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INTERPOLATION OF FAMILIES {L%) v € T}

niy)?

M. J. Carro aND J. CERDA

Abstract

We identify the intermediate space of a complex interpolation fam-
ily - in the sense of Coifman, Cwikel, Rochberg, Sagher and Weiss-
of L? spaces with change of measure, for the complex interpolation
method associated to an analytic functional.

0. Introduction

Let {A(v) ; v € I'} be a complex intcrpolation family (c.if) on
I' = {|z| = 1} in the sense of [3]. Let U be the containing space and
F = F(A(),T) the space of analytic U-valued functions associated to
the family.

Let T be an analytic functional on the unit disc I and define the
interpolated space A[T) as

AT ={zeU; 3fecF, T{(f)=1x}

with the usual norm ||2] apry = inf{[|fli= ; T(f) = z}. We shall say that
T is of finite support if T admits a representation of the type

n mi})

(1) T = Z Z aj-;é(”(zj).

=0 1=0

The set {zg, -, 2n} is said to be the support of T
The two following results are easily proved.
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Proposition 1. Let {A{y) ; v € T} and {B{y) ;v € T'} be two
c.i.f. with contaninig spaces U, V and log-intersection space A and B
respectively. Let L : A — M,erB(v) be a linear operator such that, for
each a € A4 and for almost every v € T,

| Lalla(v < M(v)lall ac)
where log M(-) € LY{(T).
Under theses conditions, if L. U — V s continuous,
L : A[GT) — B|T)]

with norm < 1, where

1 2
G(z) = exp <_§_f log M{vy) de('y)) ,
T Jo
H, being the Hergloiz kernel.

Proposition 2.
(&) Ifn > m, A[6(} 20)] is continuously embedded in A6 (z9)].
(b) [T is of the type (1), A[T] = 3-7_5 A[6)(z;)).

Let X be a measure space and p(v,z) > 0 a measurable function on
I’ x X such that, for almost every z € X,

]F Eé—)log p(y, 2}dP; () < 400,

with p(y} > 1 a measurable function on " and P, the Poisson kernel.

We shall denote by p{v) the measure u{y, z)dz with dz the o-fnite
measure of X, and by Lfc('r) = LP{pt(~y)) the corresponding L space.

Assume that the family {Li((‘;)) , ¥ € T} is a c.i.f. with containing

space L{. Consider the function

2w 1

1
) = — o J2)dH, (7))
pem) = oo (e [ s tog )i )
It is known (sec [8]) that if T = &(z), [Li(())][T] = Li((iz)), where
1 IO LS|
——=— | ——dP.(¥)
5w, s

‘The aim of this paper is to identify the interpolated spaces [Lz(())][T]
when T is of finite support.
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1. Main results

From Proposition 2, we shall only need to identify a space
[Li(('_))][éf")(zg)] with z5 € D and n € N. We shall do an induction
with respect to n using the following result.

Lemma 3. Let F : D — U be an analytic function with non-
tangential imit a.e. v € T and such that, for almost every z € X,
the function F(z,z) € NT(D). Assume that, for almosi every v € T,

Fly,) € P and

(v}

ess sup [|F (v, M oo = M < +oo.
e Hiv}

Then, if Flz,) = 0, F'(z0,) is in [L2))i6(z0)] = L2422,

Proof:

We shall prove it with the help of the Fundamental inequality (F.L)
of Herndndez (see [6]).

Under the hypothesis given, we can consider the function

G(z,:c):{ Fla, 2}z — % z# 1z

F'(zp,2) z = zp.

