Arigela Arenas

Introduction.

It is said (cf. [4]) that a positive integer n satisfies property (N) if there exists a representation of n as a sum of 3 squares, $n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, with $\left(x_{1}, n\right)=1$ and $x_{1}^{2} \leq \frac{n+1}{3}$. It has been checked that every positive integer $n \leq 600000, n \equiv 3(\bmod 8)$, verifies property (N).

Such property appears in connection with the resolution of a Galois embedding phoblem in the following sense $[4]$: every central extension of the alternating group A_{n} can be realised as a Galois group over 4 if $n \equiv 3(\bmod 8)$ and n satisfies property (N).

In this paper, we introduce, for a positive integer n, the concept of k-level related to the representations of n as a sum of k squares. By considering the case $k=3$ we exhibit a class of pasitive integers satisfying property (N).

We recall Lemaa 1 of $[1]$ since it will be used twice in this paper: If $n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ is a primitive representation of n as a sim of three positive squares and p is a phime factor of n which divides one of the summands, then $\mathrm{p} \equiv 1$ or $2(\bmod 4)$.

Definition. For a positive integer n we define the k level, $\ell(n, k)$, of n as the maximun value of ℓ such that there exists a representation of n as a sum of k squares, $n=\sum_{i=1}^{k} x_{i}^{2}, x_{i} \in \mathbb{Z}$, with ℓ summands prime to n.

It is well known that every positive integer is a sum of four squares. If \mathfrak{n} is not a sum of k squares ($k \leq 3$), then we agree that, $\ell(n, k)=-1$.

Obviously, for every positive integer n is $-1 \leq \ell(n, k) \leq k$. If $k<k^{\prime}$, then $\ell(n, k) \leq \ell\left(n, k^{2}\right)$. And for every $k \geq 1$ is $\ell(1, k)=k$.

The determination of $\ell(n, 2)$ is fairly easy and it is given in

Proposition 1. Let $n>1$ be a positive integer. Then :
i) If $4 / \mathrm{n}$ and every odd prime divison of n is congruent to 1 modulo 4. then $\ell(n, 2)=2$.
ii) Either if $4 \mid n$ and n is a sum of two squares on if each phime divisor of n congruent to 3 modulo 4 appears in the factorization of n into primes with a positive even exponent, then $\ell(n, 2)=0$.
iii) In ale the other cases is $\ell(n, 2)=-1$.

The following proposition characterizes the positive integers n having strictly positive 4 -level

Proposition 2. $\ell(n, 4) \geq 1$ if and only if $n \neq 0(\bmod 8)$.

Proof. If $n \equiv O(\bmod 8)$, then every representation of n as a sum of 4 squares, $n=x^{2}+y^{2}+z^{2}+t^{2}$, verifies that $g, c . d .\{x, y, z, t\} \geq 2$, and so $\ell(n, 4)=0$.

Furthermore, if $n \equiv 2,3,4,6,7(\bmod B)$, then obviously $n-1 \equiv 1,2,3,5,6(\bmod 8)$ and, thus, $n-1$ is a sum of 3 squares, so we have $\ell(n, 4) \geq 1$. Finally, if $n \equiv 1,5(\bmod 8)$, then $n-4 \equiv 5,1(\bmod 8)$ and,
consequently, $n-4$ is also a sum of three squares so that $\ell(n, 4) \geq 1$, because $2 \nmid n$.

Remark. For $k>4$, we have $\ell(n, k) \geq 1$ for all n, just because $n-1$ is a sum of four squares.

Let us concentrate from now on in the case $k=3$. It is well known that a positive integer n is expressible as a sum of three integer squares if and only if n is not of the form $4^{a}(8 m+7)$. Gauss $\{[2]$, Art. 291) proved, moreover, that a positive integer admits a primitive representation as a sum of three squaresif and only if $n \neq 0,4,7(\bmod 8)$.

For $\ell(n, 3)$ we have the following elementary

Proposition 3. Let ne \mathbb{Z}^{+}, then :
i) $\ell(n, 3) \leq 0$ if $n \equiv 0(\bmod 4)$,
ii) $\ell(n, 3)<3$ if $n \equiv 0(\bmod 2)$ or $(\bmod 5)$.

The proof is immediate by passing to $z / m z$ with $m=4,2,5$.

We next prove that given an odd positive integer with $\ell(n, 3) \geq 1$, if. we increase, preserving their parity, the exponents of its prime factors congruent to 1 modulo 4 , then one can obtain level greatex than or equal to 2 .

