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We study the jerky response of slowly driven fronts in disordered media, just above the depinning
transition. We focus on how spatially disconnected clusters of internally correlated activity lead to large-
scale velocity fluctuations in the form of global avalanches and identify three different ways in which local
activity clusters may organize within a global avalanche, depending on the distance to criticality.
Our analysis provides new scaling relations between the power-law exponents of the statistical distributions
of sizes and durations of local bursts and global avalanches. Fluid fronts of imbibition in heterogeneous
media are taken as a case study to validate these scaling relations.
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Under a slow external driving, out-of-equilibrium hetero-
geneous systems can respond in the form of collective
excitations [1,2]. This phenomenon covers a wide range of
length scales from a few nanometers or millimeters, as in
magnetic domain walls [3], confined magnetic plasmas
[4,5], rock and wood compression [6,7], and yielding of
amorphous materials [8], all the way up to geological scales
for earthquakes [9,10]. These avalanches are usually
measured in the time evolution of a global, bulk-averaged
quantity, often referred to as crackling noise [2]. For critical
or near-critical systems, avalanches obey power-law prob-
ability distributions lacking a characteristic scale. Ideally,
the goal is to extract information concerning the local
dynamics, effective transport coefficients, relevant non-
linearities, and interactions from analyzing the avalanches
in the global observable. However, such a task is generally
difficult, since the global dynamics involves local simulta-
neous avalanches, which could even be correlated, occur-
ring at distant places in the system [11,12]. Therefore,
studying avalanches in the local activity would be generally
preferred since they are directly connected to the actual
microscopic dynamics [13]. Interestingly, experiments on
fracture fronts [12,14] and fluid imbibition [15] have been
able to track local space-time activity.
In this Letter, we provide an analysis of the dynamics of

slowly driven fronts near the critical depinning transition.
Our goal is to relate local activity clusters to bursts in the
global velocity time series. We characterize how local
activity organizes spatiotemporally during a global burst
depending on the distance to the critical depinning transition.

New scaling relations connecting sizes and durations of
avalanches at both description levels are, thus, established.
We consider an interfacial front hðx; tÞmoving through a

two-dimensional disordered medium under the action of an
external driving force. We assume that the front moves with
a small but finite average velocity v̄. A site x is said to be
active when its instantaneous local velocity Δhðx; tÞ=Δt
exceeds a prescribed (arbitrary) threshold vth, providing a
separation between local burst motion and the imposed
front advancement. A local activity cluster is a spatially
connected cluster of active sites. The size A of the cluster is

defined as A ¼ R
x0þLx
x0

dx
R y0þLy
y0 dyΘ(vðx; yÞ − vth), where

vðx; yÞ is the local velocity field of the front, Lx and Ly are
the lateral dimensions of the bounding box of the corre-
sponding local cluster, and Θ is the step function. The
duration D of the local activity cluster is the time spent by
the front to go through the cluster. Near the critical
depinning point v̄ ¼ 0, the average size hAi generically
scales as ∼Dγa .
Most experimental systems do not allow direct meas-

urement of the local activity of driven fronts. Instead, a
global signal Vðt;lÞ ¼ ð1=lÞ R l

0 dxvðx; tÞ is accessible. If
collective motion takes place in the system, this reflects in a
jerky signal in time, as shown, for instance, in Fig. 1(b) for
imbibition experiments.
Slightly above the critical point there is local activity at

nearly all times, and, thus, Vðt;lÞ is nearly always above 0.
A finite detection threshold V th is necessary to unambig-
uously define avalanches of the global signal and to
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measure their duration T and size S. These properties are
given, respectively, by the time interval elapsed in an
excursion of Vðt;lÞ above V th and by the area enclosed in
the excursion, S ¼ R t0þT

