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We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole
cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From
a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane
description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even
though supersymmetry is completely broken.
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It has been known for more than 30 years that black
holes have an enormous entropy. String theory has been
able to provide a microscopic description of this entropy in
certain cases. For example, the original black hole studied
by Strominger and Vafa [1] was charged and supersym-
metric. The charges of a black hole serve as tags that help
identify its microscopic constituents in string theory. In
addition, when the solution is supersymmetric, the phase
space of the system is drastically constrained and subject to
powerful nonrenormalization theorems and state-counting
techniques. Neutral black holes, however, carry a minimal
set of quantum numbers—mass and angular momentum—
and so it seems hard to restrict the phase space to a sector
which is simple enough to count the microstates.

Nevertheless, we will argue that there exist vacuum
black holes in M theory that can be mapped to well-defined
bound states of D-branes in string theory, and which, in
certain limits, become asymptotically flat black holes. We
start with dyonic solutions of five-dimensional Kaluza-
Klein (KK) theory [2]. Itzhaki showed[3] that in a certain
limit, these solutions include the five-dimensional neutral
rotating black hole of Myers and Perry [4], which is
asymptotically flat. Reversing this procedure, one can
view the KK black hole as the Myers-Perry black hole
placed at the tip of a Taub-NUT geometry. A similar
connection between four- and five-dimensional black holes
has been discussed recently for supersymmetric solutions
with additional charges and self-dual angular momentum
[5]. Here we are considering the simplest case of a black
hole with generic J1 and J2 and no extra charges.

Taking the product with a flat T6, we obtain a solution to
M theory, whose type-IIA reduction has D0 and D6 charge.
Even in the extremal limit, this black hole is not super-
symmetric [6], in accord with the absence of supersym-
metric bound states of D0 and D6 branes. There are,
however, nonsupersymmetric, quadratically stable, D0-
D6 bound states [7], and these will serve as a basis to our
microscopic picture. We will provide a simple string de-
scription that exactly reproduces the entropy and mass of
the extremal black hole.

The entropy of some nonsupersymmetric, extremal
black holes has been reproduced before [8]. However,
that required black holes with four charges (in four dimen-
sions) while we have only two. More importantly, unlike
previous examples our solutions are pure vacuum in higher
dimensions. The entropy of neutral black holes can be
understood in terms of a correspondence principle [9],
but that does not reproduce the precise coefficient. To
our knowledge, this is the first time that the entropy of a
neutral black hole has been reproduced exactly. Earlier
work attempting to obtain the precise entropy of asymp-
totically flat neutral black holes by different means include
[10,11]. Previous attempts at providing a microscopic de-
scription of D0-D6 black holes include [12,13].

We begin by reviewing the KK black holes (for a de-
tailed description, see [2]). These black holes are charac-
terized (in four dimensions) by their mass M, angular
momentum J, and electric and magnetic charges Q and
P. They satisfy the inequality

 2G4M � �Q2=3 � P2=3�3=2; (1)

which, at slow rotation G4J < PQ, is saturated in the
extremal limit independently of J. When P � Q and J �
0 the four-dimensional geometry becomes exactly the
same as the Reissner-Nordstrom black hole.

In the five-dimensional vacuum solution, let y be the
compact KK dimension, y � y� 2�R. This circle is fi-
bered over two-spheres in the base. Since S1 bundles over
S2 are labeled by an integer, the magnetic charge must be
quantized in terms of the radius R. The electric charge is
also quantized, since it corresponds to momentum in the y
direction. More precisely,

 Q �
2G4N0

R
; P �

N6R
4

(2)

for integers N0 and N6 (the reason for this notation will
become clear below).

The five-dimensional interpretation of these solutions is
quite interesting. In the absence of magnetic charge, the
horizon has topology S1 � S2, where S1 is the KK circle,
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and the solution is a black string boosted along y. However,
the topology changes when P � 0. If N6 � 1, the y circle
and spherical S2 combine into a topological S3. In the
extremal limit with Q � 0 and J � 0, the solution be-
comes the KK monopole. The geometry can be described
as a ‘‘cigar’’ fibered on the orbital S2.

