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Energy Transduction in Periodically Driven Non-Hermitian Systems
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We show a new mechanism to extract energy from nonequilibrium fluctuations typical of periodically
driven non-Hermitian systems. The transduction of energy between the driving force and the system is
revealed by an anomalous behavior of the susceptibility, leading to a diminution of the dissipated power
and consequently to an improvement of the transport properties. The general framework is illustrated by
the analysis of some relevant cases.
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In the past years a growing interest in mechanisms for
energy transduction by rectification of unbiased thermal
fluctuations has arisen, partly motivated by problems from
cell biology. Several phenomenological models, catego-
rized as thermal ratchets or Brownian motors, have been
proposed. These engines operate at molecular level [1],
although their potential implementation in a larger scale
would be of evident interest. In this context, a number
of methods for particle separation have been recently pro-
posed based on several variants of the ratchet concept
[2]. Motivated by this interest, we investigate how to
take advantage of nonequilibrium fluctuations to optimize
the energy consumption. We propose a new mechanism
for energy transduction in a class of nonequilibrium sys-
tems when they are acted upon by a weak periodic force.
The coupling between the external driving and the out-of-
equilibrium fluctuations leads to a minimization of the dis-
sipated power. The minimum occurs when the frequency
of the external force matches a characteristic frequency of
the system, thus manifesting a resonant behavior.

Let us consider the class of differential equations

≠tC� �x, t� � �L0 1 l�t�L1�C� �x, t� , (1)

describing the dynamics of a probability density or of a
field C� �x, t�, where �x represents a coordinate. The dy-
namics is governed by the non-Hermitian operator L0 and
is influenced by the action of a periodic force which intro-
duces the perturbation l�t�L1, with l�t� � l0eivt .

We will analyze the response of the system to the ex-
ternal perturbation by using linear response theory (LRT).
Accordingly, Eq. (1) can be solved formally yielding

C� �x, t� � C0� �x�

1
Z t

t0

dt l�t�e�t2t�L0 �L1C0� �x�� (2)

� C0� �x� 1 DC� �x, t� ,

where C0� �x� is the initial condition, which corresponds
to the stationary state of Eq. (1) in the absence of the
external force [3]. Expansion of the term L1C0� �x�
in a series of the eigenfunctions of the operator L0, fn

with eigenvalue an; n � 0, 1, . . . ,
0031-9007�00�85(19)�3995(4)$15.00
L1C0� �x� �
X̀
n�0

�cnfn��x� 1 c�
nf�

n� �x�� , (3)

where cn are the corresponding coefficients in this expan-
sion, then leads to

D �x�t� �
Z

�xDC� �x, t� d �x �
Z t

t0

dt �x�t 2 t�l�t� ,

(4)

which defines the susceptibility �x�t�.
We will assume the existence of a dominant time scale

governing the relaxation process, which corresponds to the
n � 1 mode in the expansion (3). Since the remaining
modes decay faster we can truncate the series retaining
only the first term. Thus, considering only contributions
of the first mode, �x�t� � �Aea1t 1 c.c., with �A defined as

�A � c1

Z
�xf1��x� d �x , (5)

the explicit expression of �x�v� follows from the Fourier
transform of �x�t�,

�x�v� �
�A
I1

1
b 2 i�a 1 1�

1
�A�

I1

1
b 2 i�a 2 1�

, (6)

where a1 � R1 1 iI1, b � R1�I1, and a � v�I1, with
R1 and I1 being the real and imaginary parts of a1, re-
spectively. In Fig. 1, we have plotted the modulus of the
susceptibility as a function of a for different values of
b. During the relaxation process of nonequilibrium fluc-
tuations, the susceptibility undergoes a resonant behavior
when the frequency of the force matches the imaginary
part of the first eigenvalue of the nonperturbed operator
L0. This behavior reveals the resonant coupling between
the periodic force and the nonequilibrium source, respon-
sible for the non-Hermitian nature of L0.

The appearance of this resonance leads to a diminution
of the dissipation in the relaxation process of the fluctu-
ations of �x. To illustrate our assertion, let us suppose
that Eq. (1) represents the non-Hermitian Fokker-Planck
equation
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FIG. 1. Nondimensional modulus of the susceptibility as a
function of the parameter a. The solid line corresponds to
b � 0.1, dotted line to b � 0.5, and dashed line to b �
1. The resonance fades away practically for b 	 10 (dot-
dashed line).

≠tC� �x, t� � 2= �x ? � �y� �x�C 2 D= �xC�

2 l�t�= �x ? �bC= �xU� �x��

� L0C 1 l�t�L1C , (7)

where �y� �x� is a nonpotential drift, b is a mobility, D �
KBTb is the corresponding diffusion coefficient, and U� �x�
is the potential related to the external force. Among the
physical realizations of the model described by Eq. (7),
we can quote the case of a Brownian particle advected by
a constant drift �y acted upon by a force �F� �x, t�, or a field-
responsive particle in a vortex flow under the influence of
an oscillating magnetic field [4].