Lenma 4. (see [1]) If $a, n \in Z^{+}$are such that $a=a_{1}^{2}+a_{2}^{2}$ and $n=b_{1}^{2}+b_{2}^{2}+b_{3}^{2}$, then

$$
a^{2} n=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}
$$

with

$$
\begin{aligned}
& c_{1}=a b_{1}-2\left(a_{1} b_{1}+a_{2} b_{2}\right) a_{1} \\
& c_{2}=a b_{2}-2\left(a_{1} b_{1}+a_{2} b_{2}\right) a_{2} \\
& c_{3}=a b_{3}
\end{aligned}
$$

The interest of the above lemma lies on the special values of the c_{i} which allow us to obtain the

Proposition 5. Let $n=2 p_{1}^{\alpha} \alpha_{1} \ldots{ }^{\alpha}{ }_{r}{ }_{r} q_{1}{ }^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$, with $p_{i} \equiv 1(\bmod 4)$, $1 \leq i \leq x$ and $q_{j} \equiv 3(\bmod 4), 1 \leq j \leq s, \alpha=0$ on $1, \alpha_{i}>0$. Then if
$\ell(n, 3) \geq 1$, and $m=2 \alpha_{1}^{\alpha} \gamma_{1} \ldots p_{r}^{\gamma_{r}} q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$, with $\gamma_{i}>\alpha_{i}$ and $\gamma_{i} \equiv \alpha_{i}$ (mod 2), it turns out that :
i) If $\alpha=0$, then $\ell(m, 3) \geq 2$,
ii) If $\alpha=1$, then $\ell(m, 3) \geq 1$.

Proof.
Write $m=a^{2} n$, with
$a=p_{1}{ }_{1} \ldots p_{r} \delta_{r}$, so that $\gamma_{i}=2 \delta_{i}+\alpha_{i}, i=1, \ldots, r ; \delta_{i} \geq 1$.
Then a is a sum of two squares : $a=a_{1}^{2}+a_{2}^{2}$ with $\left(a_{i}, a\right)=1 ; 1 \leq i \leq 2$.
As $\ell(n, 3) \geq 1$ we can write $n=b_{1}^{2}+b_{2}^{2}+b_{3}^{2}$ with $\left(b_{3}, n\right)=1$ and $\left(b_{1}, b_{2}, b_{3}\right)=1$.

Now apply lemena 4 to write $m=a^{2} n=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}$.

Let $p \equiv 1(\bmod 4)$ be a prime dividing m such that $p\}_{1} b_{1}$ and $p \mid b_{2}$; then

$$
c_{1} \equiv-2 a_{1} b_{1} a_{1} \nexists O(\bmod p)
$$

and

$$
c_{2} \equiv-2 a_{1} b_{1} a_{2} \not \equiv 0(\bmod p)
$$

because pla.

Interchanging the roles of b_{1} and b_{2} the same result is obtained. Let $\mathrm{p} \equiv 1(\bmod 4)$ be a prime dividing m with p b $_{1}$ and $p h_{2}$ now. if $c_{i} \equiv O(\bmod p)$ for some $i \leqslant\{1,2\}$, then

$$
a_{1} b_{1}+a_{2} b_{2} \equiv 0(\bmod p)
$$

As $\mathrm{p}, \mathrm{b}_{1}$ we are allowed to write

$$
a_{1} \equiv-\frac{a_{2} b_{2}}{b_{1}}(\bmod p)
$$

and as pla we get

$$
0 \equiv \frac{a_{2}^{2} b_{2}^{2}}{b_{1}^{2}}+a_{2}^{2}=\frac{a_{2}^{2}}{b_{1}^{2}}\left(b_{2}^{2}+b_{1}^{2}\right)(\bmod p)
$$

whence $b_{1}^{2}+b_{2}^{2} \equiv 0(\bmod p)$. Thus $n \equiv b_{3}^{2}(\bmod p)$, which is a contradiction since p divides n but not b_{3}.

We have thus proved that both $c_{1} \neq 0(\bmod p)$ and $c_{2} \neq 0(\bmod p)$, for every prime factor $p \equiv 1(\bmod 4)$ of m.

On the other hand, if $q \equiv 3(\bmod 4)$ is a prime factor of m, we necessarily have that q / c_{3}, and as both c_{1} and c_{2} are nonzero, by lemma 1 of [1] we have that $\mathrm{G} / \mathrm{c}_{1} \mathrm{c}_{2}$.

