

HHS Public Access

Author manuscript *Am J Psychiatry*. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:

Am J Psychiatry. 2017 January 01; 174(1): 60-69. doi:10.1176/appi.ajp.2016.16020201.

Distinct subcortical volume alterations in pediatric and adult OCD:

A worldwide meta- and mega-analysis

A full list of authors and affiliations appears at the end of the article.

Abstract

Objective—Structural brain imaging studies in Obsessive-Compulsive Disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in disease profile and developmental stage.

Methods—To address these limitations, we conducted a meta- and mega-analysis of data from OCD sites worldwide. T_1 images from 1,830 OCD patients and 1,759 controls were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ in OCD patients and healthy controls. We additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients.

Results—The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen's d=-0.13; p= 5.1×10^{-3} , % difference -2.80) and larger pallidum volumes (d=0.16; p= 1.6×10^{-3} , % difference 3.16) compared to adult controls. Both effects were stronger in medicated patients compared to controls (d=-0.29; p= 2.4×10^{-5} , % difference -4.18 and d=0.29; p= 1.2×10^{-5} , % difference 4.38, respectively). Unmedicated pediatric patients had larger thalamic volumes (d=0.38, p= 2.1×10^{-3}) compared to pediatric controls. None of these findings were mediated by sample characteristics such as mean age or field strength. Overall the mega-analysis yielded similar results.

Conclusion—Our study indicates a different pattern of subcortical abnormalities in pediatric versus adult OCD patients. The pallidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. This highlights the potential importance of neurodevelopmental alterations in OCD, and suggests that further research on neuroplasticity in OCD may be useful.

Introduction

Obsessive-compulsive disorder (OCD) is a neurodevelopmental disorder that affects 1–3% of the population (1; 2). In more than 50% of all OCD cases, symptoms emerge during

Location of work and address for reprints: Premika S.W. Boedhoe, M.Sc., Department of Psychiatry, VU university medical center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands, p.boedhoe@vumc.nl, Tel: +316 25 69 49 16, Fax: +31-20-4440197. *See Supplementary Information 1 for the complete list of ENIGMA-OCD Working-Group members

Previous presentations: Preliminary results were presented at the International College of Obsessive Compulsive Spectrum Disorders (ICOCS), Amsterdam, The Netherlands, September 02, 2015.

Disclosures: All authors have no conflicts of interest related to this study.

Several studies have shown volumetric abnormalities in different deep grey matter structures, mainly the basal ganglia (7–10). Meta-analyses have repeatedly, although not consistently, reported larger volumes in the lenticular nucleus extending to the caudate (11–14). In addition, Pujol et al. (7) showed that the relative enlargement of striatal areas in OCD patients was driven by an older age of the subject and a longer disease duration, suggesting that basal ganglia alterations progress throughout the disease course, supported by the mega-analysis from the OCD Brain Imaging Consortium (OBIC) (15). These findings led to the hypothesis that preservation of basal ganglia volume resulted from neuroplastic changes due to chronic compulsivity.

Although these findings suggest ongoing neuroplasticity, a lifespan approach has seldom been used to understand the variation in structural abnormalities in OCD (5). Studying the brain characteristics of disease during childhood may minimize the potentially confounding effects of neuroplastic changes associated with chronic symptomatology and long-term treatment. Pediatric studies have been sparse and small, leaving the extant findings inconclusive and variable. For example, some studies reported increased thalamus volume in adult (16; 17) and pediatric OCD patients (18), supported by two meta-analyses (14; 19) showing larger thalamus volumes in OCD patients when pediatric and adult data were combined. In contrast, several recent meta-analyses showed no differences in thalamus volumes while combining adult and pediatric subjects (11–13). The variation across studies may partially be explained by variations in the developmental and disease stages of the subjects included.

In view of the clinical heterogeneity of OCD, relatively small samples, differences in data acquisition, data processing protocols, and statistical analyses further contribute to the inconsistent findings. Different segmentation algorithms may give variable estimates of subcortical volumes and thus their sensitivity to regionalized group differences (20). To overcome the heterogeneity in image processing and to increase sample sizes, especially regarding pediatric data, we initiated the OCD Working-Group within the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium (21).

