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Thermophoretic torque in colloidal particles with mass asymmetry
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We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using
nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show
that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids
experience transient torques that orient the colloid along the direction of the thermal field. This physical effect
gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features
a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous
colloids.
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I. INTRODUCTION

Thermal gradients induce mass and charge coupling effects
that can potentially be employed to construct devices for
energy conversion applications. Since the early observations
of thermodiffusion by Ludwig and Soret [1,2] in the 19th
century, other coupling effects have been reported over the
years. Lehmann showed, shortly after the discovery of liquid
crystals (LCs), that cholesteric LCs adopt a uniform rotation
as a response to thermal gradients [3]. Peltier and Seebeck
demonstrated the coupling between electric currents and ther-
mal gradients [4], which is the basis of thermoelectrics [5].
More recently, it was shown that thermal gradients induce the
polarization of liquid water (thermal polarization, TP) and
thermal orientation (TO) in molecular fluids of anisotropic
particles [6–8]. These works highlighted the importance of
particle anisotropy in molecules and colloids as an important
variable driving thermal orientation effects.

The response of axially symmetric particles, e.g., sphero-
cylinders, to thermal gradients was investigated in Refs. [9,10].
These works used kinetic theory to study particles suspended in
a gas (aerosols) under thermal gradients. It was found that the
thermophoretic drift is anisotropic. This observation is relevant
in anisotropic particles [11], since the anistropy could influ-
ence deposition processes in suspensions. More recently, the
thermophoretic drift of spherocylinders has been investigated
using hydrodynamic computer simulations [12]. These authors
reported anisotropic thermophoresis in fluid suspensions as
well, and concluded that the anisotropy does not induce particle
orientation in a homogeneous thermal field. We discuss in this
work how inhomogeneous mass distribution inside a colloid
can impart an orientation in such homogeneous fields.

The manipulation of suspensions of anisotropic particles
with thermal gradients is attracting significant attention and
motivating new experiments. The thermodiffusive behavior of
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colloidal rods (fd viruses) was studied recently [13], and it
has been shown that the heating of metallic nanorods in a
polarized optical trap induces a thermal gradient around the
rod and a torque that can be significant (∼102 pN nm) [14].
Theoretical and experimental studies of anisotropic particles
under thermal gradients have uncovered fascinating behaviors
that could open new routes to manipulate small colloids using
thermal fields. Understanding the behavior of these particles
under nonequilibrium conditions is of fundamental interest to
explain and predict coupling effects out of equilibrium.

In this work we investigate the response of small anisotropic
colloids dispersed in a dense fluid, which is subjected to a
thermal gradient. We will analyze the thermal coupling effects
arising from the colloid anisotropy, when the colloids feature
an inhomogeneous mass distribution. We will demonstrate
that mass anisotropy, which is a general feature of molecular
assemblies and a property that can be tuned in colloids with
heterogeneous composition, does couple with the imposed
thermal fields. The coupling leads to a transient thermophoretic
torque and the colloids adopt in the stationary state a preferred
orientation. We also show that this coupling influences and
modulates the Soret coefficient of the anisotropic colloids.

The systems we are interested in, colloidal suspensions of
anisotropic particles with asymmetry in the mass distribution,
involve high fluid densities and short mean free paths, the
latter being smaller than the characteristic particle size. Further,
frictional effects, hydrodynamic interactions, thermal fluctu-
ations, and the fluid structuring around the particle become
important in describing the thermophoretic behavior of the
suspension. These issues limit the applicability of kinetic
theory. We therefore used nonequilibrium atomistic molecular
dynamics to perform our investigation. We also use nonequilib-
rium thermodynamics theory [4,8] to derive phenomenological
equations that describe the physical effects discussed herein.

