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A new supersymmetric black hole solution of five-dimensional supergravity is presented. It has an
event horizon of topology S1 � S2. This is the first example of a supersymmetric, asymptotically flat
black hole of nonspherical topology. The solution is uniquely specified by its electric charge and two
independent angular momenta. These conserved charges can be arbitrarily close, but not exactly equal,
to those of a supersymmetric black hole of spherical topology.
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A major success of string theory is the statistical-
mechanical explanation of the Bekenstein-Hawking en-
tropy of certain supersymmetric black holes. The original
example is the five-dimensional black hole studied in [1].
This is also the simplest example, as it carries the mini-
mum number of net charges necessary to have a finite-
area regular horizon, namely, D1-brane and D5-brane
charges and linear momentum along an internal direc-
tion. A generalized solution with the same charges and
equal angular momenta in two orthogonal planes was
discovered, and its entropy microscopically reproduced,
by Breckenridge, Myers, Peet, and Vafa (BMPV) [2], thus
extending the success of [1] to rotating black holes with a
single independent rotation parameter.

The BMPV black hole has a topologically spherical
event horizon. It has recently been realized that this is not
true of all five-dimensional rotating black holes: the
vacuum Einstein equations admit a (nonsupersymmetric)
black ring solution, with horizon topology S1 � S2 [3].
The existence of black rings raises the question of
whether there are any supersymmetric black holes in
five dimensions other than BMPV.

In [4] it was proven that the geometry of the event
horizon of any supersymmetric black hole of minimal
five-dimensional supergravity must be (i) T3, (ii) S1 � S2,
or (iii) (possibly a quotient of) a homogeneously squashed
S3. It was also proven that the only asymptotically flat
supersymmetric solution with horizon geometry (iii) is
the BMPV black hole (which reduces to a solution of
minimal supergravity when its three charges are set
equal). The purpose of this Letter is to present a solution
of type (ii), that is, a supersymmetric black ring. Such a
solution was conjectured to exist in [5] motivated by the
work of [6].

This is the first example of an asymptotically flat super-
symmetric solution with a regular event horizon of non-
spherical topology. It possesses a richer structure than the
BMPV solution, which we see arises as a particular case.
It is parametrized by its electric charge and two indepen-
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dent angular momenta, which illustrates the fact that
supersymmetry imposes no constraint on the angular
momenta. It also has a nonvanishing magnetic dipole,
which is fixed by the asymptotic charges and therefore
is not an independent parameter. Some black rings are
believed to be unstable [3] but supersymmetry should
ensure that this new solution is stable.

Our solution corresponds to taking equal values for the
three charges (D1, D5, and momentum) and three dipoles
(D1, D5, and Kaluza-Klein monopole) of a more general
supersymmetric black ring (or, viewed in higher dimen-
sions, a black supertube [7] with three charges [5]). The
details of these will be given elsewhere [8], but we do
anticipate that, although the equal-charge solution pre-
sented here is entirely determined by its conserved
charges, this is not the case for those of [8].

Progress in understanding how the string microscopic
description of black holes distinguishes between different
horizon topologies has recently been made [9]. The ex-
istence of the supersymmetric black ring opens for the
first time the exciting possibility of studying this question
for a black hole with a regular horizon of finite area in a
supersymmetric, highly controlled, setting. We leave this
and other questions raised by the existence of our solution
for the future.

The solution.—The bosonic sector of five-dimensional
minimal supergravity is Einstein-Maxwell theory with a
Chern-Simons term. Any supersymmetric solution of this
theory must possess a nonspacelike Killing vector field V
[10]. In a region where V is timelike, the metric can be
written as [11]

ds2 � �f2�dt�!�2 � f�1ds2�M4�; (1)

where V � @=@t, M4 is an arbitrary hyper-Kähler space,
and f and ! are a scalar and a one-form on M4, respec-
tively, which must satisfy [11]

dG� � 0; �f�1 � 4
9�G

��2; (2)
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where G� � 1
2 f�d!� ?d!�, with ? the Hodge dual on

