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Soliton Collision in General Relativity
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An exact solution of the Einstein equations in vacuum representing two pairs of gravita-
tional solitons propagating on an expanding universe is given and studied. It is suggested
that the solitons evolve from quasiparticles to pure gravitational waves. Two of the four
solitons collide and the focusing produced on null rays is studied. Although the space-
time following the collision is highly distorted, null rays do not focus to a singularity.

PACS numbers; 04.20.Jb, 11.10.Lm, 98.80.Dr

Solitons are found in general relativity as in
other fields of nonlinear physics, We discuss a
family of solutions of the Einstein equations in
vacuum that can be interpreted as describing the
propagation of four gravitational solitons and the
collision of two of them on an expanding cosmo-
logical background. The family is the “four-
soliton solution” generated via the inverse-scat-
tering technique of Belinskii and Zakharov' taking
as “seed” metric the homogeneous Kasner cosmo-
logical solution., The solution obtained has the
Kasner singularity at =0 and is completely regu-
lar afterwards, it is inhomogeneous through the
z axis, and it contains four solitons propagating
on the Kasner background, |

as?=f(t ,z)(dz® -di?) +g,,(t,2)dx® +g,,(t ,2)dy? y &1

We shall be interested in two main problems:
first, the characterization of the solitons through
the Riemann tensor and their scalar invariants;
second, the collision of solitons which will be
studied by means of the expansion and shear of
null congruences propagating on the metric field,
and which provides an example of the interaction
of nonlinear waves in general relativity.

The metric considered admits two commuting
orthogonal spacelike Killing vectors; it is essen-
tially an Einstein-Rosen metric but differs in its
global structure and interpretation. It involves
only three “soliton” parameters and a “seed”
parameter (5). It is the diagonal, vacuum, four-
soliton solution
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The functions 0,(¢,z) are obtained from the
complex equation (“pole trajectory” equation®)

%= 20z, —iw, ) +22=0, 0, = p, b, /t7

which has one root in the range (0,1) and the
other, its inverse, in (1,<). We take the first
root for o, and the second for ¢,. Analytical ex-
pressions for 0,(¢,2) can be given explicitly? but
they are rather lengthy; we note that 0,0,~1 in
the limits t =« (| z|<t) and z == (t<|z]|).

The “soliton” parameters z,° and w; are arbi-
trary real constants which indicate the “origins”
and “widths” of the two pairs of solitons: At {=0
one pair of solitons is localized at z,° and the
other pair at z,° (only 2z,°—2,° is relevant) and for
small values of w;2< 1 the solitons are very local-
ized.
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ds?=1%-1/2(qz2 - q12) + 1+ Sdx2 + 117 Udy2,

(2)

The value 6 =0 corresponds to the axisymmetric
Kasner metric. For 0>1 the z axis is expanding
and for 6 <1 it is contracting, Flat space is given
by 6 =1; we shall not consider that possibility in
what follows.

In order to understand the behavior of the met-
ric it is convenient to define the following asymp-
totic space-time regions: the “far region,” ¢
< |z|=e0; the “light-cone region,” |z| ~¢ =,
and the “interaction region,” |z| <<t - «. In
all those asymptotic regions the metric tends
towards the Kasner background. However, the
longitudinal expansion, which is given by the co-
efficient f, is the Kasner background value f* in
the far region only. In the light-cone and inter-
action regions the longitudinal expansion is f*
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multiplied by a factor depending on the soliton
parameters. For instance, for the solutions for
which w,2~u?< 1, in the interaction region the
asymptotic values are f~f* /w*, while in the light-
cone region they are f~f1*/w* along the light cones
of the inner solitons (those which collided) and
f~f* /w? along the light cones of the outer solitons.
The soliton structure and the intrinsic proper-
ties of the metric (1) can be seen from the Rie-
mann tensor. This tensor can be easily calculat-
ed by iterative use of the formulas for the deriva-
tives of 0;, which can be deduced from the pole
trajectory equations.! For a metric of type (1)
the Riemann tensor has only three independent
components: One can write it in terms of an
“electric,” E, and a “magnetic,” B, 3X3 ma-
trices. The only nonzero components are E,,; =¢,,
E,,=¢,, E;z=e,=—(e,+e,), and B ,=B,, =b (for
the Kasner metric the Riemann tensor depends
only ont¢, and b=0), The soliton structure ap-
pears in the Riemann components: For small
values of w2 the four solitons are narrow pulses
and the limit w2 - 0 produces & functions,
Frame-independent soliton properties are seen
from the two nonzero curvature scalar invariants:
I,=(e’+e,2+e2 = 2b%)/2 and I, =(e,* +e,* +e,°
+3b%,)/6. The evolution in time of the ratio I,/
L,* (I,* is the Kasner value) is shown in Fig, 1
for a model in which 6 =0, Before the collision
four solitons with small tails are seen. After the
collision the outer solitons are clear but the in-
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FIG. 1. Time evolution of the ratio of the first
curvature scalar to the Kasner value, I,/If for a
model in which the background in the axisymmetric
Kasner metric, 6= 0. The curves are represented
against the propagation axis (z axis). The widths and
origins of the solitons are w,=w,=0.05 and z,°= 0,
z,"=1. The different curves from bottom to top of
figure represent the time sequence ¢ = 0.1, 0.3 (before
collision), 0.5 (collision time: ¢,), and 0.7 (after col-
lision).
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tensities of the inner solitons are very small be-
cause of the 1/w* factor of the longitudinal ex-
pansion. The same factor makes the value of I,
in the interaction region very small too,

The behavior of the Riemann tensor and its
scalar invariants indicates that metric (1) repre-
sents intrinsic inhomogeneities of the gravitation-
al field propagating on a Kasner space-time.

