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Introduction .

THE CONCEPT OF k-LEVEL POR POSITIVE INTEGERS

Angela Arenas

It is said (cf . [4]) that a positive integer n satisfies property

(N) if there exists a representation of n as a sum of 3 squares,

n = x1+x2+x3 , with (x 1 ,n) = 1 and x~ < n31 . It has been checked that

every positive integer n < 600000, n - 3(mod 8), verifies property (N) .

Such property appears in connection with the resolution of a Ga1odd

embedd¿ng publem in the following sense [4]

	

: every central extension

of the alternating group An can be realised as a Galois group over

if n - 3(mod 8) and n satisfies property (N) .

In this paper, we introduce, for a positive integer n, the concept

of k-Ievel related to the representations of n as a sum of k squares .

By considering the case k = 3 we exhibit a class of positive integers

satisfying property (N) .

We recall Lemma 1 of [11 since it will be used twice in this paper :

16 n = x3+x2+x3 í6 a pA,úrútí.ve hepheJSentati.on ob n ab a búm oj there

pob.ítc:ve 6quaAez and p .ía a pxime jacton 06 n whi.ch duv.ídee one ob the

dummandb, -then p - 1 oh 2(mod 4) .

Definition . Por a positive integer n we define the k-level, k(n,k), of

n as the maX.Úllun value of R Such that there exists a representation of
k

n as a sum of k squares, n =

	

xi

	

, x
ieZ , with k summands prime to n .

i=1

41



It is well known that every positive integer is a sum of four

squares . If n is not a sum of k squares (k<3), then we agree that,.

R(n,k) = -1 .

Obviously, for every positive integer n is -1 < £(n,k) < k . If

k<k' , then R(n,k) < k(n,k') . And for every k>1 is k(1,k) = k .

The determination of R(n,2) is fairly easy and it is given in

Proposition 1 . Let n>1 be a poa.í tí.ve íntegeh. . Then

.í) 16 4~n and everyy odd pníme d¿v.í.6on 06 n .í.6 congnuent to 1 modulo

4, then R(n,2) = 2 .

ii) E.ítheA í6 41n and n .ce a eum ob atoo equane6 ox íl each pxí.me d¿v.í-

zoh 06 n congnuent to 3 modulo 4 appean6 ín the jactonízatí.on ob n ínto

pnímeÁ wíth a po4.ítíve even exponent, then R(n,2) = 0.

iii) In a.Ql the oti1.Fh cabeb .L6 R(n,2) = -1 .

The following proposition characterizes the positive integers n

having strictly positive 4-level

Proposition 2 . R(n,4) >

	

1í6 and only íg n 9 0(mod 8) .

Proof. If n = 0(mod 8), then every representation of n as a sum of 4

squares, n = x2+y2+z2+t2 , verifies that g .c .d.(x,y,z,t) > 2 , and so

£(n,4) = 0.

Furthermore, if n = 2,3,4,6,7(mod 8), then obviously

n-1 = 1,1,3,5,6(mod 8) and, thus, n-1 is a sum of 3 squares, so we have

£(n,4) > 1 . Finally, if n = 1,5(mod 8), then n-4 = 5,1(mod 8) and,



consequently, n-4 is aleo a sum of three squares so that k(n,4) > 1 ,

because 2h.

Remark . For k>4 , we have £(n,k) > 1 for all n, just because n-1 is a

sum of four squares.

Let us concentrate from now on in the case k=3 . It is well known

that a positive integer n .is expressible as a sum of three integer

squares if and only if n is not of the form 4a(8m+7) . Gauss ([2],

Art . 291) proved, moreover, that a positive integer admits a primitive

representation as a sum of three squares if and only if n ;! 0,4,7(mod 8) .

For £(h,3) we have the following elementary

Proposition 3 . Let ne2Z +, .then

.ib n - o(mod 4),i) J,,(n,3) < 0

ii) 9,(n,3) < 3 íb n - o(mod 2) oiL (mod 5) .

The proof is immediate by passing to 2Z /m a with m = 4,2,5 .

We next prove that given an odd positive integer with R(n,3) > 1 ,

if,we increase, preserving their parity, the exponente of its prime

factors congruent to 1 modulo 4, then one can obtain level greater

than or equal to 2 .

Lemma 4.

	

(see

	

[11)

	

16 a,nca + cite bueh that a = a2+a2 and n = b2+b2+b2 ,

then

a2n -- c2+c2+c3

	

,



wd th

c 3	=

	

ab3

	

.

The interest of the above lemma lies on the special values of the

c . which allow us to obtain the
1

Proposition 5 .

	

Let n = 2 p 1

	

"" ' "pr q1

	

" * qs

	

' W~h pi - 1(mod 4),

1

	

< i < r and
qj

	

=- 3 (mod 4),

	

1

	

< j

	

< s

	

,

	

a = o on 1,

	

al > o .