M4 and � is the Laplacian on M4.
For our solution, M4 is just flat space R4, whose metric

we write as [3,9]

ds2�R4� �
R2

�x� y�2

�
dy2

y2 � 1
� �y2 � 1�d 2 �

dx2

1� x2

� �1� x2�d�2

�
: (3)

The coordinates have ranges �1 	 x 	 1 and �1< y 	
�1, and �; have period 2�. Asymptotic infinity lies at
x! y! �1. Note that the apparent singularities at y �
�1 and x � �1 are merely coordinate singularities, and
that �x;�� parametrize (topologically) a 2-sphere. The
locus y � �1 is, in (3), a circle of radius R> 0 parame-
trized by  . In the full geometry (1) it will be blown up
into a ring-shaped horizon. The orientation is �y x� � 1.

The scalar and one-form of the solution are given by

f�1 � 1�
Q� q2

2R2 �x� y� �
q2

4R2 �x
2 � y2� (4)

and ! � ! �x; y�d �!��x; y�d�, with

!� � �
q

8R2 �1� x2�
3Q� q2�3� x� y��;

! �
3

2
q�1� y� �

q

8R2 �1� y2�
3Q� q2�3� x� y��:

(5)

Q and q are positive constants, proportional to the net
charge and to the local dipole charge of the ring, respec-
tively. We assume Q � q2, so that f�1 � 0. Note that ! is
smooth at finite y since !��x � �1� � ! �y � �1� � 0
(i.e., there are no Dirac-Misner string pathologies). In
verifying that (4) and (5) solve (2) it is useful to observe
that �1� x2�! ;x � �y2 � 1�!�;y. The Maxwell field
strength F � dA is uniquely determined by f and !
[11]. For our solution the gauge potential is

A �

���
3

p

2

�
f�dt�!� �

q
2

�1� x�d�� �1� y�d �

�
: (6)

The metric (3) can be brought to a manifestly flat form
with the coordinate transformation

� sin� �
R

��������������
y2 � 1

p
x� y

; � cos� �
R

��������������
1� x2

p

x� y
: (7)

In these coordinates the solution takes the form

f�1 � 1�
Q� q2

�
�
q2�2

�2 ; (8)
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!� � �
q�2cos2�

2�2

�
3Q� q2

�
3�

2�2

�

��
;

! � �
6qR2�2sin2�

���2 � R2 ���

�
q�2sin2�

2�2

�
3Q� q2

�
3�

2�2

�

��
;

(9)

where � �
�������������������������������������������������������
��2 � R2�2 � 4R2�2cos2�

p
. Using these co-

ordinates it is straightforward to see that if we set R � 0
then the solution reduces to the BMPV black hole.

Symmetries and charges.—The results of [11] imply
that our black ring preserves four supersymmetries. It
has isometry group R � U�1�2, whereas BMPV has R �
U�1� � SU�2�. The mass and angular momenta of the
solution follow from its manifestly asymptotically flat
form (8) and (9) as

M �
3�
4G

Q; J� �
�
8G

q�3Q� q2�;

J �
�
8G

q�6R2 � 3Q� q2�:

(10)

The total electric charge Q is proportional to Q and
satisfies M � �

���
3

p
=2�Q; hence the Bogomol’nyi-Prasad-

Sommerfeld (BPS) inequality of [10] is saturated.
Absence of closed timelike curves (CTCs).—As y!

�1 we find

g  � 3
�
�Q� q2�2

4q2
� R2

�
�
q2

4
�1� x2� �O�y�1�;

so we demand

R<
Q� q2

2q
(11)

to ensure that @=@ remains spacelike. This condition is
sufficient to avoid any CTCs at finite y. To see this,
consider the function �x� y�2f�2g  =��1� y�, which
is a polynomial in x and y. This can be grouped into a
sum of terms that are all non-negative if (11) holds. In the
same manner, one can check that the determinant of the
2� 2 metric gij, i; j � �; is always non-negative.
These two conditions are necessary and sufficient for
gij to be positive semidefinite.