From the F.I. and the fact that the function G{(z,z)u(z, )%, with
al{z} = 1/p(z), is in N1{D), we have

f |Gz, )P (2, z)ldps = / Gz, )ulz, )Py <
X X

L 1/p() 4
< / oxp (plz)5- f log |Gy, €)u(r, 2} /PP |dPy(y) Y dp <
X 4]

<on (g [ pﬁﬂ o8 ( [ 1660t )P ) dp.io) ) =
(p() [ iog ( / (H)Mpw,zmﬂ) dpz(v))s
< oxp (p02) f o8 |2 dPu() =

o (reros i 7) = ()
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Thus, the proof is finished from Fatou's Lemma. Moreover,

M

¢

- I, < Ao TV
|| F*{ =g, )"inzﬂ) = d{z,T)

0}

For each f € Li((i‘;)), we shall express by Hy the function

( ()] wiz)p(2s)
Hi(z, 2y =102, )" ul20, Y £, pizo flz) flz ’
2 zy=plz, 2y~ plz, )| ||L,,L°’>|f{:c)| 10

nizg

where w(z) = afz} + &{z), with &(z) the conjugate function of & such
that &(zp) = 0. We shall assume, in the sequel, that w'{2) # 0.

Proposition 4. f ¢ [Li((‘,))][é’(z{))] if and only if there exist fy and fi
in LP$0) such that

r{zo}
{3) flz) = folz) + flz){log |fi{x) + Hulzo, )},
where ,
Hiz0,2) = ({2, 2) (20, 2)" ) (20).
Moreover,

@ W lhasgyeon = U+ Frlog Wl o + Ul
f satisfies (3) }.

Proof:
To simplify notation, we shall denote by F{n) the space [Li(('_))][éf“) (20}

for avery € . Thus, E(0) = 122

Let f € E(1) and F € F(LX) T) with F'{z, ) = f.
Consider A = {x € X ; F{z,z) = 0}. It is clear, from the previous
lemma, that f§{z) = f{z)xa(z) € F(0) and

. 111~
L.
155l 20y = (0,1
If x € A°, F(2,2) # 0 and we can consider the function H{z,z) =
Hp(yy, 242 (2).
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It is easy to see that H satisfies the hypothesis of the previous lemma
but H{zg.-) = 0. So, the function G{z,z) = F{z,z)xa:(z) ~ H(z,z)
satisfics the necessary hypothesis to ensure that if f) = F(2g, z)xa<(2),

G'(z0,2) = flz)xas{z) — fr{z)(p(z0)w'(z0) log [f(z))+
+ plao)w' (2o} i {z)log || f1 e + H,(20,2) f1{z)

is in F(0) with norm < 2||F||#/d(z, ).

Combinating the previous results and joining all the terms of F(0) in
a single function f5, we obtain the desired results as well as one of the
inequalities of {4).

Conversely, let f = fo+ fi (Hu(20) + w'(20)p{z0} log |f1]) = fo+g. If
we consider the function H,, we obtain, from the previous lemma, that

ifFe f(Li(('?}?r) satisfies F(zg,7) = f1, then

ey = Fl(z0,2) — Hj {20,2) =
= F'(20,2} — fi(z) (p{zo)w' (20} log |fr{z)]—

~plao)'(30) 108 Wil + H2) ) =
= F'(z9,2) + f1{z)p{zo)w'(20)log || filleqoy — 9()

is in E(0) and, thus, g € E(1). E(0) being continuously embedded in
E{1} we obtain the desired algebraic equality. Moreover,

I lleq)y =1+ glleqy =

= lIfo — fi + F'{zo,2) + fip{z0)w (20} log I Aillpioyllepy <

< o + finlzo)w'(z0) log | f1llsioy ey + 15 — F'(20, Mgy <
< Cllfo + Hiplzo)w' (20} log |1l zeo) |l 2o+

1
——(||F F|~.
+ 3t P + Willzo) + 1P

Now, {4) follows easily. &

Proposition 5. f ¢ [Li(('_))][é(“)(zu)] if and only if there exist fo,..., fr
in Li((’i‘;)) such that f(z) = folz) + H{{zs,2) + - + HE (20, 2), where

Proof: _
E(n) still denotes the space [Li((:))][é(”)(zi))] as in the preceeding proof.
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It is already known that the result is true forn = 0 and n = 1. Assume
that it is true for n — 1 and let us see it for n > 1.

Let f € E(n) and F € F(L?) T) with F(")(z,-) = f. Consider the
set
A={ze X ; Flzg,z) =10}

and assume the following

Claim. If F satisfies the hypothesis of Lemma 3, then we get thet
F™{z,) € E(n—1).