t0 dt½Vðt;lÞ − V th�, where t0 is the
time of the first threshold crossing. Average avalanche sizes
scale as hSi ∼ Tγ with their durations. This scaling relation
is valid even for noncritical systems [16]. Near depinning,
the sizes and durations of both local activity clusters and
global events take values in a very broad range. Their
statistical distributions are usually written as a power law
with an exponential cutoff PðXÞ ∼ X−τX exp ð−X=ξXÞ. The
critical exponent τX reflects scale invariance in a wide range
of X below the upper cutoff ξX [15,17,18]. Both τX and ξX
will, in general, be different for local activity clusters and
global avalanches.
Thresholding plays a key role in the analysis of ava-

lanche statistics [19,20]. Most existing studies typically
analyze local activity clusters and global avalanches sep-
arately, applying independent thresholds. In order to make
a connection between global avalanche statistics and local
activity, however, the thresholds applied cannot be chosen
independently. We propose here a new approach based on a
single threshold, vth. First, we generate the activity map of
local velocities vðx; tÞ from experiment [Fig. 1(a)] and
apply to it the arbitrary threshold vth, such that a clipped
activity map vCðx; tÞ is obtained [Fig. 1(c)]. vCðx; tÞ ¼
vðx; tÞ if vðx; tÞ ≥ vth and vCðx; tÞ ¼ 0 otherwise. Local
activity clusters are defined now in the usual way, using
vCðx; tÞ instead of vðx; tÞ. The corresponding global
velocity VCðt;lÞ is obtained by averaging the clipped
activity map over a window of lateral size l. This signal

returns intermittently to zero [Fig. 1(d)], and no further
thresholding is needed. Global avalanches are excursions of
this signal between consecutive zero values. We expect that
the new global signal VCðt;lÞ will exhibit the same
statistical features than the original signal Vðt;lÞ above
an arbitrary (judicious) threshold. In imbibition experi-
ments, we have verified indeed that the probability density
functions (PDFs) of S and T are well approximated by
power laws with exponential cutoffs in both cases and also
that the values of the corresponding power-law exponents
are the same within experimental uncertainty.
We can relate now local activity clusters to global

avalanches. With the definition of VCðt;lÞ, the size of a
global avalanche of duration T is the sum of the number of
local events during its occurrence:

SðTÞ ¼ 1

l

X
jjDj∈T

Aj ¼
NðTÞ
l

hAi; ð1Þ

where NðTÞ is the mean number of local events in a global
avalanche of duration T, and h� � �i is the average size (or
duration) of the local events within the global avalanche
[21]. Assuming that the scaling relation A ∼Dγa applies to
all local avalanches contributing to a global event of
duration T, Eq. (1) can be rewritten in the continuum
limit as

SðTÞ ∼ NðTÞ
l

Z
T

0

dDDγaPðD; fD ∈ TgÞ; ð2Þ

where PðD; fD ∈ TgÞ is the PDF of durations of the local
avalanches in a global avalanche of duration T [21].
Equation (2) is general and can be used in different
scenarios depending on PðD; fD ∈ TgÞ. We can identify
three different arrangements of local bursts within a global
avalanche depending on how close the system is to
criticality.
Arrangement I: Static limit.—Right at the critical pinning

point v̄ ¼ 0, and the lateral correlation length of the front
fluctuations diverges, lc → ∞. Interfacial motion is fully
correlated so that advances of the front take place by single
local clusters of activity. In this situation, there is a one-to-
one correspondence between local and global activity.
Equation (1) adopts the form SðTÞ ¼ AðTÞ=l, and the
relation γ ¼ γa follows straightforwardly.
Arrangement II: Simultaneous local avalanches.—When

