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THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

arigela Arenas

Introduction.
[

It is said {cf. [4]) that a pesitive integer n satisfies property

(N) if there exists a representation of n as a sum of 3 SqUares,

. 2
n = x2+x2+x2 s with (x1,nJ = 1 and x1

+
PRE PR < 2—1-. It has been checked that

3

every positive integer n < 600000, n = 3{mod 8), verifies property (N}.

Such property appears in connection with the resolution of a Gafods
embedding pacbfem in the following sense [4] : every central extension

of the alternating group An can be realised as a Galois group over @

It

if n 3(mod 8) and n satisfies property (N).

In this paper, we introduce, for a positive integer n, the concept
of k-fevel related to the representaticns of n as a sum of k SguUares.
By considering the case k = 3 we exhibit a class of positive integers

satisfying property ({(N}.

We recall Lemma 1 of [1] since it will be used twice in this paper:

I§n = xf+x§+x§ 48 a pruimitive representation of n as a sum of three

positive squanes and p L& a prime factor of n which divides one of the

Aummands, then p = 1 oh 2(mod 4).

Definition. For a positive integer n we define the k-level, %i(n,k), of

n as the max{mun value of L such that there exists a representation of
LS 2

n as a sum of K squares, n = E X. » xiczz, with £ summands prime to n.
i=1

4]



It is well known that every positive integer is a sum of four
squares. If n is not a sum of X squares (k§3), then we agree that

Rin,k) = -1,

Cbviously, for every positive integer n is -1 < 2in,k) £ k. If

k<k' , then L(n,k} < f{n,k’'). And for every k>! is 2¢1,k) = k .

The determination of £(n,2} is fairly easy and it is given in

Proposition 1. Let n>1 be & posdifive integer, Then :

L) 1§ 4fn and every odd paime divison of n 44 congruent to 1 modufo
4, then ztn,é) =z,

ii) ECthen if 4|n and n 46 a sum of fwo squares ox Af edach paime divi-
40K 0f n éongaueu,t 1o 3 modulo 4 appeans in the factonization of n Lnto
primes with a positive even exponent, then L(n,2) = 0.

iii) In all the ofhen cades L& Rin,2) = -1.

The following proposition characterizes the positive integers n

héving strictly positive 4-level

Proposition 2. (n,4) > 1 if and onfy ifd n Z 0(mod 8),

Proof. If n = O(mod 8), then every representation of n as a sum of 4
2. 2 2 2 P,
squares, n = X +y +z2 +t°, verifies that g.c.d. {x,¥,2,t} > 2 , and so

£{n,4) = 0.

Furthermore, if n = 2,3,4,6,7(mod B}, then cbviocusly
n-1 2 t%,2,3,5,6{(mod B) and, thus, n-1 is a sum of 3 squares, SO we have

£(n,4) > 1 . Finally, if n = 1,5(mod 8), then n-d = 5,1({mod 8) and,
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consequently, n-4 is also a sum of three squares so that &(n,4) > 1 ,

because 2fn,

Remark. For k>4 , we have £in,k) > 1 for all n, just because n=1 is a

sum of four sguares,

Let us concentrate from now on in the case k=3 . It is well known
that a positive integer n is expressible as a sum of three integer
squares if and only if n is not of the form 4a(8m+‘;') . Gauss {[2],
Art. 291} proved, moreover, that a pesitive integer admits a primitive

representation as a sum of three squares if and only if n Z 0,4,7(mod 8).

For £(n,3) we have the following elementary

Propositicn 3. Let n£Z+, then

i) R(n,3) €0 4fn 2 oimed @),

ii) &(n,3) <3 4§ n = oimod 23 on (mod 5).
The proof is immediate by passing to Z/m Z with m = 4,2,5.

We next prove that given an odd positive integer with %(n,3) > 1,
if we increase, preserving their parity, the exponents of its prime
factors congruent to 1 modulo 4, then one can obtain level greater
than or equal to 2 .

" Lemma 4., (see [1]) 14 a,nez+ are such that a = af+a§ and n = bf+b§+h§.,
then

2 2, 2
= ct+
a’n < e ¥e ’

(sl
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¢, = ab, - 2(a;by*a,by)8,

1]
n

g = @by - 2{ab +asbila, .

c3 = ab3 .