We are interested in analyzing the energy dissipated by
the system in the dynamic process governed by Eq. (7).
The dissipated power is

P � 2
Z

d �x �J ? = �xm , (8)

where �J � 2D= �xC 2 bl�t�C=�xU� �x� is the diffusion
current and m � KBT lnC� �x, t� 1 l�t�U� �x� is the corre-
sponding chemical potential, including the power supplied
by the external force. The externally supplied power is
given by

PF � 2l�t�
Z

d �x �J ? =�xU �
Z

d �x �J ? �F� �x, t� . (9)

By expanding �F� �x, t� in a series of the eigenfunctions of
L0 and substituting this equation into Eq. (9), we achieve

PF � �F0�t� ?

Ω
d
 �x�
dt

2 
 �y� �x��
æ

1
X
nfi0

2V Re� �Fn�t� ? �J�
n� , (10)
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where �Fn�t� are the coefficients of the expansion of �F� �x, t�,
and V is the volume of the system. To obtain Eq. (10) we
have used the resultZ

d �x �J �
d
 �x�
dt

2 
 �y� �x�� . (11)

This expression follows from the Fokker-Planck equa-
tion (7) through the definition of �J.

The quantity of interest is the time-averaged dissipated
power,

PF�v� �
v

2p

Z 2p�v

0
dt PF . (12)

For the particular case of the Brownian particle, PF reads

PF � �F0�t� ?

µ
d
�x�
dt

2 �y

∂
1

X
nfi0

2V Re� �Fn�t� ? �J�
n� .

(13)

In Fig. 2a we have plotted the corresponding PF�v�. To
this end we have assumed that the motion of the par-
ticle takes place in two dimensions, with periodic bound-
ary conditions; thus, the set of eigenfunctions f�k� �x� are
the Fourier modes with eigenvalues a �k � 2Dk2 2 i �y ?
�k. We have considered a force of the form �F� �x, t� �
l�t� �1 1 cos� �k ? �x��ŷ, where ŷ is the unit vector point-
ing along the direction of the drift. The figure shows
that PF�v� achieves its minimum value at the resonant
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FIG. 2. (a) Nondimensional dissipated power for a particle un-
der a constant drift as a function of the nondimensional parame-
ter a. (b) Same for a field-responsive fluid. The dotted line
corresponds to the total dissipation PF�v�.
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frequency. The negative character of this quantity indi-
cates that the system is acting as a generator.

In Fig. 2b we have represented that quantity for the
more complex case of the mesoscopic dynamics of a
field-responsive Brownian particle in a vortex flow with
vorticity �v0, under an oscillating magnetic field, �H�t� [4].
In this case, the power supplied by the external force is

PF � �H�t� ?

Ω
d
 �M�

dt
2 �v0 3 
 �M�

æ
, (14)

where �M is the magnetization. This figure shows that in
this case the transduction of energy occurs in two different
regimes. In the low frequency regime, P0 (the power
dissipated in the Debye relaxation [5], achieves negative
values while Pc, the energy dissipated due to the coupling
between the drift and the external force) takes negative
values for high frequencies. In both cases the averaged
dissipated power PF�v� exhibits a minimum value at the
resonant frequency, showing the resonant character of the
mechanism for energy transduction.

The analysis of the energy dissipation allows us to study
the transport properties. The presence of external driving
forces the system to move with a net velocity, �ym, different
from the drift �y� �x�, thus leading to the appearance of a
drag force, �Fd � 2 ��k ? �ym [6], with ��k a friction tensor
accounting for dissipation in the system. The resulting
dissipated power is PF � �ym ? ��k ? �ym. In the case of the
Brownian particle advected by a constant drift, the friction
is given by kB � y22

m PF , whose behavior is essentially
shown in Fig. 2a.

For the field-responsive particle the dissipated power
given through Eq. (14) consists of two independent contri-
butions corresponding to longitudinal �P0� and transversal
�Pc� effects, with respect to the direction of the magnetic
field. Consequently, associated with the last one, which
corresponds to the viscous dissipation occurring when the
magnetic field acts on the fluid, we can define a friction
coefficient as

kF � 2
1

�yT
m�2

�v0 ? �
 �M� 3 �H� , (15)

where yT
m � v0a is the transversal component of �ym, with

a the radius of the particle and v0 the modulus of the vor-
ticity. It is interesting to analyze the behavior of this quan-
tity in terms of the parameter b, which is given in this case
by Dr�v0, with Dr being the rotational diffusion coeffi-
cient. As can be seen in Fig. 3, as b grows the friction co-
efficient kF becomes positive in the entire frequency range.
In fact the frequency for which kF � 0 goes to infinity in
the limit of a Hermitian dynamics. Figure 1 shows some-
thing genuinely analogous of non-Hermitian systems, that
is, the resonance disappears when b grows.