the correlation length of interfacial fluctuations does not
diverge but it is a non-negligible fraction of the system size,
the local activity is highly heterogeneous and moving sites
coexist with large pinned regions. Any given site goes
through random time intervals of activity separated by long
intervals of calm while activity is localized elsewhere.
When time intervals of activity and calm are uncorrelated,
i.e., if local activity follows a renewal process [27], then
accumulation of short-lived local activity clusters will not
lead to macroscopic collective events on much longer
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FIG. 1. (a) Activity map of local front velocities in an imbibition
displacement with injection velocity v̄ ¼ 0.057 mm=s in an
observation window of lateral size l ¼ 20 mm. (b) Global veloc-
ity signal obtained from integrating this local activity map with
respect to x. The discontinuous line is the mean velocity.
(c) Activity map of local velocities clipped with vth ¼ 3v̄.
(d) Corresponding global signal obtained from integrating this
clipped activity map with respect to x.
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timescales. This leads to the lowest-order approximation
that global avalanches are dominated by local events of the
same duration, while shorter local events occurring within
the same time window only affect the variance of SðTÞ and
not the average. Thus, a global velocity fluctuation that
lasts for a time T corresponds on average to a number
NðTÞ of coexisting, spatially separated, local avalanches
of the same duration, i.e., D ¼ T. Mathematically, this
translates to a case where PðD; fD ∈ TgÞ becomes a
delta function δðD − TÞ. Introducing it in Eq. (2), we
obtain SðTÞ ∼ NðTÞTγa ∼ Tγ.
In order to find a relation between γa and γ, an estimate

of N is required. The morphological properties of the
interface (roughness) can be used for this purpose. A
fluctuation of the global velocity that lasts a time T
produces an interface fluctuation of the order of the global
interface width WðTÞ ∼ Tα=z [28]. Similarly, a single local
excitation leads to an interface fluctuation of order
wðTÞ ∼ Tαloc=za in the same time interval. α and αloc are
the global and local roughness exponents, and z and za are
the global and local dynamic exponents, respectively [29].
The global surface fluctuation corresponds to the sum over
all local excitationsWðTÞ ∼ NwðTÞ so thatN ∼ Tα=z−αloc=za .
Thus,

γ −
α

z
¼ γa −

αloc
za

: ð3Þ

This scaling relation connects the avalanche exponents γ
and γa with the kinetic roughening exponents of the
moving front. This is one of the main theoretical results
of this Letter.
The argument can be extended to the relation between

the statistics of global excitations and local activity
clusters. If PSðSÞ is the PDF of avalanche sizes and
PAðAÞ is the PDF of local activity areas, we have that
PSðSÞdS ¼ PAðAÞdA. It follows that

τA ¼ 1þ γ

γa
ðτS − 1Þ; ð4Þ

which connects statistical and dynamic properties of local
activity and global velocity avalanches. Assuming an
uncorrelated process, a particular instance of this scaling
relation for N ∼ Sμ with μ ¼ 1=2 was obtained and con-
firmed by numerical simulations for interfacial crack
dynamics [11]. According to our analysis, the exponent
μ is given by 1 − γa=γ in general.
Arrangement III: Random occurrence of local activity

clusters.—When the correlation length becomes much
smaller than the lateral size of the observation window
lc ≪ l, occurrences of activity in a global avalanche can
be regarded as independent events. In this case, in an
avalanche of duration T, local activity clusters with
duration D < T can occur independently from each other
with equal probability so that T ∼ NðTÞ. Now, N bears no
relation with the morphology of the front. During larger

global avalanches, the duration of the corresponding
activity clusters is limited by a constant cutoff value ξD
[15]. If we assume again in this case that the statistics of
global avalanches is dominated by the local events of larger
duration, PðD; fD ∈ TgÞ ¼ δðD − ξDÞ. Introducing this
PDF in Eq. (2), we obtain SðTÞ ∼ N ∼ T. This means that
γ ¼ 1 independent from the value of γa.
We take imbibition fronts in disordered media as a case

