots, H$, have attaching maps of infinite order. Let r be the maximum rank of the matrices $H(f_i)$ and $H(g_i)$ and assume that the rank of $H(g_1)$ is r. Since $\det \theta = \pm 1$, $\theta_{1l} \neq 0$, for some l and, hence, $\phi_{1l}H(f_l)\phi_{1l}^t = \theta_{1l}H(g_1)$ has rank r. Thus $rk H(f_l) = r$. Now, from the rest of the matricial conditions (*), one gets $\theta_{jl} = 0$ if $j \neq 1$, and $\theta_{1l} = \pm 1$. For simplicity we suppose $l = 1$.

Let us write the matrices of ϑ and φ in the form

$$
\theta = \begin{pmatrix} \theta_{11} & \Theta_3 \\ 0 & \Theta_4 \end{pmatrix} , \phi = \begin{pmatrix} \phi_{11} & \Phi_2 \\ \Phi_3 & \Phi_4 \end{pmatrix}
$$

and let $\phi^{-1} = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}$. Thus

$$
C_1\phi_{11} + C_2\Phi_3 = I
$$
 and $C_3\Phi_2 + C_4\Phi_4 = I$.

As before, we can find invertible matrices of the form

$$
A = I_r \otimes \phi_{11} + R(I_r \otimes C_2 \Phi_3) \text{ and } B = I_s \otimes \Phi_4 + S(I_s \otimes C_3 \Phi_2).
$$

Consider homotopy commutative diagrams

$$
\sqrt[r]{S^{4n-1}} \xrightarrow{\sqrt[r]{f_1}} \sqrt[r]{(\sqrt[r]{S^{2n}})} \cdot \frac{\sqrt[r]{S^{4n-1}} \sqrt[r]{(\sqrt[r]{S^{2n}})} \cdot \frac{\sqrt[r]{S^{4n-1}} \sqrt[r]{S^{4n}} \sqrt[r]{(\sqrt[r]{S^{2n}})} \cdot \frac{\sqrt[r]{S^{4n-1}} \sqrt[r]{(\sqrt[r]{S^{4n}})} \cdot \frac{\sqrt[r]{S^{4n}} \sqrt[r]{(\sqrt[r]{S^{4n}})} \cdot \frac{\sqrt[r]{S^{4n}} \sqrt[r]{(\sqrt[r]{S^{4n}})}}}{\sqrt[r]{S^{4n}} \sqrt[r]{S^{4n-1}} \cdot \frac{\sqrt[r]{(\sqrt[r]{S^{4n}})} \cdot \frac{\sqrt[r]{S^{4n}} \cdot
$$

where ζ , ξ , α and β are homotopy equivalences with matrices $\theta_{11}I_r$, $I_s \otimes$ Θ_4 , A and B respectively. These diagrams induce homotopy equivalences

$$
\bigvee^r X_1 \simeq \bigvee^r Y_1
$$
 and $\bigvee^s \left(\bigvee^H X_i\right) \simeq \bigvee^s \left(\bigvee^H Y_i\right)$.

This, by induction, completes the proof of Theorem II. \blacksquare

Remark. The following question naturally arises in the study of cancellation: is $X \sim Y$ equivalent to $\bigvee X \simeq \bigvee Y$? (See [6] for an algebraic result of this kind). Theorem I and Theorem 1 give a positive answer for some co- H -spaces with few cells. For mapping cones X and Y of

elements of infinite order in $\pi_{4n-1}(\bigvee^k S^{2n})$, it follows from [8] Theot t rem 1 that $\bigvee X \simeq \bigvee Y$ implies $X \sim Y$. In this case, however, the converse is not always true. If for instance, f and g are such that converse is not always true. If, for instance, f and g are such that

$$
H(f)=\begin{pmatrix}2p&0\\0&2q\end{pmatrix}\;,\;\;H(g)=\begin{pmatrix}2&0\\0&2pq\end{pmatrix}\;,\;\;\sum f=0\;\;\text{and}\;\;\sum g=0\,,
$$

where $p \neq q$ are prime integers, then $X \sim Y$ and $X \not\cong Y$ (see [2]). But, since $H(f)$ and $H(g)$ are of maximum rank, it follows from [8] Theorem 2 that $\bigvee^t X \not\simeq \bigvee^t Y$ for all integers t.

References

- 1. BOKOR, L, On genus and cancellation in homotopy, Israel J. of Math. 73 (1991), 361-379.
- 2. BOKOR, I., On the connection between the topological genus of certain polyhedra and the algebraic genus of their Hilton-Hopf quadratic forms, Publicacions Matemátiques 34 (1990), 323-333.
- 3. BOKOR, L, On mapping cones of suspension elements of finite order in the homotopy group of a wedge of spheres, Proc. Am. Math. Soc. (to appear).
- ⁴ . EVANS, E. G., Krull-Schmidt and cancellation over local rings, Pac. J. of Math. 46, no. 1 (1973), 115-121.
- 5. GOODEARL, K. R., Power-cancellation of group and modules, Pac. J. of Math. 64, no. 2 (1976), 387-411 .
- 6. GURALNICK, R. M., The genus of ^a module, J. of Number Theory 18 (1984), 169-177.
- 7. LLERENA, I., Wedge cancellation and genus, Preprint
- 8. LLERENA, I., Wedge cancellation of certain mapping cones, Comp. Math. 81 (1992), 1-17.
- 9. MISLIN, G., "The genus of an H-space," Lect. Notes in Math. 249, Springer, 1971, pp. 75-83.
- 10. MISLIN, G., Cancellation properties of H-spaces, Comm. Math. Helv. 49 (1974), 195-200.
- ¹¹ . MOLNAR, E. A . ; Relation between wedge cancellation and localization for complexes with two cells", J. Pure Appl. Algebra 3 (1973), $141 - 158.$
- 12. WILKERSON, C., Genus and cancellation, Topology 14 (1975), 29-36.

Departament d'Álgebra ⁱ Geometria Facultat de Matemátiques Universitat de Barcelona Gran Via de les Corts Catalanes 585 08007 Barcelona SPAIN

Rebut el 21 d'Octubre de 1991

J.