If we add electric charge or energy above extremality,
we find a finite black hole horizon at the tip of the cigar. So
magnetically charged KK black holes are five-dimensional
black holes with horizon topology S3, localized inside a
Taub-NUT geometry. The electric charge does not corre-
spond to a boost, but rather to rotation of the black hole
aligned with the KK circle. A component of the rotation
that is not aligned with the five-dimensional fiber gives rise
to four-dimensional rotation.

If the size of the black hole is much smaller than the KK
radius R, then finite-size effects become negligible and we
recover the five-dimensional Myers-Perry black hole, as
explained in [3]. In this limit, the four-dimensional mass is
dominated by the mass of the KK monopole, and the
excitation energy above the KK monopole is equal to the
mass of the five-dimensional black hole. The angular mo-
menta in five dimensions are related to the electric charge
and four-dimensional angular momentum as J1 � J2 �
N0N2

6 and J1 � J2 � 2JN6.
The identification with a five-dimensional black hole is a

local one. Globally, the asymptotic spatial geometry is
actually the orbifold R4=ZN6

. So only configurations
with N6 � 1 give rise to globally asymptotically flat solu-
tions. When N6 > 1 the black hole sits at the tip of a
conical space.

The entropy of the KK black hole is particularly simple
in the extremal limit [13],

 S �
A�4�
4G4

� 2�

�����������������������
P2Q2

G2
4

� J2

s
� 2�

�����������������������
N2

0N
2
6

4
� J2

s
: (3)

This is independent of the circle radius R, so it also
corresponds to the entropy of the extremal Myers-Perry
black hole after the limit of infinite radius R is taken. It was
noted in [13,14] that the entropy depends only on the
integer normalized charges. This is a strong indication
that a microscopic counting of the states is possible.

In order to count the microstates of the KK black hole,
we take the product with T6 [with volume �2��6V6] and
view it as a vacuum solution in M theory with the KK circle
being the M theory circle. By the usual relation between M
theory and type-IIA string theory, R � gls. The electric
and magnetic charges now correspond to D0 and D6-
branes, and N0 and N6 are simply the net number of D-
branes. The quantization condition (2) can now be written

 Q � 2G4M0N0; P � 2G4M6N6 (4)

where the masses of individual D0 and D6-branes are

 M0 �
1

gls
; M6 �

V6

gl7s
; (5)

and G4 � g2l8s=8V6. So the mass of our extremal black
hole is

 M � 	�M0N0�
2=3 � �M6N6�

2=3
3=2: (6)

To reproduce this mass and the entropy formula (3) we will
pass to a T dual configuration where the microscopic
description becomes more transparent. For simplicity we
consider first the case without four-dimensional rotation,
J � 0, and will discuss J � 0 near the end.

We first recall the situation for the supersymmetric four-
charge black holes in Type II string theory compactified on
T6. There are many possible choices for the charges, all
related byU duality. For our purposes, the most useful is in
terms of four stacks of D3-branes [15]. Any two stacks
intersect over a line, and all four intersect at a point. The
orientation of the first three stacks can be chosen arbi-
trarily, but to preserve supersymmetry, the orientation of
the last set of D3-branes is then fixed. We are interested in
the case where the number of branes in each stack is the
same, say N. The moduli of the T6 then remain constant,
and the solution reduces to the product of T6 and extreme
Reissner-Nordstrom,

 ds2 � �

�
1�

r1

r

�
�2
dt2 �

�
1�

r1

r

�
2
�dr2 � r2d�2�: (7)

Assuming a square torus with equal size circles and V6 �
�V3�

2, the constant r1 is related to the number of 3-branesN
via r1 �

gNl4s
2V3

. The mass is

 M �
r1

G4
�

4NV3

gl4s
; (8)

which is just the mass of the four stacks of N 3-branes
wrapped around the torus, and the black hole entropy is

 S �
A

4G4
� 2�N2: (9)

Although the explicit counting of states for supersymmet-
ric four-dimensional black holes is easier to carry out with
a different choice of charges [16], the fact that it reprodu-
ces (9) and is related by U duality ensures that the D3-
branes also contain precisely the right number of states (at
large N) to reproduce the black hole entropy. Furthermore,
since the entropy is independent of the moduli of the torus,
it seems clear that the states are associated with the inter-
section point of the branes.