study to test our scaling theory above. Fluid fronts in stable
imbibition displacements develop long-range lateral corre-
lations spontaneously up to a characteristic length lc that
can be tuned by the average front velocity [17]. The system
has correlated activity at short length scales (below lc) and
uncorrelated motion at longer length scales. The different
arrangements discussed before can be explored. Figure 1(a)
shows an example of the activity map of a stable displace-
ment in a model open fracture [15,17]. Following Ref. [15],
we take vth ¼ Cv̄, where C is an arbitrary clip level
between 1.4 and 3, and v̄ is the injection velocity. We
have checked that the statistical properties of local clus-
ters are robust in the range of thresholds applied here [15].
We focus on cases where lc is always smaller than
the observation window l. For this reason, we take
l ¼ 20 mm. Finally, we discard tiny local avalanches of
sizes smaller than the disorder patches in the cell and
avalanches that are cut by the observation window [30].
In order to identify the three different arrangements

discussed earlier, we characterize how local activity clus-
ters are distributed in space and time during a global
avalanche. There are two limiting cases. One is that local
activity clusters occur simultaneously during a global
avalanche, and then T ¼ maxðDiÞ (top left, Fig. 2), and
the other is that local avalanches occur successively inside a
global avalanche (pileup), and then T ¼ P

iDi (top right,
Fig. 2). The bottom graph in Fig. 2 shows the ratios
maxðDiÞ=T and

P
iDi=T computed from our experimental

data for a given clip level and different injection velocities.
Durations are measured in units of ξT ∼ ld=v̄, where
ld ¼ 0.6 mm is the characteristic length of the disorder
patches in the experimental cell [31].
The experimental results reveal indeed three different

arrangements coexisting in a single imbibition displacement.
Arrangement I.—The two first leftmost experimental

points in Fig. 2 (Tv̄=ld ≃ 0.05) correspond to the (critical)
case where a single local cluster of activity occurs during an
avalanche so that N ¼ 1. In this case, maxðDiÞ=T andP

iDi=T coincide because the two limiting cases are the
same. The statistics of these events, however, is severely
limited by the fact that their durations are close to the
temporal experimental resolution.
Arrangement II.—Then, for avalanches in the range

0.05≲ Tv̄=ld ≲ 0.2, we observe in Fig. 2 that
maxðDiÞ=T ≃ 1 while

P
iDi=T departs from unity. This

is a signature that local activity clusters occur simulta-
neously during a global avalanche.
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In this arrangement, we expect a scaling N ∼ Tα=z−αloc=za .
Using the values of the exponents collected in Table I, this
scaling predicts that N should decrease with T. This
predicted scaling, however, is not accessible experimen-
tally. Figure 3 shows indeed that arrangement II corre-
sponds only to the leftmost solid symbol for which the
number of local activity clusters within a global avalanche
is very small and the range of dimensionless durations
Tv̄=ld is rather limited.
Nevertheless, for this arrangement, the sizes and dura-

tions of local and global events are power-law distributed

over a very wide range. The values of the corresponding
scaling exponents τS, τA, γ, γa, and za have been reported
already in Refs. [15,17]. These values are collected in
Table I. We can now check the validity of our scaling
relations (3) and (4). The experiments reported in Table I
have provided γ ¼ 1.33ð12Þ, in very good agreement with
the value 1.30(3) obtained from Eq. (3) with the exper-
imentally measured values of γa, za, and α=z, αloc reported
in Table I. We find that Eq. (3) is reasonably satisfied.
Similarly, Eq. (4) is compatible with the measured expo-
nents. Replacing τS, γa, and γ measured in the experiments,
Eq. (4) predicts τA ¼ 1.00ð14Þ which compares well with
the experimental value τA ¼ 1.08ð5Þ.
The scaling exponents obtained from phase-field simu-