II. METHODOLOGY

We performed simulations of a single colloid suspended
in an atomic fluid at a density characteristic of a liquid. The
fluid was modeled using the WCA potential [15] at an average
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density of ρ = (N/V )σ 3 = 1.0, where N is the number of
solvent particles, V = Lx × Ly × Lz is the volume of the
simulation cell, and σ is the diameter of the solvent particles.
The colloid was modeled as a rigid chain of tangent spheres
using a collection of beads of diameter, σ . We considered
both symmetric and asymmetric mass distributions. The latter
was achieved by changing the mass of one bead at the end
of the colloid, such that the total mass is given by mtotal =
(N − 1)m + mend. The mass, m, of some of the beads is
equal to the mass of the solvent particles, ms , and it is
defined as m = ms = 1 hereafter. For the symmetric case
we used mtotal = (N − 2)m + 2 × mend. The degree of mass
asymmetry can be quantified by introducing a new quantity, the
mass dipole, d = ∑Nc

i=1 mi(ri − rg), where rg is the geometric
center of the colloid, mi and ri are the mass and position of
the beads in the colloid along the colloid axis, and Nc is the
number of beads in the colloid. For the model considered in
this work the dipole is defined as

d = σ

(
γ − 1

N + γ − 1

)(
N − 1

2

)
, (1)

with γ = mend/m and γ = 1 (d = 0) for the asymmetric and
symmetric cases, respectively.

We show in Fig. 1 a typical simulation cell illustrating the
position of the thermostats employed to set up the thermal
gradient (see also Supplemental Material [16]). The center of
mass of the colloids was tethered using a harmonic potential
(see below) to the geometric center, rc, of the left and right
containers in the simulation cell (see Fig. 1), while the colloids
rotate freely around their center of mass. Colloids of different
lengths and different values of the γ parameter defined above
are shown in Fig. 1.

The WCA potential was used to model the interparticle
interactions,

φWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6]
for r � 21/6σ,

0 for r > 21/6σ,
(2)

where ε represents the interaction strength and σ is the diame-
ter of the solvent particles. The interaction parameters were
ε = σ = 1 for all colloid-fluid and fluid-fluid interactions,
while the atoms within the nanoparticle did not interact with
each other. We use σ and ε to define the usual Lennard-Jones
units. 16000 particles were initially placed in a simulation box
of size (40,20,20)σ , for an average reduced density ρ = 1.0
and reduced temperature T = 2.5. Two colloidal particles
were placed at positions (10,10,10)σ and (30,10,10)σ and
random orientations. Each colloid was treated as a rigid body.
The harmonic potential to restrain the translational motion is
defined as V (r) = k(r − rc)2, where k is the force constant and
rc is the position of the reference point at the beginning of the
simulation, corresponding to the geometric center between the
hot and cold thermostats (see Fig. 1). The force constant was
set to kσ 2/ε = 103. A thermal gradient and a heat flux were
imposed on the system by using boundary driven nonequilib-
rium molecular dynamics (BD-NEMD) simulations, using a
time step of δt = 0.0025. All the trajectories were integrated
using LAMMPS [17]. Thermostatting regions with dimension
(4,10,10)σ were set up at the edges and in the center of the
prismatic box (see Fig. 1).

FIG. 1. (a) Upper panel shows representative temperature profiles
for different temperature gradients. The temperature is given in
reduced units. (b) Snapshot of the simulation box employed in our
work. Red and blue regions indicate the position of the hot and cold
thermostats, respectively. The solvent in the lower panel is represented
as translucent spheres, and colloids corresponding to asymmetric
(left) and symmetric systems (right) are also shown. (c) Colloids of
different size and their corresponding values of heavy mass γ which
result in d = 1.0. The arrows represent the unit vector indicating the
direction of the colloids.

The motion of the fluid atoms was integrated using the
velocity Verlet method, and the translational and rotational
degrees of freedom of the colloids were integrated using
the method of quaternions for rigid bodies. The system was
equilibrated at the desired average temperature of the NEMD
run by using the Nosé-Hoover thermostat. We then applied the
thermal gradient by thermostatting the hot and cold regions
at the desired temperatures. The evolution of the temperature
gradient through the system was monitored periodically over
a simulation of 106 steps. The gradient reaches the stationary
profile before this period. Production simulations were per-
formed under the same conditions for an additional 108 time
steps and the orientation vector, n, of each colloid was sampled
every 100th step.

The thermophoretic force on each colloid is computed as
a function of the thermal gradient, by sampling the average
displacement of the center of mass of the colloid and multi-
plying by the force constant of the applied harmonic potential.
The total torque is referred to the center of mass of the colloid,
rCOM, τ = ∑N

i=1(ri − rCOM) × Fi on each of the colloids was
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FIG. 2. Thermophoretic force of the colloids scaled by the colloid
length,N , as a function of the thermal gradient. The full lines represent
a linear regression to the data and αN is the slope in the equation
FT,N = αN∇T .

computed for symmetric and asymmetric colloids as a function
of the orientation of the colloid, but without integrating the
rotational degrees of freedom. The systems were equilibrated
for 106 steps, and the torque was averaged every 100 steps for
107 steps and 30 different runs.

