Pub. Mat. UAB Vol. 30 Nº 1 Maig 1986

THE CONCEPT OF k-LEVEL FOR POSITIVE INTEGERS

Angela Arenas

Introduction.

It is said (cf. [4]) that a positive integer n satisfies property (N) if there exists a representation of n as a sum of 3 squares, $n = x_1^2 + x_2^2 + x_3^2$, with $(x_1, n) = 1$ and $x_1^2 \le \frac{n+1}{3}$. It has been checked that every positive integer $n \le 600000$, $n \equiv 3 \pmod{8}$, verifies property (N).

Such property appears in connection with the resolution of a Galois embedding problem in the following sense [4] : every central extension of the alternating group A_n can be realised as a Galois group over Q if $n \equiv 3 \pmod{8}$ and n satisfies property (N).

In this paper, we introduce, for a positive integer n, the concept of k-level related to the representations of n as a sum of k squares. By considering the case k = 3 we exhibit a class of positive integers satisfying property (N).

We recall Lemma 1 of [1] since it will be used twice in this paper: If $n = x_1^2 + x_2^2 + x_3^2$ is a primitive representation of n as a sum of three positive squares and p is a prime factor of n which divides one of the summands, then $p \equiv 1$ or $2 \pmod{4}$.

<u>Definition</u>. For a positive integer n we define the k-level, l(n,k), of n as the maximum value of l such that there exists a representation of n as a sum of k squares, $n = \sum_{i=1}^{k} x_i^2$, $x_i \in \mathbb{Z}$, with l summands prime to n.

It is well known that every positive integer is a sum of four squares. If n is not a sum of k squares $(k \le 3)$, then we agree that l(n,k) = -1.

Obviously, for every positive integer n is $-1 \le l(n,k) \le k$. If k < k', then $l(n,k) \le l(n,k')$. And for every $k \ge 1$ is l(1,k) = k.

The determination of l(n,2) is fairly easy and it is given in

Proposition 1. Let n>1 be a positive integer. Then :

i) If $4 \ln and$ every odd prime divisor of n is congruent to 1 modulo 4. then $\ell(n,2) = 2$.

ii) Either if 4|n and n is a sum of two squares or if each prime divisor of n congruent to 3 modulo 4 appears in the factorization of n into primes with a positive even exponent, then l(n,2) = 0.

iii) In all the other cases is l(n,2) = -1.

The following proposition characterizes the positive integers n having strictly positive 4-level

Proposition 2. $l(n,4) \ge 1$ if and only if $n \not\equiv 0 \pmod{8}$.

<u>Proof.</u> If $n \equiv 0 \pmod{8}$, then every representation of n as a sum of 4 squares, $n = x^2 + y^2 + z^2 + t^2$, verifies that g.c.d. $(x,y,z,t) \ge 2$, and so $\ell(n,4) = 0$.

Furthermore, if $n \equiv 2,3,4,6,7 \pmod{8}$, then obviously n-1 \equiv 1,2,3,5,6 (mod 8) and, thus, n-1 is a sum of 3 squares, so we have $\ell(n,4) \geq 1$. Finally, if $n \equiv 1,5 \pmod{8}$, then n-4 $\equiv 5,1 \pmod{8}$ and,

consequently, n-4 is also a sum of three squares so that $l(n,4) \ge 1$, because 2/n.

<u>Remark</u>. For k>4, we have $\ell(n,k) \ge 1$ for all n, just because n-1 is a sum of four squares.

Let us concentrate from now on in the case k=3. It is well known that a positive integer n is expressible as a sum of three integer squares if and only if n is not of the form $4^{a}(8m+7)$. Gauss ([2], Art. 291) proved, moreover, that a positive integer admits a primitive representation as a sum of three squares if and only if n \neq 0,4,7(mod 8).

For $\ell(n,3)$ we have the following elementary

Proposition 3. Let nezz⁺, then :

i) $l(n,3) \leq 0$ if $n \equiv 0 \pmod{4}$,

ii) l(n,3) < 3 if $n \equiv 0 \pmod{2}$ or $\pmod{5}$.

The proof is immediate by passing to zz /m zz with m = 4,2,5.

We next prove that given an odd positive integer with $l(n,3) \ge 1$, if we increase, preserving their parity, the exponents of its prime factors congruent to 1 modulo 4, then one can obtain level greater than or equal to 2.