lations of constant flow rate imbibition displacements
carried out by two different groups [18,29,32,33] are also
reported in Table I. These numerical results are in excellent
agreement with the experimental values for the global
avalanche exponents γ and τS and for the roughening
exponents α, z, and αloc. However, the local avalanche
exponent γa ¼ 1.28ð4Þ [18] clearly differs from the exper-
imental value 1.6(2) [15], though it is very close to the
numerical estimate for the corresponding exponent of the
global avalanches, γ ¼ 1.30ð5Þ. The fact that γ ≃ γa but
τA ≠ τS strongly suggests that the scaling law A ∼Dγa in
the numerical study [18] was dominated by large ava-
lanches S ≥ ξS corresponding to arrangement III, and,
therefore, γ and γa are independent.
Arrangement III.—Finally, for global velocity ava-

lanches of duration Tv̄=ld > 0.2, we observe a mixed
arrangement where activity clusters occur simultaneously
and also pile up, so this activity is off critical. We have
verified that this behavior is independent of the clip level.
In this arrangement, a global avalanche is the superposition
of many independent bursts of local activity. Global
avalanches have durations T whose PðTÞ is influenced
by the upper cutoff ξT . We expect that N scales linearly
with T. This behavior is verified in Fig. 3. The prediction
S ∼ T for this arrangement is compatible with the tendency
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C ¼ 3 and different injection velocities v̄ as a function of Tv̄=ld.

0 0.5 1 1.5 2
0

5

10

FIG. 3. Total number of local events that occur in a global
avalanche of duration T as a function of Tv̄=ld. Data from
experiments at v̄ ¼ 0.057 mm=s with C ¼ 3. Open dots are
individual global avalanches and solid dots their average in
equally spaced bins. The dashed line is a guide to the eye.

TABLE I. Critical exponents of size and size-duration distri-
butions of local bursts and global avalanches and kinetic rough-
ening exponents of imbibition fronts driven at constant injection
velocity in the regime of capillary disorder. Values derived from
theoretical arguments are given without uncertainty.

Experiments Phase-field simulations

lc=L 0.04–0.12 0.1 � � �
Avalanche dynamics Refs. [15,17] Refs. [18,29,32] Ref. [33]

PSðSÞ ∼ S−τS τS 1.00(15) 1.03(6) � � �
PAðAÞ ∼ A−τA τA 1.08(5) 1.54(5) � � �
S ∼ Tγ γ 1.33(12) 1.30(5) 1.33
A ∼Dγa γa 1.6(2) 1.28(4) � � �
l ∼ t1=za za 1.1(1) 1.59(15) � � �
Roughening kinetics This work [34] Refs. [18,29] Ref. [33]

ωðl; tÞ ∼ lαloc αloc 0.82(5) 1 1
ωðL; tÞ ∼ tα=z α=z 0.42(2) 1.33=3 � � �
lc ∼ t1=z z 3.0(2) 3 � � �
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of the crest of the joint probability distribution PðS; TÞ for
T > 2 reported in the right panel of Fig. 17 in Ref. [31].
To conclude, we have presented an analysis of how

global velocity fluctuations build up from local activity
clusters in dynamic growth processes. Consistent thresh-
olds for local bursts and global avalanches, as proposed
here, must be used. We have identified three possibilities. A
first arrangement (I) in which each short-lived global
avalanche results from a single local activity cluster.
This would be the only possible scenario at criticality. In
contrast, global avalanches of longer duration are com-
posed of spatially disconnected, internally correlated local
clusters. The specific way in which they organize in space
and time within a global avalanche depends strongly on the
distance to criticality. Local bursts can occur simultane-
ously within a global avalanche (II) or randomly in space
and time (III). Analyzing the interplay between front
dynamics and morphology in arrangement II and using
simple scaling arguments, we have derived new scaling
relations [Eqs. (3) and (4)] between kinetic roughening
exponents and the power-law exponents of both local
activity and global velocity avalanches. We have used
fluid imbibition displacements to validate the proposed
scaling relations. Our arguments, however, are very gen-
eral, and, thus, we expect our results to be applicable to a
wide range of slowly driven interfacial systems where
surface roughness fluctuations are produced by avalanches
of local motion.
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