It is clear then, that (F{z, )xa(-)){"}{2) is in E{(n — 1) and if f, =
F(zo,)xas and H, = Hj_, then Gn(2,%) = F{z,z)}xa:{z) - Halz,7)
satisfies the hypothesis of the claim and therefore, GS:‘)(ZQ, Ye E(n—1}.

Consequently, if we call g{-) = (F{z, dxa{ )™ (2} + G’g:")(zo,‘) we
have, from the induction hypothesis, that there exist fg, -, a1 In
E(0) such that

0(@) = fole) + 3 HP(z0,2).

j=t

Finally, as f{z} = g{z} + Hﬁﬂ)(zg,x), the desired result is obtained.
The converse is quite similar.

Proof of the claim:

We know that the claim is true for n = 1. Let us consider the set
B ={x e X, F{20,2) = 0}. Then, from the induction hypothesis,
(F(z, )xa(-}}"™(2) is in E(n—2).

Let now z ¢ B. One can consider the function
F{z,x)

Grlz,x) = P

xpe{z}— Hp(z,z)
where Hrp = Hpr(zy, Jyge-

Because G satisfles the hypothesis of Lemma 3, Gg‘_l)(z@, Jis in
E{n — 2} and, thus, as

(F(z,2)x8:)™ (20) = (GE ™" (z0,2) + HE (20, 2))

and Hg‘_l)(zg, 3 € B{n — 1), we get that F™)(z, ) isin E{n—1). &
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Corollary 6. Let J{z,z) = (;L(ZQ,I)/;.L(Z,E))UP. Then, the space
[Li(_)][ﬁ(”)(.m)] is equivalent to

LP(p{20)) + L7 (ul20)(J (20, 7)) ) + - + LP((20)(J ™ (20, ) 7} =

= LP{u{zo)(3_ 1T\ (20,2)) ).

=1

Proof:
Let us denote py = p(2p)J %} 20, 2) P for every k € N.
If p(v) = p, Hy(z,2) = J(z,2)f(z) and, as f € L?(uo),

HP (z,2) = (@) (20,7) € L7(pas).

Now we see the equivalence of the norms. Assume initially that n =1
and let f € [LF,,][6"(0)]. Let F € F(LY 4, T) with F'(z,2) = flz)
and consider G(z,z) = F{z,2) — J{z,2)F(%,z). It is satisfied that
G({zg, -} = 0 and, therefore, G'(2p,-) € LP{ug). Moreover,

2 Fll
d(Zg, F) .

i
1G (z0, M v (uo) < m("F“f + 1 (20, 2} Lr (o)) <

Thus, F'{z,z) = G'{zg, %) + J' (20, 2} F{z5,z) = fol{x) + fr(z) with fo
in LP{uo) and fi in LP(u,). Moreover,

207z 2
> gy < Fllz = Fl =,
[follzsguy + Willsmiany < iy +IEl= = {1+ gy I

that, a fortiori, vields the equivalence of the norms. Now, assume that
the result istrue forn—1andlet f € [Li(_)][é(“)(z@)] and F in 'F(Li(.),l‘)

with F")zy, )= f(z). The function G zg,2)=F{x) — J "N 20,5)F (20,%)

is in [Lﬁ(.)][zﬁ(“‘l)(z())] and, from the induction hypothesis, there exist

f; € LP(uo) (0 < j < n—1) such that

f(I)Zfe(ﬁt“-)‘Ffl(«’C)f(zo,93)_+' ot Fa (2 W20, 2)+ I 29, T) F (20, ).
Morcover,

I foll ooy ++ - a1l 2o (unz 1) KNG (20, ez 50 oy K IF N

Now, the proof is easily ended. R
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Corollary 7. Let wg,un be two positive megsurable functions on X.
Then f is mn [LP*(wg), LP (w1 )lsrey #f and only of there ezist fo, fr n

LP{w), (1/p={(1—8)/po+ 6/p1 and w = wi' PP PP ) such that
1(@) = 1ol®) + @) log wn() - - log wa(z)) + filz) log |