The event horizon.—To examine what happens as y!
�1 it is convenient to define a new coordinate r �
�R=y. Now consider a coordinate transformation of the
form

dt � dv� B�r�dr; d� � d�0 � C�r�dr;

d � d 0 � C�r�dr;
(12)

where

B�r� �
B2

r2
�
B1

r
� B0; C�r� �

C1

r
� C0: (13)

The electromagnetic potential is regular in the new coor-
dinates up to terms that can be removed by a gauge
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transformation. The constants Bi and Ci are chosen so
that all metric components remain finite as r! 0. To
eliminate a 1=r divergence in gr 0 and a 1=r2 divergence
in grr we choose B2 � q2L=�4R� and C1 � �q=�2L�,
where

L �

�����������������������������������������
3
�
�Q� q2�2

4q2
� R2

�s
; (14)

which is positive as a consequence of (11). To avoid a 1=r
divergence in grr we need B1 � �Q� 2q2�=�4L� �
L�Q� q2�=�3R2�. The metric is then analytic at r � 0
with grr a linear function of x at r � 0. We can eliminate
this function by choosing the finite part of the coordinate
transformation as follows: C0 � ��Q� q2�3=�8q3RL3�,
B0 � q2L=�8R3� � 2L=�3R� � R=�2L� � 3R3=�2L3� �
3�Q� q2�3=�16q2RL3�. The metric can now be written

ds2 � �
16r4

q4
dv2 �

2R
L
dvdr�

4r3sin2'
Rq

dvd�0

�
4Rr
q
dvd 0 �

3qrsin2'
L

drd�0 � 2
�
qL
2R

cos'

�
3qR
2L

�
�Q� q2��3R2 � 2L2�

3qRL

�
drd 0 � L2d 02

�
q2

4

d'2 � sin2'�d�0 � d 0�2� � . . . (15)

where x � cos' and the ellipsis denotes terms involving
subleading (integer) powers of r in all of the metric
components explicitly indicated, as well as terms in grr
starting at O�r�. (We have not displayed the leading order
term in grr because it is lengthy and unilluminating.) The
determinant of this metric is analytic in r. At r � 0 it
vanishes if, and only if, sin2' � 1, which is just a co-
ordinate singularity. It follows that the inverse metric is
also analytic in r and hence the above coordinates define
an analytic extension of our solution through the surface
r � 0.

The supersymmetric Killing vector field V � @=@v is
null at r � 0. Furthermore, V(dx( � �R=L�dr at r � 0,
so V is normal to the surface r � 0. Hence r � 0 is a null
hypersurface and a Killing horizon of V; i.e., the black
ring has an event horizon at r � 0.

If L � 0, then a similar analysis shows that the geome-
try has a null orbifold singularity instead of an event
horizon.

Horizon geometry.—We can read off the geometry of a
spatial cross section of the event horizon:

ds2horizon � L2d 02 �
q2

4
�d'2 � sin2'd)2�; (16)

where ) � �0 �  0 � ��  .We see that the horizon has
geometry S1 � S2, where the S1 and S2 have radii L and
q=2, respectively. Note that the S2 is round, in contrast
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with nonextremal black rings, for which the S2 is de-
formed in the ' direction.

The area of the event horizon is

A � 2�2Lq2 � �2q
����������������������������������������������
3
�Q� q2�2 � 4q2R2�

q
: (17)

The surface gravity and angular velocities of the event
horizon vanish, as expected for a supersymmetric,
asymptotically flat black hole [12]. The horizon is at
infinite proper spatial distance from points outside it;
i.e., it lies down an infinite throat.

Near-horizon limit.—The near-horizon limit is defined
by r � �L~r=R, v � ~v=�, and �! 0. In this limit, the
metric becomes

ds2 � 2d~vd~r�
4L
q

~rd~vd 0 � L2d 02 �
q2

4
�d'2

� sin2'd)2�: (18)

This is the product of a spacetime that is locally AdS3
(anti–de Sitter) with radius q and a 2-sphere of radius
q=2, as expected from [4]. The AdS3 space is the near-
horizon geometry of an extremal Banados-Teitelboim-
Zanelli black hole of horizon radius r� � L. This near-
horizon limit is not the same as the ‘‘decoupling limit’’
relevant to the AdS3=CFT2 (conformal field theory) dual-
ity, which will be analyzed in [8].