The interest of the above lemma lies on the special values of the
5 which allow us to obtain the
a c"’1 ar 81 Bs
Proposition 5. letn = 2 p, «owP 4y .e-dy 4 with p, = 1{mod 4),

1<i<rand a; = 3med 4), 1 <3 <s,a=00n1, o >0. Then {f

. a Y*[ ‘Yr 81 Bs . _
Ln,3) 21, adm=2p ... 9y eerd with y; > a; and v, = o,

tmod 2y, if twwns ocut that :

i) 1§ a = 0, then &(m,3) > 2 ,
ii) I§ o= 1, then 2(m,3) > 1 .
Proof.

Write m = qzn . with

a= 61 5]_, so that = 28.+0 i= 8 >
By «esP Y, = 1% 1=1,.00usX i 2 1.
. 2.2 . X
Then a is a sum of two sguares : a = a,|+a2 with (ai,a) =1 ;1 <1< 2.
. 2 2 3 .
As £(n,3) > 1 we can write n = b1+b2+b3 with (b3,n) = 1 and

(b1,b2,b3) =1,

Now apply lemma 4 to write m = azn = c$+c§+c§ .

Let p = 1{mcd 4} be a prime dividing m such that p‘*’l\:}1 and p l:v2 :

then
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¢
1

] -2.’:\,|b1-at,| £ Ol{mod p},

1]
|

5 = —2.‘:x,lb,|a2 Z O(mod p) ,

because p [a.

Interchanging the roles of b1 and b'2 the same result is cohtained.
let p = 1(mod 4) be a prime dividing m with p,{b,l and ]_:r,‘h:2 now ,

if ¢, = O(mod p) for some ig{1,2}, then

a1b1+a2b2 Z 0imod p) .

s pfo, we are allowed to write

i

a, = - azbz {mod p)
17778 P
1
and as pla we get
2 2 2
a.b a .
2
0z-%22+al oL phodimea py
: b2 2 bz 2
1 1
2. .2 _ - 2 s X . s
whence 1:|1+}:;2 S 0(mod p}. Thus n = bj{mod p), which is a contradiction

since p divides n but not b3.

We have thus proved that both < Z O({mod p} and <, # o(mod p), for

every prime factor p = 1(mod 4) of m,

On the other hand, if g = 3({mod 4) is a prime factor of m, we

and ¢, are nonzero, by

necessarily have that q}’u:3 , and as both <y 2

lemma 1 of [1] we have that qj“v:f:.:2 .
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So, in the case (i) we have R(n,3) > 2 and in the case (ii), as
2*c3 and 4*m, we get (01,2] = 1 or (cz,zj = 1 from which we infer that

{n,3) 2 1.
Next we state the following

Theorem &. Lot n be a positive {nlegen, and waite L£4 factorization 4into

paime gactons as

:

= 1(mod 4), ay = 3(mod 4}, With this notation we have :

ad

o .
iy Ig n p11...prr , ther £i(n,3) > 2.

Il

aaiuz ur
ii) Ifn=25 p,"...p s 0%, > 0,0<0221,0%a then

£(n,3) = 2.
a1 Dtr
iii) 1§ n = P, .--P, and n L6 a numenis Ldoneus of Ewler, then
%{n,3) = 2.
By 8
iv) ITfn = q, ---q and n Z 7imod 8), thenf(n,3) = 3.
B B, B, By
viIfn=25 a, ...9; and n # 7(mod 8) B+B, > 0, 0 < B £ 1 then

L(n,3) = 2 {§ B on B, =0, and £(n,3) > 1 othemuise,

% B B
vi) T§ n = p, 'q, +vvq, and n 2 7(mod 8), then 2(n,3) > 2 .

o, o, B g

vii} If n = p11pz a4, ...qss and n Z 7(mod 8), then £(n.3) > 1,

@ 8y B
viii) [4 n = 29y 9y seeGg 0 Lhen 2(n,3) > 1 .
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Proof.
i) In this case n admits a primitive representation as a sum of two

squares and therefore £{n,3) > 2,
ii} It suffices to apply i) and proposition 3.

iii} These integers admit a primitive representation as a sum of two
sguares but do not have any representation as a sum of 3 positive
squares (cf. [3!]. Integers of this type are 13 and 37, and these are

up to now the only known examples not greater than 5.1010 {see [5]).

ivy, vi}, vii) and viii) are immediate consequences of lemma 1 of f1].

v} Under these conditions n admits & primitive representation as a
sum of three positive squares and it suffices to apply lemma I of [1]

together with proposition 3.

Now we give an application of the above thecrem to the Galois

embedding problem f[cf. [4], Th. 5.1}.

g
Theorem 7. fef n = qTT"'qss with q; = 3mod 4}, 1< i <5, and
n 2 3{mod 8) then every central extension of the altewnmating ghoup

A can be realised as a Gafois group over QIT) and, 40, over o.
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