Proof:

Given 0 < # < 1, there exists a measurable set [} C I" such that
Jr, @Px(v) = 8. So, if we consider A(y) = LP°(wyp) for each v € T\ T},
and A(y}=L¥(w, ) for each ye 'y, we have A{y) =L (wo}, LP* (w1)]aty)
with a(-) = xr,{-)-

It is known (see [11, 1.18.5]) that A{y) = Li(&)’m), where, for each
yel,

1 _1-oly) oy
(7} Po 4! .
uly,z) = wg(’?)(l—or('r))/mwf('r)a('v)//pl )

and -

Moreover, « attains the values 0 and 1, and thus, as we have proved
in [2] in quite analogy with the reiteration results of [3], if T = 6{*}(z)
{n € N) and w'(z)} # 0, then

A[T] = [Z7°(wo), L% ()]s,

where S{p) = T{p ow) and [LP*{wg), L7 (w) )]s is defined like in the
interpolation method of {10]. Se,

[27° {20}, LF* (wn )]s = [LP° (wo), L7 ()]s (a(z0)y = [L7° (wo) L7 {wn )] 5 (6-

Hence, the space we want to identify is a particular case of Proposition
5. But, in this case,

ulz,z) = wgtz)u—w(znm WP

If we call B(2) = & [;" z55dP.(y) and B(z) = B(z) + iB(z) with

Bz} =0, we have

JBE) (7, 2) B2} = g0 =D+ 1=0pB pa (BB w()

ulzg, z)" ¥ piz, 2

Now we can apply Proposition 4 to end the proof. W
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Remark. In view of the Corollary 6 and the above calculation, one
can easily obtain that

(L7 (wo), LP (w1)) stm gy = LP (g~ %wf (1 + |Tog (wo/w:i)[™) ™)

as it is said in [7].
Remark.

Let @(x, t) be a function that, for each x € M, is an increasing function
of t In 0 €t < oo, and w{z,0) = 0. Denote by (X)) the class of
measurable functions ¢ on M such that there exist A > O and f € X
with || fllx <1 and

lo(z)| € Aplz, A|f(z)) ae z€M

Define the “norm” of g, ||gll,(x), as the infimun of the values A for
which such an inequality holds.

It is known (see [1]) that if ¢{z, t) is a concave function of t and change
the previcus norm by

lgll = inf{x >0 |g(z)| < Mp(z,|f(2))  ae z€ M}

then {(X}. || - ||} is 2 Banach Lattice. In our case, we can only assurc
that the space (X} is a Frechet Lattice.

We say that a function f is equivalent to g in Rt if and only if there
exist @, & > 0 such that

a f(z) < g(z) < b f(z) ae xr€X.

P}

vy = (L), where

It 15 also known that L

oz, 8) = ply, z)"H/P0IH /200,

Consider the function
1
(Pz(msz) = &Xp (2_] lOg (p'}'(:‘c:t) de(7)> .
T Jr

Then ¢, (z,) = p(z,z) " /PEz)

Finally we assumc that, for ecach 1 < k£ < n, the function y(z,t) =
165} (20) (- (z,1))] is equivalent to an increasing function that we shall
continue denoting by wy.
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Proposition 8. If T = 6§ (z), the space [Li(())][T] is equivalent to
Z::O tpk(Ll)‘ a

Proof: :

Let f € we{L') and let h € L' with ||h||z» < 1 and A > 0 such that
[£(x)] £ A wr(z, MR(z)]).

We have

pelz, Ab(@)]) = 6% (20) (u(z,x)‘lfﬁ(z)(,\|h(x)[)w(z)) .

It is easy to see that the function F(z,-} = u(z, ) VPE(A|R(z)])#)
is in F(Lff('.))), and hence, f is in [Li(('.))][é(k)(zg)].
Moreover, ||f||[ﬂ‘“][5m(zo)] < A|Fllz. So it is clear that if (fi)ln
(1]
converges to zero in @r(L'}), (f.)n converges to zero in [Li(('.))][tﬁ(k)(zg)].