From the algebraic classification of the metric
in the light-cone region one can see that the soli-
tons, which are localized there, seem to evolve
towards pure gravitational waves. Infact, in
that region the leading terms of the Riemann ten-
sor are e,~ —e,~b which is typical of pure gravi-
tational waves: type-N metrics in the Petrov
classification [in general, however, metrics (1)
are globally of Petrov type I].

Further features of metric (1) can be seen by
projecting the Riemann tensor over a null tetrad
fi, [, m, and m*: fi=2"Y2%"1(3,+9,), T=2"1/2(,
-9,), and m=2""%(g, ~/% +ig,=1/23 ) where @i
is a geodesic null vector field that lies tangent
to the rightward-traveling solitons., With that
tetrad the nonnull Riemann components are® ¥,
=[(ez_el)/2+b1f: V,=~ey/2, ‘1’4=[(62—el)/2-—b]f.
¥, and ¥, contain the radiative part of the field
whereas ¥, contains its Coulomb part. Compar-
ing with the homogeneous background we see that
solitons induce inhomogeneities in those fields;
in particular, ¥, will induce time-varying tidal
forces to test particles on the plane orthogonal
to the propagation of the rightward solitons.

In Fig. 2, the evolution of the field ¥, is shown,
It indicates the gravitational strength of the right-
ward-traveling solitons. The soliton structure as
a nondispersive wave is clear: The solitons are
localized in their light-cone regions; the ampli-
tude of ¥, decreases there as ¢~/ 2 but this is a
consequence of the background expansion and

FIG. 2. Time evolution of the Riemann tensor compo-
nent §, giving the gravitational strength of the right-
ward-traveling solitons. Same model and parameters
as in Fig. 1. The Kasner background value is = 0.
The three curves from left to right of figure represent
the time sequencet = 0.1, t,= 0.5, and ¢ = 0.9.
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FIG. 3. Time evolution of the expansion ratio 6 /6%
produced by the solitons on the null geodesics generated
by the null vector n. Same model as in Fig. 1 but with
soliton widths w; =w,= 0.1. The three curves from
top to bottom of figure represent the time sequence ¢
=0.1, {,= 0.5, and ¢ = 0.9.

does not imply dispersion. Initially the solitons
show tails and a complicated structure; as time
increases the tails disappear. ¥, has a similar
behavior with the leftward traveling solitons,
and ¥,, that produces tidal forces on test parti-
cles aligned in the direction of propagation of the
waves, becomes much less localized than ¥, and
¥, as time increases. Consequently the tran-
verse part of the field becomes more important
than the longitudinal one: The radiation com-
ponent dominates over the Coulomb component.

The above results suggest to us the interpreta-
tion of the gravitational solitons as quasiparticles
which evolve towards pure gravitational waves,
Thus the soliton collision can not be interpreted
as the collision of pure gravitational waves, but
as the collision of gravitational fields with radia-
tive and nonradiative (Coulomblike) components,

Finally we shall investigate the focusing effect
on null congruences resulting from the collision
of solitons. It is well known that the collision of
plane gravitational waves produces curvature
singularities in the interaction region,* but those
singularities can be avoided if the collision takes
place in an expanding cosmology.®

Given the geodesic null vector i, the metric (1)
is uniquely characterized® by the expansion, 6 =1/
2V 2ft, and shear, o, produced on the null con-
gruence defined by fi. The Kasner solution (2)
produces a homogeneous expansion, 6%, and

shear on such a null congruence as a consequence
of its overall expansion on the x-y plane, The
solitons will produce inhomogeneities on 6 and
o and as a consequence of their energy they will
focus the null rays. Infact, in Fig. 3, the ratio
of the expansions 8 /6% of the null rays is shown,
Initially the focusing produced by the four soli-
tons is clear. By the Raychaudhuri equation this
can be interpreted as due to the gravitational
“energy” of the solitons which can be measured
by the 62 and o? they produce. After the collision
0 is getting small. This can be interpreted as
focusing produced by the gravitational energy of
the collision. This is quite different from what
one would expect from the simple superposition
of linear waves; it is a consequence of the non-
linear interaction of the solitons. The expansion,
however, is still positive, 6 >0, and there will
be no convergence of null rays to a singularity.
The overall expansion of the background pre-
vents the formation of singularities in the future,
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