Lemma 4. (see [1]) If $a, n \in \mathbb{Z}^+$ are such that $a = a_1^2 + a_2^2$ and $n = b_1^2 + b_2^2 + b_3^2$, then

 $a^{2}n = c_{1}^{2} + c_{2}^{2} + c_{3}^{2}$,

with

$$c_{1} = ab_{1} - 2(a_{1}b_{1}+a_{2}b_{2})a_{1} ,$$

$$c_{2} = ab_{2} - 2(a_{1}b_{1}+a_{2}b_{2})a_{2} ,$$

$$c_{3} = ab_{3} .$$

The interest of the above lemma lies on the special values of the c_i which allow us to obtain the

Proposition 5. Let $n = 2 p_1 \cdots p_r^{\alpha} q_1 \cdots q_s^{\beta_1} \cdots q_s^{\beta_s}$, with $p_i \equiv 1 \pmod{4}$, $1 \leq i \leq r$ and $q_j \equiv 3 \pmod{4}$, $1 \leq j \leq s$, $\alpha = 0$ or 1, $\alpha_i > 0$. Then if $\ell(n,3) \geq 1$, and $m = 2 p_1 \cdots p_r^{\gamma_r} q_1^{\beta_1} \cdots q_s^{\beta_s}$, with $\gamma_i > \alpha_i$ and $\gamma_i \equiv \alpha_i$ (mod 2), it turns out that : i) If $\alpha = 0$, then $\ell(m,3) \geq 2$. ii) If $\alpha = 1$, then $\ell(m,3) \geq 1$.

Proof.

Write $m = a^2 n$, with

 $a = p_1^{\delta_1} \dots p_r^{\delta_r} , \text{ so that } \gamma_i = 2\delta_i + \alpha_i , i = 1, \dots, r ; \delta_i \ge 1 .$ Then a is a sum of two squares : $a = a_1^2 + a_2^2$ with $(a_i, a) = 1 ; 1 \le i \le 2 .$ As $\ell(n,3) \ge 1$ we can write $n = b_1^2 + b_2^2 + b_3^2$ with $(b_3, n) = 1$ and $(b_1, b_2, b_3) = 1$.

Now apply lemma 4 to write $m = a^2 n = c_1^2 + c_2^2 + c_3^2$.

Let $p\equiv 1 \, (\text{mod } 4)$ be a prime dividing m such that p / b_1 and p / b_2 ; then

$$c_1 \equiv -2a_1b_1a_1 \not\equiv 0 \pmod{p}$$
,

and

$$c_2 \equiv -2a_1b_1a_2 \neq 0 \pmod{p}$$
,

because p a.

Interchanging the roles of b_1 and b_2 the same result is obtained. Let $p \equiv 1 \pmod{4}$ be a prime dividing m with p/b_1 and p/b_2 now , if $c_1 \equiv 0 \pmod{p}$ for some if $\{1,2\}$, then

$$a_1b_1+a_2b_2 \equiv 0 \pmod{p}$$

As p/b, we are allowed to write

$$\mathbf{a}_1 \equiv -\frac{\mathbf{a}_2\mathbf{b}_2}{\mathbf{b}_1} \pmod{p}$$

and as pla we get

$$0 \equiv \frac{a_2^2 b_2^2}{b_1^2} + a_2^2 = \frac{a_2^2}{b_1^2} (b_2^2 + b_1^2) \pmod{p} ,$$

whence $b_1^2 + b_2^2 \equiv 0 \pmod{p}$. Thus $n \equiv b_j^2 \pmod{p}$, which is a contradiction since p divides n but not b_3 .

We have thus proved that both $c_1 \neq 0 \pmod{p}$ and $c_2 \neq 0 \pmod{p}$, for every prime factor $p \equiv 1 \pmod{4}$ of m.

On the other hand, if $q \equiv 3 \pmod{4}$ is a prime factor of m, we necessarily have that q/c_3 , and as both c_1 and c_2 are nonzero, by lemma 1 of [1] we have that q/c_1c_2 .

So, in the case (i) we have $l(n,3) \ge 2$ and in the case (ii), as $2/c_3$ and 4/m, we get $(c_1,2) = 1$ or $(c_2,2) = 1$ from which we infer that $l(n,3) \ge 1$.