Converscly, from Proposition 5, one can obtain that if f G[Li(('.)}ﬂé(“)(z(, ),

flz) = glz) +H,(ln)(z9,:r) where |H.£n)(z0,:c)] = gnlz, |galz)]) with g, =
| Ffr|P*0) u(zp) € L'. An induction ends the proof. B

2. Applications

Example 1.

If 4 € BMO has a norm enough small s, then W = ¢® and W-1 arc
weight, of 4,. Furthermore. for any Calderdn Zygmund integral operator
(CZO), L,

L:LP(W) — LP(W} and L:LP(W™1) — LP(W1).
(See [8]).

Proposition 9. Under the previous hypothesis, for each b € BMO,
[P g pede < ol Vo€ L7
Ro (I[8f)« + s[b(z}])? sp P

Proof:
It is a trivial consequence of the fact that

L [LP(W), LP(W ™ s ey — [LP(W), L2(W sy
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and that for 6 = 1/2,

[LP(W), LP(W g3y = LP((L + [B) 7).

So, if f e LP((1 + [B1)77), IL{ M zrecavipn-» € W leriaien—=)-
On the other hand, if g € L?, L{g) € L? and

NZ( zecr+p5-7) < 1L(D)lp < ellgllo-

The combination of all these results ends the proof. B

Corollary 10. If L is a CZ0,

1 P
L b — 4 —1X],
o (/ o =DF T st "”) S

for any Lebesgue measurable set X and | X| its measure.

Example 2
Consider 0 < v < n, 1 <p < (nfy)and I/py = 1/py — v/n
b € BMQ, it is proved in [9] that if L, = *|z|"™" {Riesz Potentials),
then
Lo LPY(e®) — LP(e®) and
L, LP{e”®) — LP2(e7?).

Thus, with an argument quite similar to the one of Proposition 9, we
get the following result.

Proposition 11. Under the previous conditions,

1 i i 1
su L. |b{z}] P2 dz & ~|X|#r.
begﬁo(fx' W P T s ) el

Example 3.

Let 1 < py <pz <coandp=20p;" +p;')" ! If g LP(R") and g*
is the Maximal function of Hardy-Littlewood, there exists & such that
(g°}® are weights in the classes A, and A,, {[4, Prop. 2]). Conse-
quently, if L is a CZ0,

L: L7 ((g")**) — LP((9")**) and
L: LP((g")2%) — LP#((g") ).
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Proposition 12. Under the previcus conditions, for each f € LP(R"™)
(n < p<p2),

o Pl
([ iztriios a'DP oy —de)” < 27k

Example 4. On the Hardy-Littlewood maximal operator.
Let A be the Hardy-Littlewcod maximal operator. If 0 < o < 1, then

flz) = M(||lz)™°")(1 + [log M(||zl|7") )7* € LY*(R™).

If we take p = 1/o and u = 1, it will be a particular case of the following
result,

Proposition 13, Let u € Ay and p > 1. If f(1 + |log |f] )7} €
LP{u™) and g = M{fu")u, then g(1+|log |g| [)' € L7{u™1).

Proof: Let o : ' — (0, 1) a measurable function such that

101 /2“ 1
S= e .
p 2njy 14ealy)

Then
(8) u*™ € Angay41 (see [5]) and, therefore, if p(v) = 1 + a{y)

A Lp(?)(ua(w)) . L?(’T)(uﬂ('\’))_
(b} By interpolation
M : [LPO ()i (0)] — (2P ()18 (0)].

{c} If
w [P O[E(0)] — Lg(u™)

is defined by u{f) = uf, then u is an isomorfism, where Ly(u™!) is the
Orlicz space associated to ¢(t) = ™' (£)?, and w(t) = t(1+|log £}). This
result is a consequence of Proposition 4 with H,(0,z) = pw'{0)}log u and
from the fact that Lg(u~") is the space of the measurabie functions such
that f{1+ |log |f] V7! € LP{u™t).

Now the proof ends from {a}, (b) and {c}). B
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