So, in the case (i) we have $\ell(n, 3) \geq 2$ and in the case (ii), as $2 \nmid c_{3}$ and $4 \nmid m$, we get $\left(c_{1}, 2\right)=1$ or $\left(c_{2}, 2\right)=1$ from which we infer that $\ell(n, 3) \geq 1$.

Next we state the following

Theorem 6. Let n be a positive integer, and white its factorization into prime factors as

$$
n=2{ }^{\alpha} p_{1}{ }_{1} \ldots p_{r}^{\alpha_{r}}{ }_{q_{1}}^{\beta} \ldots q_{s}^{\beta}
$$

with $p_{i} \equiv 1(\bmod 4), q_{j} \equiv 3(\bmod 4)$. With this notation we have :
i) If $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, then $\ell(n, 3) \geq 2$.
ii) If $n=25^{\alpha} \alpha_{1} \alpha_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \alpha+\alpha_{1}>0,0 \leq \alpha \leq 1,0 \leq \alpha_{1}$, then $\ell(n, 3)=2$.
iii) If $n=p_{1}{ }_{1} \ldots p_{r}^{\alpha_{r}}$ and n is a numerus idoneus of Euker, then

$$
\ell(n, 3)=2 .
$$

iv) If $n=q_{1}^{\beta_{1}} \ldots \xi_{s}^{\beta_{s}}$ and $n \neq 7(\bmod 8)$, then $\ell(n, 3)=3$.
v) $I 6 n=25^{\beta \beta_{1}} q_{2}^{\beta_{2}} \ldots q_{s}^{\beta}$ and $n \neq 7(\bmod 8) \beta+\beta_{1}>0,0 \leq \beta \leq 1$ then $\ell(n, 3)=2$ if β on $B_{1}=0$, and $\ell(n, 3) \geq 1$ othenuise.
vi) If $n=p_{1}{ }_{1} q_{1} \beta_{1} \ldots q_{s}^{\beta_{s}}$ and $n \nexists 7(\bmod B)$, then $\ell(n, 3) \geq 2$. vii) I6 $n=p_{1}{ }_{1} p_{2}{ }_{2}{ }^{q_{1}}{ }_{1}^{\beta} \ldots q_{s}{ }_{s}$ and $n \neq 7(\bmod 8)$, then $\ell(n, 3) \geq 1$. viii) If $n=2 p_{1}{ }_{1} q_{q}{ }_{1}, \ldots q_{s}{ }_{s}$, then $\ell(n, 3) \geq 1$.
i) In this case n admits a primitive representation as a sum of two squares and therefore $\ell(n, 3) \geq 2$.
ii) It suffices to apply i) and proposition 3.
iii) These integers admit a primitive representation as a sum of two squares but do not have any representation as a sum of 3 positive squares (cf. [3|). Integers of this type are 13 and 37 , and these are up to now the only known examples not. greater than 5.10^{10} (see [5]). iv), vi), vii) and viii) are immediate consequences of lemma 1 of [1].
v) Under these conditions n admits a primitive representation as a sum of three positive squares and it suffices to apply lema 1 of $\{1\}$ together with proposition 3.

Now we give an application of the above theorem to the Galois embedding probler (cf. [4], Th. 5.1).

Theorern 7. Let $n=q_{1}^{\beta_{1}} \cdots q_{s}^{\beta}$ with $q_{i} \equiv 3(\bmod 4), 1 \leq i \leq s$, and $n \equiv 3(\bmod 8)$ then eveny central extension of the alternating group A_{n} can be realised as a Galois group over $Q(T)$ and, so, over Q.

Bibliography

[1] Arenas Sola. A.: On a certain type of primitive representations of rational integers as sum of squares. Pub. Sec. Mat. Univ. Auto noma de Barcelona. Vol. 28; Núm. 2-3 (1984), 75-80.
[2] Gauss, C.F.: Disquisitiones Arithmeticae. Lipsiae, 1801. English traslation : Arthux A. Clarke, 1966, New Haven : Yale Univ. Press .
[3] Scchinzel, A.: Sur les sommes de trois cartes. Bull. Acad. Pol. des Sciences. Vol. II, 6 (1959), 22-25.
[4] Vila, N.: On central extensions of A_{n} as a Galois group over Q. Arch. Math., Vol. 44, (1985), 424-437.
[5] Weinberger, P.J.: Exponents of the class group of complex quadratic fields. Acta Arith. 22 (1973), 118-124.

The author thanks to the referee for some useful suggestions.

Rebut el 15 d'octubre del 1985

Departamento de Algebra y Fundamentos
Facuirad de inatemáticas
Universidad de Barcelona
c/ Gran Via, 585
08007 Barceiona
SPAIN