	

Then

1

a
y1

	

yr ~1

	

Ss
(n,3)

	

>

	

1,

	

and m =

	

2 p1

	

. . .pr

	

q1

	

. .'qs

(mod 2), .ít -tUAnb out that

i) 16 a = o, then £(m,3) > 2 ,

ii) 16 a = 1, then k(m,3) > 1 .

Proof .

Write m = á2n , with

c 1
= ab 1

- 2(a1b1+a2b2)al

c2
= ab2

- 2(a 1 b 1+a2b2)a2	,

a =
paf

. .par , so that y . = 2a .+ot . , i=1, . . .,r ; ó . > 1 .1 '

	

r

	

i

	

i i

	

i -

> ai and yi	- a.i

Then a is a sum of two squares : a = a2+a2 with (ai ,a) = 1 ; 1 < i < 2 .

As £(n,3)

	

> 1 we can write n = b2+b2+b3 with (b 3 ,n) = 1 and

(b 1 ,b2,b3 ) = 1 .

then
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Now apply lemma 4 to write m = a2n = c2+c2+c2 .

Let p - 1(mod 4) be a prime dividing m such that po 1 and pib2 ;



and

if

c 1 = -2a 1 b 1 a 1 jZ 0(mod p),

c2 = -2a 1b 1 a2 ~! 0(mod p) ,

because pla .

Interchanging the roles of b 1 and b2

Let p = 1(mod 4) be a prime dividing

ci = 0(mod p) for some iE{1,2}, then

As p~b 1 we are allowed to write

and as pla we get

since p divides n but not b3 .

a lb 1 +a2b2 = 0(mod p)

	

,.

al
= -

abb2 (mod p)
1

the same result is obtained .

m with p1y1 and~p~b2 now ,

2 2

	

2

0 =
a

b2
2 + a2 = b2

	

(b2+b~)(mod p)

	

,
1

	

1

whence b2+b2 = 0(mod p) . Thus n = b(mod p), which is a contradiction

We have thus proved that both c 1 1 0(mod p) and c2 j! O(mod p), for

every prime factor p = 1(mod 4) of m.

On the other hand, if q = 3(mod 4) is a prime factor of m,, we

necessarily have that q~c3 , and as both c 1 and c2 are nonzero, by

lemma 1 of [1] we have that q~c 1 c2 .



So, in the case (i) we have k(n,3) > 2 and in the case (ii), as

2~c 3 and 4~m, we get (c l ,2) = 1 or (c2 ,2) = 1 from which we infer that

!G(n,3) > 1 .

Theorem 6 . Let n be a poadtí.ve .LntegeA, and wxí te ít6 6actoAu:zaUon ín to

. pxc:me bac tom aa

	

'

Next we state the following

1 (mod 4) , q7
	-3(mod 4) . W.íth thí,s notatíon we have

1árnp1 . . .p

	

, .then R(n,3) > 2 .

a a a

	

a
ii) Ib n = 2 5 1p22 . . .prr

9,(n,3) = 2 .

a al	arS1

	

osn = 2 p 1 . . .pr q1 . . .q s

	

,

a+a1 > 0 0<a< 1 , o<al , then

al arüi) I~ n = p 1 . . .Pr and n .íz a num~ ídoneua o6 EuleA, then

(n, 3)

	

=

	

2 .

iv) I5 n = q1
1 . .

,
.gss and n Y 7(mod 8), xhen9,(n,3) = 3 .

aa s s
v) Ib n = 2 5 1 g22 . . .qss and n Y 7(mod 8) S+S1 > o, o < S < 1 then

R(n,3) = 2 í6 S ac S1 = o , and k(n,3) > 1 othenwíae.

vi) 11 n = p1 1 gl l . . .qS and n ;z 7(mod 8), .th.en t(n,3) > 2 .

a a S
vi¡) Ib n = p 1p 2q 1 . . .q s and n Y 7(mod 8), then k(n,3) > 1 .

1 2 1 s

1l osvi¡¡) 16 n = 2p1 gl . . .q, , then 2(n,3) > 1 .



Proof .

i) In this case n admits a primitive representation as a sum of two

squares and therefore 2(n,3) > 2 .

ii) It suffices to apply i) and proposition 3 .

iii) These integers admit a primitive representation as a sum of two

squares but do not have any representation as a sum of 3 positive

squares (cf . [31) . Integers of this type are 13 and 37, and these are

up to now the only known examples not greater than 5 .1010 (see [5]) .

iv), vi), vi¡) and vi¡¡) are immediate consequences of lemma 1 of [11-

v) Under these conditions n admits a primitive representation as a

sum of these positive squares and it suffices to apply lenuna 1 of 111

together with proposition 3 .

Now we give an application of the above theorem to the Galois

embedding problem (cf . [41, Th . 5 .1) .

Theorem 7 . Let n = g 1 1 . . .qSs With qi - 3(mod 4), 1 < i < s, and

n =_ 3(mod 8) xhen eveAy centAa2 extene .íon ob the aQtexnatc:ng gnoup

An can be tea.F.íded ae a Ga1o.írs gnoup oveA Q(T) and, 4o, oven Q.
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