Pub. Mat. UAB
$N^{\circ} 20$ set. 1980
Actes VII JMHL

A PRIMITIVITY CRITERION

Enric Nart, Núria Vila

Secció de Matemàtiques
Unjversitat Autònoma de Barcelona

Abstract. In this note we give a generalization of Furtwängler's primitivity criterion $\{\varepsilon\}$, in order to assure that a potyomial is primitive through his coefficients.

Let K be a field. We recall that a polynomial $f(X) \in K[X]$ is called primitive over K if its Galois group over K is primitive as a permutation group of its roots [3, ch.VI, 49].

Throughout this note R will denote a Dedekind domain and K its field of quotients. If g is a prime ideal of R, we denote by v_{y} the valuation of R associated to g.

Furtwängler proved the following criterion [2,th. 3 l: If $f(X)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in \mathbb{Z}[X]$ is an irreducible polynomial and for a prime p is $v_{p}\left(a_{i}\right)>0,1 \leqslant i \leqslant n, v_{p}\left(a_{n-1}\right)=1$ and $v_{p}\left(a_{n}\right)>1$, then $f(X)$ is primitive.

In this note we prove the following generalization:
Theorem. Let $f(X)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in R[X]$ be an irreducible polynomial. Let y be a prime ideal of R such that $e_{i}=v_{f}\left(a_{i}\right) \geqslant 1$ for every $l \leqslant i \leqslant n$. Let $0<k<n$ be such that $e_{i} / i \geqslant e_{k} / k$ for every $1 \leqslant j \leqslant n$. Suppose that $n=r s$, and the roots of $f(X)$ can be divided in s subsets of imprimitivity. If in every s-tuple (i,...,is of indexs with $0 \leqslant i_{m} \leqslant r, l \leqslant m \leqslant s$, and $i_{1}+\ldots+i_{s}=k$, there exists an index i_{q} such that $\left(i_{q}, k\right)=1$, then $s \geqslant k /\left(k, e_{k}\right)$.

First we need an easy lemma:
Lemma. Let $f(X)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in R[x]$. Let a be a root of $f(x)$. Let y be a prime ideal of K and \mathcal{F} a rime ideal of $K(\alpha)$ lying over y. Let $\lambda \in \Phi$ and $e=e(p / g)$.
$\begin{array}{ll}\text { i) If } v_{y}\left(a_{i}\right) \geqslant_{i} \lambda & \text { for every } 1 \leqslant i \leqslant n \text {, then } v_{p}(\alpha) \geqslant e \lambda \\ \text { ii) If } v_{y}\left(a_{i}\right)>_{i} \lambda & \text { for every } 1 \leqslant i \leqslant n \text {, then } v_{p}(\alpha)>_{e} \lambda\end{array}$
Proof. The slope of any segment of the Newton's polygon assocoated to $f(X)$ is $\geqslant \lambda$, by $[1$, ch. 2,5$]$ is $v_{p}(\alpha) / e \geqslant \lambda$.

Proof of the theorem. Let L be a splitting field of $f(X)$ over K. Let q be a prime ideal of L lying over q, and $e=e(p, q)$. Let

$$
\alpha_{1}^{1}, \ldots, \alpha_{r}^{1} ; \alpha_{1}^{2}, \ldots, \alpha_{r}^{2} ; \ldots ; \alpha_{1}^{s}, \ldots, \alpha_{r}^{s}
$$

be a division of the roots of $f(X)$ in subsets of imprimitivity. Let

$$
f_{i}(x)={\underset{j}{=}}_{\Pi_{1}}^{r}\left(x-\alpha_{j}^{i}\right)=x^{r}+\xi_{1}^{i} x^{r-1}+\ldots+\xi_{r}^{i}, \quad 1 \leqslant i \leqslant s
$$