III. RESULTS

Thermal gradients induce a thermophoretic force (TF),
FT , on the colloids, and the latter drift either to the hot
(thermophilic) or cold (thermophobic) regions. The TF can
be calculated by monitoring the force on the colloids exerted
by the solvent. The TF can be related to the Soret coefficient,
ST , through [18,19], Fs − FT = ST kBT ∇T , where T is the
local temperature, ∇T is the thermal gradient, and Fs and
FT are the thermophoretic forces on the solvent and colloid,
respectively. This approach has been successfully tested
before to compute the Soret coefficient of colloids and
binary mixtures [18,19]. In our case the thermophoretic force
dominates the value of the Soret coefficient. The contribution
of the solvent to the Soret coefficient, measured at ∇T = 0.12,
is Fs = −0.101 ± 0.003, which is of the order of �kB∇T at
infinite dilution [18]. The contribution to the Soret coefficient
is 0.343 ± 0.004. Our thermophoretic forces change linearly
with the magnitude of the thermal gradient and with the
number of beads N (see Fig. 2). This result is consistent
with the equation for FT and it shows that all the systems
considered here are in the linear regime.

We show in Fig. 3 the simulation data for the Soret
coefficient as a function of the type of colloid (symmetric and
asymmetric) and its mass. In both cases the Soret coefficient
is positive, meaning that the colloid is thermophobic and drifts
towards the cold region. In the symmetric case the Soret coeffi-
cient increases monotonically with the total mass of the colloid
and saturates at high masses. The dependence with mass and
the saturation of the Soret coefficient can be modeled using the
expression ST = CN (mn − ms)/(mn + ms) + DN , where CN

and DN vary linearly with the colloid mass (see Fig. 3) and mn

and ms represent the masses of the colloid and the solvent,
respectively. This relationship resembles the kinetic theory
equation for mixtures of elastic spheres interacting through

FIG. 3. (a) Dependence of the Soret coefficient of symmetric and
asymmetric colloids with the total mass, mtotal, of the colloid. The lines
for the symmetric case represent fits employing the equation discussed
in the main text. All the results were obtained with a gradient ∇T =
0.12. (b) Soret coefficient of symmetric colloids as a function of the
total mass. The full lines represent a fit to the equation ST = CN (mn −
ms)/(mn + ms) + DN . (c) Coefficients CN and DN as a function of
the colloid length. The full lines represent a linear regression to the
data.

r−12 potentials [20], which is the potential we also employed
here. The asymmetric mass distribution results in distinctive
differences in the Soret coefficient, which does not change
monotonically with the colloid mass. This deviation from the
symmetric case is particularly clear for longer colloids (N =
11), for which the Soret coefficient features a maximum at
small colloidal masses before converging to Soret coefficients
that are clearly smaller than those obtained in the symmetric
case. We note that this difference in thermophoretic response is
driven by mass asymmetry only and we argue that this physical
behavior is induced by the coupling of the inhomogeneous
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FIG. 4. (a) Dependence of the orientation with the magnitude of the temperature gradient, normalized by the number of beads for colloids
of different lengths N = 5 . . . 11. The local temperature and local density at the position corresponding to the center of mass of each colloid
are T = 2.5 and ρ = 1.0, respectively. The mass dipole in all cases is d = 1.0, with γ = 6.0 (N = 5) . . . γ = 3.75 (N = 11). A linear fit to
the data is shown (full line), with slope Lnq/(NkELnn) = 0.56. (b) Average orientation as a function of d for colloids of different lengths.
(c) Dependence of cross coefficient Lnq/kE with d = 1.0 for colloids of different lengths. The results for (a) and (b) panels were obtained with
∇T = 0.12.

mass distribution, defined via the mass dipole, and the imposed
heat flux.