Infinite-radius limit.—The existence of a supersym-
metric black ring solution was recently conjectured in
[5,13]. As evidence, Ref. [13] constructed a black string
solution that was claimed to describe a black ring of
infinite radius. This solution can indeed be recovered as
the infinite-radius limit of our solution as follows. Define
a charge density �Q � Q=2R and new coordinates r �
�R=y, * � R , and cos' � x. In the limit R! 1 with
�Q, q, r, and * held fixed we have

f�1 ! 1�
�Q
r
�
q2

4r2
; (19)

! d ! �

�
3q
2r

�
3q �Q

4r2
�
q3

8r3

�
d*; (20)

and !� ! 0. This is the solution of [13] for the special
case of three equal charges and three equal dipoles. In [8]
we shall present a more general supersymmetric black
ring whose infinite-radius limit is the general solution of
[13]. Note that the solution of [13] does not exhibit an
essential feature of the supersymmetric black ring,
namely, the existence of two independent angular
momenta.

Dipole charge.—Define

D �
1

16�G

Z
S2
F �

���
3

p

16G
q; (21)

where the S2 is a surface of constant t,  , and y outside the
horizon. This ‘‘charge’’ determines the radius of the S2 of
the horizon and also (for fixed electric charge) the angu-
211302-3



0

aH

jφ

jψ

1
2 √2

FIG. 1. Plot of the dimensionless horizon area aH �
A=�GM�3=2 as a function of the dimensionless angular mo-
menta ji � 
27�=�32G��1=2Ji=M

3=2, i �  ;�. The scales for j�
and j are different for a better representation: the planar
boundary corresponds to j � j� (which is reached only as
R! 0). The surface extends to infinity to the right.
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lar momentum J�. It is not conserved except in the limit
in which the ring becomes an infinite black string. The
general solution of [8] carries three independent dipole
charges, which are proportional, respectively, to the num-
ber of D1-branes, D5-branes, and Kaluza-Klein (KK)
monopoles with a world-volume direction around the
ring circle. The solution presented here corresponds to
taking equal values for these three dipole charges, so q is
proportional to the number of branes with a world-
volume direction around the ring circle. When oxidized
to six dimensions, the black ring becomes a black super-
tube. We anticipate that regularity of this solution will
lead to q being quantized in units of the radius of the KK
circle, since q is the number of KK monopoles making up
the tube [8].

Uniqueness.—The supersymmetric black ring is
uniquely specified by its electric charge and angular
momenta. Figure 1 shows the region of the J�-J plane
occupied by BPS black rings for fixed chargeQ. There are
three boundaries to this region. The boundary to the upper
right arises from the condition (11) with L, the radius of
the S1, vanishing at the boundary. The lower boundary
J� ! 0 arises from the condition q > 0 so the radius of
the S2 vanishes at this boundary. The leftmost, straight
boundary arises from the condition R> 0, which implies
J > J�. If R � 0 the solution reduces to the BMPV
solution, so there are no black rings with J � J�, and
thus the conserved charges of our black ring are always
different from those of a BMPV black hole.

Entropy.—Figure 1 displays the black ring horizon area
as a function of the angular momenta for fixed charge Q.
For fixed J� the entropy function is maximized as R! 0.
However, this function is not continuous at R � 0. At this
point, the black ring solution reduces to the BMPV black
hole, whose entropy is greater than the R! 0 limit of the
black ring entropy. This discontinuity is due to the change
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in the horizon topology from S1 � S2 at R> 0 to S3 at
R � 0, and is analogous to the discontinuous increase in
entropy that occurs when two sources of a multicenter ex-
tremal Reissner-Nordstrom solution become coincident.

The existence of supersymmetric black rings raises
many questions. For example: Are there any supersym-
metric black hole solutions (of minimal supergravity) for
the empty regions of the J�-J plane, or any solutions that
overlap with the currently covered regions? If not, then
can the results of [4] be strengthened to a full uniqueness
theorem for supersymmetric black holes? Is there a gen-
eral nonextremal black ring solution that reproduces our
solution and those of [3,9] as special cases? Such a
solution would presumably depend on five parameters
corresponding to the angular momenta, the electric
charge, the dipole charge, and the mass. Finally, is it
possible to perform a statistical-mechanical calculation
of the entropy of this black ring?
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