Clearly the elements $\xi_{j}^{1}, \ldots, \xi_{j}^{s}$ are conjugated over K for every $1 \leqslant j \leqslant r$. Let

$$
g_{j}(x)=x^{s}+b_{1}^{j} x^{s-1}+\ldots+b_{s}^{j}, \quad 1 \leqslant j \leqslant r,
$$

be their irreducible polynomial over k. Being the roots of $f(x)$ integers over K, the same happens with the $\xi_{i}^{j} ' s$, hence $g_{j}(X) \in R[X]$ for every $1 \leqslant j \leqslant r$. If α is a root of $f(X)$, it follows from the lemma that $v_{\hat{p}}(\alpha) \geqslant e e_{k} / k$, hence

$$
\begin{equation*}
v_{k}\left(\xi_{j}^{i}\right) \geqslant \text { jed }_{k} / k \tag{1}
\end{equation*}
$$

Thus, $v_{k}\left(b_{i}^{j}\right) \geqslant$ ijee $_{k} / k$, hence

$$
\begin{equation*}
v_{n}\left(b_{i}^{j}\right) \geqslant i j e_{k} / k \tag{2}
\end{equation*}
$$

Clearly $f(x)=\prod_{i=1}^{S} f_{i}(x)$, hence

$$
a_{k}=\sum_{\substack{ \\ \\ \\i_{1}+\ldots+i_{s}=k}} \xi_{i_{1}}^{1} \ldots \xi_{i_{s}}^{s} \text {, where } \xi_{0}^{i}=1 \text { for every } 1 \leqslant i \leqslant s
$$

By (I) every summand has

$$
\begin{equation*}
v_{k_{k}}\left(\xi_{i}^{i} \ldots \xi_{i_{s}}^{s}\right) \geqslant e e_{k} \tag{3}
\end{equation*}
$$

Since $v_{p}\left(a_{k}\right)=e e_{k}$, there exists one s-tuple (i_{1}, \ldots, i_{s}) for which equality holds in (3). Hence, for this s-tuple we have

$$
v_{k}\left(\xi_{i_{m}}^{m}\right)=i_{m}^{e e} k / k, \text { for every } 1 \leqslant m \leqslant s
$$

Let i_{G} be the index in this s-tuple such that (i_{q}, k) $=1$. By (2) and $i \dot{i}$) of the lemma, there exists an index $t, 1 \leqslant t \leqslant s$, such that

$$
v_{g}\left(b_{t}^{i^{q}}\right)=t i_{q} e_{k} / k
$$

Since $v_{g}\left(b_{t}{ }^{i} q^{\prime}\right.$) is an integer and $\left(i_{q}, k\right)=1$ we conclude that te ${ }_{k} / k$ is an integer, hence t is a multiple of $k /\left(k, e_{k}\right)$. Thus $s \geqslant t \geqslant k /\left(k, e_{k}\right)$.

Corollary. In the following cases $f(X)$ is nriritive:
i) If $k=n-1$ and $\left(n-1, e_{n-1}\right\rangle=1$.
ii) If $n>3, k=n-1$ and $e_{n-1}=1$ or 2 .
iii) If n is odd, $k=n-2$ and $\left(n-2, e_{n-2}\right)=1$.
iv) If $n>6,3 \backslash n, k=n-3$ and $\left(n-3, e_{n-3}\right)=1$.
v) If p is a prime number $n / 2<p<n$ and $k=p$.

Proof. All are an easy consequence of the theorem. Let us remark that there always exists a prime number satisfying the condition of v) by a theorem of Tchebyscheff.

Remark. Furtwangler's primitivity criterion is the special case $e_{n-1}=1$ in i) of the corollary.

References.

1. E.Artin, Alqebraic numbers and alcebraic functions, Gordon and Breach, N. York, 1967.
2. Ph. Furtwängler, Über Kriterien fur irreduzible und fur primitive Gleichungen und Gber die Aufstellung affektfreier Gleichungen, Math. Ann. 85 (1922) 34-40.
3. B.L. Van der Waerden, Modern Algebra, Vol.I, Ungar, N. York, 1953.