We discuss now how the coupling effect leading to the
torque is supported theoretically by nonequilibrium thermo-
dynamics [8]. The change in energy of the colloid due to the
orientation is defined by

E = kE

2
n · n ≡ I

2
ω · ω, (3)

where kE is a force constant that determines the change in
energy associated to deviations from the preferred orientation
of the colloid and n is the unit vector defining its orientation
(see Fig. 1). (See Ref. [8] for an example of an orientational
vector in a different system, corresponding to a molecular
fluid.) The energy above [Eq. (3)] is equal to the rotational
kinetic energy of the colloid, where ω is the angular velocity
and I is the moment of inertia. The entropy production is
defined by

T 	 = −kELnn(n · n) ≡ −ζr (ω · ω), (4)

where ζr is the rotational friction coefficient and Lnn is a
phenomenological coefficient that is defined below. The linear
laws describing the fluxes are dn/dt = −LnnkET −1n and
τ = −ζrω, where τ = I ω̇ is the torque. Using Eq. (3) and
Eq. (4), we get

Lnn = ζr

I
, (5)

where I is the moment of inertia. The entropy production
associated to the rotation of the colloid in the presence of the
thermal gradient is

T 	 = −kE

dn
dt

· n − 1

T
Jq · ∇T (6)

and the corresponding linear flux-force relations,

dn
dt

= −Lnn

T
kEn − Lnq

T 2
∇T , (7)

Jq = −Lqn

T
kEn − Lqq

T 2
∇T , (8)

where Jq is the heat flux, Lαβ ≡ Lβα for α �= β is the cross
phenomenological coefficient, and λ ≡ Lqq/T 2 has the usual
meaning of the thermal conductivity in the absence of coupling

effects, i.e., Lnq = Lqn = 0. At the stationary state, dn/dt =
0, and the average orientation of the colloid is given by

〈cos(θ )〉 = − Lnq

kELnn

∇T

T
= −Lnq

kE

I

ζr

∇T

T
, (9)

where cos(θ ) = uJq
· n, and the orientation is given by the

projection of the unit vector, n, along the unit vector defining
the direction of the heat flux (thermal gradient), uJq

. Equation
(9) predicts a linear dependence of the stationary value of
cos(θ ) with the thermal gradient, ∇T . We show in Fig. 4 that
our simulation results follow the linear dependence with ∇T

for colloids of different lengths, N . Further, the strength of
the orientation for a given thermal gradient and temperature
increases with the colloid length. This dependence can be
rationalized in terms of the coefficient Lnn = ζr/I , which
can be calculated for the shish-kebab model investigated
here (see the Appendix). Indeed, Lnn decreases as the length
of the colloid increases, contributing to an increase of the
orientation [see Eq. (9)]. The definition of Lnn implies that
the orientation increases with the mass asymmetry, i.e., the
mass dipole. This prediction agrees with our computations [see
Fig. 4(b)]. We have used our simulation results and Eq. (9) to
quantify the dependence of Lnq/kE with the mass dipole
(asymmetry). The cross phenomenological coefficient in-
creases rapidly with the mass dipole and it saturates at large
dipole values (see Fig. 4). The coefficient follows similar trends
as Lnn increasing in magnitude with the colloid size.

Our results show that the stationary orientation is deter-
mined to a large extent by the mass asymmetry (mass dipole,
moment of inertia) and geometry (friction coefficient) of the
colloid. The orientation influences the thermophoretic force,
and this explains the nonmonotonic dependence of the Soret
coefficient reported in Fig. 3. We have computed the Soret
coefficient at fixed orientations with respect to the direction
of the heat flux. The Soret coefficient depends strongly on
the angle that the colloid makes with the heat flux vector
(see Fig. 5) reaching the lowest or highest value when the
colloid is fully parallel or perpendicular to the direction of
the thermal gradient. This observation agrees with results
reported in Ref. [12]. The results reported in Fig. 5 offer a
clear explanation to the dependence of the Soret coefficient
reported in Fig. 3. For a given thermal gradient the colloid
will move in the direction of the heat flux according to a given
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FIG. 5. (a) Soret coefficient as a function of the angle θ that the
“symmetric” colloid makes with the heat flux. (b) Torque around the
axis perpendicular to uJq

for symmetric (open symbols) and asym-
metric (closed symbols) colloids of different lengths. The asymmetric
colloids (d = 1.0) experience positive torques in the interval (0,π ),
and the colloid orients with the heavy mass pointing towards the hot
region. All the data were obtained with a thermal gradient ∇T = 0.12.

thermophoretic force. The force increases monotonically with
the mass and saturates to a fixed value in the limit of very
large masses. When the colloid features mass asymmetry a
coupling of the heat flux is possible and the colloid aligns
with the thermal gradient. The alignment is stronger for larger
asymmetries [cos(θ ) → 1], and this results in a reduction of
the thermophoretic force (see Fig. 5). Consequently, the Soret
coefficient will be smaller than the one corresponding to a
symmetric colloid with the same mass.