The anomalous behavior exhibited by the friction coef-
ficient is a direct consequence of the form of the suscepti-
bility. In equilibrium, the fluctuation-dissipation theorem,
implying that v Imxx�v� $ 0, manifests such that during
the relaxation of the fluctuations around an equilibrium
α
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FIG. 3. Nondimensional friction coefficient as a function of
the parameter a for different values of b. The solid line corre-
sponds to b � 0.1, dotted line to b � 0.5, and dashed line to
b � 1.

state the system always dissipates energy. Nonetheless,
in the nonequilibrium case shown in Fig. 4 the imagi-
nary part of the susceptibility achieves negative values for
positive frequencies, thus violating the aforementioned in-
equality. In this figure, obtained for the particular case
of the Brownian particle in a constant drift, the analyti-
cal results are compared with numerical results from the
corresponding Langevin equation by means of a second
order Runge-Kutta method [7]. For the field-responsive
particle, we obtain the same behavior, which essentially
corresponds to P0, plotted in Fig. 2b. This fact indicates
that the system is generating energy instead of dissipating
power, which manifests at a macroscopic level through the
diminution of the friction coefficient. An anomalous be-
havior of the response was first discussed in the context of
current generation by noise-induced symmetry-breaking in
coupled Brownian motors [8]. These papers were focused
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FIG. 4. Nondimensional imaginary part of the susceptibility
for a Brownian particle advected by a constant drift as a func-
tion of the parameter a. The solid line corresponds to the ana-
lytical computation, whereas the dots have been obtained from
numerical simulations.
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on specific models, which questioned under which circum-
stances this behavior arises. In this Letter, we have found
that the conditions for these phenomena occur in a quite
general class of systems.

Notice that our results differ from the ones obtained
when LRT is applied to nonequilibrium Hermitian systems.
For example, in Ref. [3] fluctuation-dissipation–type re-
lationships are derived, by assuming that the relaxation
occurs as in equilibrium. In the present context, this as-
sumption does not hold, since we are dealing with non-
Hermitian systems whose eigenvalue spectrum is complex.
Consequently, perturbations do not relax exponentially as
they do in equilibrium.

The theoretical framework discussed in this paper can
be applied to a number of problems formulated in terms
of non-Hermitian dynamics. Among them, one could
mention the transport of classical particles advected by a
quenched [9] velocity field. This process, governed by a
Fokker-Planck equation with random drift, models the dif-
fusion in porous media. It has been recently shown [9]
that, when the velocity field displays correlations in both
longitudinal and transversal directions, the eigenvalues oc-
cupy a finite area in the complex plane. Consequently, this
system evolves according to a non-Hermitian dynamics.
If the particles can respond to an external field, the same
phenomenology described in this paper holds; i.e., as a
consequence of the diminution of the dissipation, trans-
port through the porous medium becomes enhanced. The
phenomenon we study may also arise in population bi-
ology problems, in particular in the generalization of the
Malthus-Verhulst growth model proposed by Nelson and
Shnerb [10]. The linearization of this model around its
steady state yields a non-Hermitian evolution equation.
When periodic driving is introduced as a time dependence
of the resources of the medium, the minimum achieved by
the dissipated energy is now related to a resonant optimiza-
tion of these resources.

Additionally, our approach might unify the explanation
of other resonant transport phenomena previously re-
ported. The Senftleben-Beenakker effect observed in gases
of polyatomic molecules shares the phenomenology inher-
ent to our model. This effect occurs when the gas is under
the action of both a constant magnetic field and an oscil-
lating field parallel to the first one [11]. Larmor precession
causes the non-Hermiticity of the Boltzmann equation
describing the dynamics of this system. The resonant
frequency is related to Larmor’s frequency. Under these
conditions, the viscosity of the gas manifests a non-
monotonous behavior similar to the one depicted in Fig. 3.
Another example exhibiting analogous characteristics is
the negative viscosity effect observed in field-responsive
fluids [4], under a nonpotential flow and submitted to
an ac field. This effect consists of a diminution of the
viscosity due to the presence of the periodic field. The
field-responsive phase acts as a transmitter of energy
between the external force and the system, improving the
transport.
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In summary, we have proposed a mechanism for energy
transduction in nonequilibrium systems, based on the pos-
sibility of extracting energy from the relaxation process
of out-of-equilibrium fluctuations. Under the action of
an oscillating force, systems which evolve according to
non-Hermitian dynamics act as transducers. Consequently,
the energy dissipated in the system diminishes achieving
its minimum value when the frequency of external driving
matches the resonant frequency. This diminution of the
dissipated energy has a strong influence on the macro-
scopic properties of the system, leading to an enhancement
of the transport or more generally to an optimization of
the consumption of energy. Because of the intrinsic
nonequilibrium nature of the fluctuations, energy trans-
duction does not require any further ingredient, as occurs
in ratchetlike engines, in which the presence of a parity-
symmetry-breaking potential is an unavoidable condition
for transferring energy.
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