Bound states of four D0-branes and four D6-branes were
described by Taylor in terms of a gauge theory configura-
tion on the world volume on the 6-brane [7]. He pointed out
that after applying T duality along three cycles on the
torus, this configuration was equivalent to four D3-branes
in a configuration very similar to the one described above.
However, there are two important differences. The orien-
tations correspond to broken supersymmetry, and the
branes are wrapping the diagonals of the torus. To be
explicit, consider first a square T2 with coordinates (x1,
x2). The two diagonals are given by x2 � �x1 which we
will call the � and � cycle. If we orient the cycles so that
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x2 always increases, then a configuration of two strings
wrapping both diagonals has net winding number two
around x2 and zero winding around x1 (see Fig. 1). Now
view T6 as the product of three T2’s, with coordinates (x1,
x2), (x3, x4) and (x5, x6), respectively. The 3-branes are all
wrapped around one diagonal of each T2 and oriented so
that the even coordinates always increase. So the configu-
ration can be labeled by specifying which of the diagonals
is wrapped on each T2. If we T dualize in the 2, 4,
6 directions, the configuration dual to the four D0-branes
and four D6-branes is

 �� ���; �� ���; �� ���; �� ���; (10)

where the first entry corresponds to the first torus, etc. By
construction, each brane wraps the cycle (246) once, and
since each entry has an even number of minus signs, each
brane also wraps the cycle (135) once. It is easy to check
that the net winding about any other 3-cycle [such as (146)]
is zero. So even though there are four 3-branes, the net
nonzero charges are just (135) and (246), which is what
one expects after three T dualities of D0-D6.

If we replace the single 3-brane around each cycle in
(10) by N, we obtain a configuration with charge 4N
around each of the cycles (135) and (246). This repro-
duces the mass of the black hole. After three T dualities,
we get N0 � N6 � 4N and hence (6) becomes M �
23=24NV3=gl4s . [Starting with a symmetric T6 for the inter-
secting 3-branes and applying three T dualities results in a
torus with volume V6 � l6s (and changes the string cou-
pling to gl3s=V3). So the 6-brane and 0-brane have equal
mass.] This is equal to the mass of the 3-branes since the
length of each leg is

���
2
p

larger than before, so the volume of
each 3-brane is 23=2 greater. The fact that the mass does not
saturate a BPS bound is just a reflection of the fact that the
branes are wrapping cycles of larger volume.

What about the entropy? At first sight there appears to be
a discrepancy. If we make the reasonable assumption that
the entropy of the intersecting 3-branes is unaffected by the
change in orientation and rotation of the branes we would

expect S � 2�N2 as in (9). However, since N0 � 4N and
N6 � 4N (and J � 0) the black hole entropy (3) is

 Sbh � 16�N2; (11)

which is larger by a factor of 8. However, rotating the
branes increases the number of intersection points (we
thank Juan Maldacena for suggesting this). On a T2, the
diagonals have two intersection points (see Fig. 1). Since
the branes have two intersection points on each of the three
T2’s, there are a total of eight intersection points. The total
Hilbert space is a tensor product of the states at each
intersection point and hence

 Sbranes � 8� 2�N2: (12)

Thus, a simple calculation reproduces the black hole en-
tropy exactly.

It is easy to generalize this to the case of unequal charges
(in terms of gauge fields on the 6-brane, this was done in
[13,14]). The configuration of branes is again given by (10)
where � now refer to more general cycles than just the
diagonal. Let � denote the cycles x2 � �kx1=l for rela-
tively prime integers k, l (and similar cycles on the other
two T2’s with the same integers k, l). The configuration of
branes (10) now has charge 4k3 along (246) and charge 4l3

along (135). The mass of each brane is now �k2 � l2�3=2

larger just from the increase in area of the three-cycle being
wrapped. This agrees with the black hole mass since with
N branes wrapped around each of the cycles, N0 � 4k3N,
N6 � 4l3N so (6) yields

 Mbh �
4N�k2 � l2�3=2V3

gl4s
� Mbranes: (13)

In retrospect, the presence of 3=2 in the exponent of the
black hole mass is an indication of a microscopic descrip-
tion in terms of 3-branes.