Finally, we have calculated the magnitude of the torque
associated to the orientation of the asymmetric colloid. To do
this we fixed the colloid at specific orientations in the interval
(0, π ) relative to the direction of the thermal gradient. The
torque is always positive in the interval (0, π ), indicating
that the colloid would rotate with the heavy mass towards the
hot region. The magnitude of the torque increases with the
number of beads, N . As expected, the torque for the symmetric
colloid is zero, consistent with the observation that it does not
adopt a preferred orientation. When considering SI units, the
magnitude of the maximum torque calculated here (see Fig. 4)
τ/ε ∼ 3 will scale linearly with the characteristic energy scale
of the system under investigation. Using an energy of 1 kJ/mol,
corresponding to typical dispersion interactions, we get
∼5 pN nm, to be compared with torques achieved experimen-
tally using metallic nanoparticles, 100 pN nm [14].

IV. CONCLUSIONS AND FINAL REMARKS

The physical principle discussed here might offer new
avenues to manipulate colloidal suspensions consisting of
colloids with mass distributions that are inhomogeneous. The
thermal field will induce a transient torque and therefore a

rotation in these colloids, which could be observed in exper-
imental studies. Our work indicates that colloids of similar
shape and different internal mass distribution would experience
different thermophoretic forces. This effect can lead to the
fractionation of colloids of different mass composition in a
thermal field, due to their different thermophoretic forces.
Experimental studies of colloidal suspensions consisting of
colloids with different composition would be very helpful
to test experimentally the thermophoretic coupling effect
discussed in our work. Our theoretical formulation provides
clues on what key variables can be modified to tune the
orientational effect. Specifically, we expect that increasing
the moment of inertia or reducing the friction will enhance the
thermal orientation effect. Further work considering colloid-
colloid interactions will be needed to get a full picture on
the thermophoretic torque. One key message from our work
is that indeed it is possible to induce orientation in axially
symmetric colloids using homogeneous fields. This can be
achieved by tuning the internal mass distribution of the colloid
and, therefore, this physical effect is driven by the internal
degrees of freedom of the colloids.

ACKNOWLEDGMENTS

We acknowledge the EPSRC-UK (Grant No.
EP/J003859/1) and the EU NanoHeal ITN project grant
agreement No. 642976 for financial support. J.M.R. thanks
The Leverhulme Trust for the award of a Leverhulme
Professorship to visit the Department of Chemistry at Imperial
College London. We thank the Imperial College High
Performance Computing Service for providing computational
resources.

APPENDIX

For the shish-kebab model studied here the friction is given
by ζr = πηL3/[3 ln(L/2σ )] [21], where η is the viscosity and
L = Nσ is the length of the colloid. For the model used in
the paper to describe the mass asymmetry we can define the
moment of inertia as

I =
(

N−1∑
i=1

m(ri − rCOM)2

)
+ mend(rmend − rCOM)2, (A1)

where m and mend are the masses of the normal and heavy
beads, respectively. rj are the coordinates of the beads along
the colloid axis and rCOM is the coordinate of the center of mass
of the colloid, which is given by

rCOM =
( ∑N−1

i=1 m(i − 1)σ
) + mend(N − 1)σ

(N − 1)m + mend
. (A2)

The moment of inertia can be simplified to give

I = N (N − 1)m[2mend(2N − 1) + m(2 − 3N + N2)]

12[mend + m(N − 1)]
.

(A3)
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The phenomenological coefficient, Lnn = ζr/I , is given by

Lnn = 4[mend + m(N − 1)]N2πησ

m(N − 1)[2mend(2N − 1) + m(2 − 3N + N2)] ln(N/2)
. (A4)
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