Next we state the following

<u>Theorem 6</u>. Let n be a positive integer, and write its factorization into prime factors as

$$\mathbf{n} = 2 \mathbf{p}_1^{\alpha \alpha} \cdots \mathbf{p}_r^{\alpha \beta} \mathbf{q}_1^{\beta} \cdots \mathbf{q}_s^{\beta s}$$

with $\mathbf{p}_i \equiv 1 \pmod{4}$, $\mathbf{q}_i \equiv 3 \pmod{4}$. With this notation we have :

- i) If $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, then $\ell(n,3) \ge 2$.
- ii) If $n = 25 p_2^{\alpha} \dots p_r^{\alpha}$, $\alpha + \alpha_1 > 0$, $0 \le \alpha \le 1$, $0 \le \alpha_1$, then $\ell(n,3) = 2$.

iii) If
$$n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$$
 and n is a numerus idoneus of Euler, then

$$\ell(n,3) = 2.$$

iv) If
$$n = q_1^{\beta_1} \dots q_s^{\beta_s}$$
 and $n \neq 7 \pmod{8}$, then $\ell(n,3) = 3$.

v) If $n = 2 \cdot 5^{-1} q_2^{-2} \dots q_s^{-s}$ and $n \neq 7 \pmod{8} \quad \beta + \beta_1 > 0, \ 0 \leq \beta \leq 1$ then $\ell(n,3) = 2 \cdot \ell_1 \beta \text{ or } \beta_1 = 0$, and $\ell(n,3) \geq 1$ otherwise.

vi) If
$$n = p_1^{\alpha} q_1^{\beta_1} \dots q_s^{\beta_s}$$
 and $n \neq 7 \pmod{8}$, then $l(n,3) \ge 2$.

vii)
$$I_{6} n = p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} q_{1}^{\beta_{1}} \dots q_{s}^{\beta_{s}}$$
 and $n \neq 7 \pmod{8}$, then $\ell(n,3) \geq 1$.
viii) $I_{6} n = 2p_{1}^{\alpha_{1}} q_{1}^{\beta_{1}} \dots q_{s}^{\beta_{s}}$, then $\ell(n,3) \geq 1$.

46

Proof.

i) In this case n admits a primitive representation as a sum of two squares and therefore $\ell(n,3) \ge 2$.

ii) It suffices to apply i) and proposition 3.

iii) These integers admit a primitive representation as a sum of two squares but do not have any representation as a sum of 3 positive squares (cf. [3]). Integers of this type are 13 and 37, and these are up to now the only known examples not greater than 5.10¹⁰ (see [5]).

iv), vi), vii) and viii) are immediate consequences of lemma 1 of [1].

 v) Under these conditions n admits a primitive representation as a sum of three positive squares and it suffices to apply lemma 1 of [1] together with proposition 3.

Now we give an application of the above theorem to the Galois embedding problem (cf. [4], Th. 5.1).

<u>Theorem 7</u>. Let $n = q_1^{\beta_1} \dots q_s^{\beta_s}$ with $q_i \equiv 3 \pmod{4}$, $1 \leq i \leq s$, and $n \equiv 3 \pmod{8}$ then every central extension of the alternating group A_n can be realised as a Galois group over Q(T) and, so, over Q.

Bibliography

 Arenas Sola, A.: Un a certain type of primitive representations of rational integers as sum of squares. Pub. Sec. Mat. Univ. Aut<u>ð</u> noma de Barcelona. Vol. 28; Núm. 2-3 (1984), 75-80.

- [2] Gauss, C.F.: Disquisitiones Arithmeticae. Lipsiae, 1801. English traslation : Arthur A. Clarke, 1966, New Haven : Yale Univ. Press.
- [3] Schinzel, A.: Sur les sommes de trois carrés. Bull. Acad. Pol. des Sciences. Vol. II, 6 (1959), 22-25.
- [4] Vila, N.: On central extensions of A_n as a Galois group over Q. Arch. Math., Vol. 44, (1985), 424-437.
- [5] Weinberger, P.J.: Exponents of the class group of complex quadratic fields. Acta Arith. 22 (1973), 118-124.

The author thanks to the referee for some useful suggestions.

Rebut el 15 d'octubre del 1985

Departamento de Algebra y Fundamentos Facultad de Matemáticas Universidad de Barcelona C/ Gran Via, 585 08007 Barcelona

SPAIN