The entropy also comes out exactly right since the� and
� cycles now have 2kl intersection points on each T2 (see
Fig. 2). So the collection of 3-branes has a total of �2kl�3

intersection points. The entropy is thus

 Sbranes��2kl�3�2�N2���4Nk3��4Nl3���N0N6�Sbh:

(14)

The limiting case of a Myers-Perry black hole described
above requires only a slight generalization (see Fig. 2). We
want to take R! 1 keeping G5, G11, N0 and N6 fixed. In

2

x1

x

FIG. 1. Branes wrapping the diagonals of a torus. There are
two intersection points, at the origin and at the middle of the
square. We assume that each intersection contributes a micro-
scopic entropy equal to that of a supersymmetric intersection of
branes.

1

x2

x

FIG. 2. Generalization to unequal charges and nontrivial mod-
uli. The branes wrap a rational direction k=l of the torus (in the
figure, k � 3, l � 1), so there are 2kl intersection points on each
T2. In the limit to the five-dimensional Myers-Perry black hole,
the torus shrinks along x2.
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the D0-D6 frame, this corresponds to taking g! 1 keep-
ing V6 fixed in Planck units. Since the 11-dimensional
Planck length lp is given by lp � g1=3ls, when we T dual-
ize along a direction, the new circle has length ~L� l2s=L�
g�2=3. Thus, after T duality in the 2, 4, 6 directions, the size
of these three circles goes to zero in the limit. (The IIB
string coupling remains finite since ~g� gl3s=L3 � l3p=L3.)
We again obtain 3-branes wrapping the cycles (10), but
they become essentially parallel as we approach the
Myers-Perry black hole, all wrapping the (135) cycle
with a positive orientation. Since the entropy is moduli
independent, the equality between statistical and black
hole entropies holds as in (14).

Finally, to allow for J � 0 we assume that J is evenly
distributed among the �2kl�3 intersections of 3-branes so
each one carries angular momentum J0 � J=�2kl�3. In
the (4,0) theory that describes the four-charge sys-
tem, to account for J0 we align the polarization of
J2

0=N
3 fermionic left-moving excitations (out of N) while

the right movers remain unexcited. The entropy is then

2�
���������������������������������
N3�N � J2

0=N
3�

q
. (This is the nonsupersymmetric ana-

log of [17].) Assuming that this applies to each intersec-
tion, the mass formula is not modified but the total
microscopic entropy becomes

 Sbranes � �2kl�3 � 2�
�����������������
N4 � J2

0

q
� 2�

�����������������������
N2

0N
2
6

4
� J2

s
:

(15)

This reproduces (3) and hence also the entropy of the
extremal rotating Myers-Perry black holes with generic
angular momenta.

It seems remarkable that a simple system of D-branes is
able to reproduce the mass and entropy of a vacuum black
hole which is far from being supersymmetric. It is not clear
to us why this is working so well, but it hints at further
simplifications that might be possible for neutral black
holes. In particular, it is intriguing that we need to use
four different sets of branes, even though (from the type-
IIA standpoint) there are only two charges. This is remi-
niscent of earlier suggestions that neutral black holes
should be viewed as collections of branes and antibranes
[11,18]. There is a mysterious duality invariant formula
which reproduces the entropy of all nonextremal black
holes (including Schwarzschild) in terms of branes and
antibranes. It is not yet clear how to derive this in string
theory, but the above construction seems a step in the right
direction.

Various other open questions remain: (1) We have only
considered extreme KK black holes. Can one count the
microstates of near-extremal solutions? This would bring
us a little closer toward understanding Schwarzschild.
(2) Can one reproduce the entropy of KK black holes
with N6 � 1? The constructions above seem to require
that N6 � 4 (actually N6 
 4, since assigning an entropy
2�N2 to each intersection is justified only for large N).

(3) Can one replace T6 with general Calabi-Yau spaces and
still count the entropy? Since mirror symmetry can be
viewed as T duality on a T3, an initial collection of D0
and D6-branes goes over to a collection of D3-branes under
this symmetry. This suggests that the above construction
may have a natural generalization. (4) Rather than working
with D3-branes, can one understand the entropy of the
above black holes directly in M theory (in terms of gravi-
tons and perhaps branes) or in terms of D6-branes with flux
corresponding to D0-branes? This latter case corresponds
to counting the number of instantons (of a certain type) in
six-dimensional Yang-Mills theory.
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