The ENIGMA-OCD Working-Group is an international collaboration and its current aim is to identify subcortical imaging markers that differ in OCD patients and healthy controls, both in children and in adults. Therefore, we conducted a meta- and mega-analysis on structural Magnetic Resonance Imaging (MRI) data of 1,830 OCD patients and 1,759 healthy controls. The mega-analysis ensures information preservation and enables the examination of specific effects of demographic and clinical parameters. By employing meta- and mega-analysis we sought to investigate whether the mega-analytical design has greater sensitivity to detect more subtle brain abnormalities from increased statistical power.

In this study, we investigated nine regions of interest (i.e. seven subcortical grey matter regions, lateral ventricle, and total intracranial volume) in OCD patients compared to healthy controls by performing the largest meta- and mega-analysis to date. In additional exploratory analyses, we examined potential modulating effects of demographic, clinical, and methodological characteristics on subcortical brain volume in OCD. Based on previous meta- and mega-analyses, we expected subcortical brain volumes to vary across developmental stage showing differences between pediatric and adult OCD, and disease profile and stage, including co-morbidity.

Methods

Samples

The ENIGMA-OCD Working-Group includes 35 datasets from 25 international research institutes, with neuroimaging and clinical data from OCD patients and controls, including both children and adults. We considered subjects 18 years as adults and subjects <18 years as children. Since previous literature suggested differential effects between pediatric and adult samples, we performed separate meta- and mega-analysis for adult and pediatric data. Demographics and clinical characteristics of the participants in each center are shown in Tables 1 and 2, respectively. In total, we analyzed data from 3,589 subjects including 1,830 OCD patients (N=335 children, N=1,495 adults) and 1,759 controls (N=287 children, N=1,472 adults). All local IRBs permitted the use of extracted measures of the completely anonymized data.

Image acquisition and processing

Structural T₁-weighted MRI brain scans were acquired and analyzed locally. Images were acquired at different field strengths (i.e., 1.5T and 3T). The acquisition parameters of each sample are listed in Supplementary Table 1. The images were analyzed using the fully automated and validated segmentation software FreeSurfer v5.3. (22) following standardized protocols to harmonize analysis and quality control processes across multiple sites (http://enigma.ini.usc.edu/protocols/imaging-protocols/). Segmentation of nine regions of interest, including seven subcortical grey matter structures, i.e., nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus, the lateral ventricle volumes (mean bilateral and right and left side separately), and total intracranial volume were visually inspected for accuracy (Supplementary Information 2).

Meta-analysis of subcortical brain volumes

We examined differences between OCD patients and controls across samples by performing a meta-analysis on the mean of the left and right hemisphere measures of each subcortical structure. The meta-analysis was based on multiple linear regression models, with the mean subcortical brain volume as the outcome measure and a binary indicator of diagnosis (0=controls, 1=patients) as the predictor of interest. All models were controlled for age, sex, and intracranial volume. Effect size estimates, adjusted for age, sex, and intracranial volume, were calculated using Cohen's d-metric computed from the t-statistic of the diagnosis indicator variable from the regression models.

To explore the influence of sex and age on between-group subcortical volume differences, we assessed the significance of diagnosis-by-sex and diagnosis-by-age interaction effects within each sample. Further, multiple linear regression models were used to investigate the within-group effects of age at onset, disease duration, disease severity (using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and the Children's Y-BOCS (23; 24) total severity score) as continuous variables. To further study the neurodevelopmental aspects of disease within the adult samples, we performed separate stratified meta-analyses comparing early-onset OCD patients (<18 years) to controls, and late-onset OCD patients (18 years) to controls. Stratified meta-analyses were also performed for medicated and non-medicated patients. Likewise separate stratified analyses were performed to investigate comorbid major depressive disorder (MDD), comorbid anxiety disorders, and OCD symptom dimensions (using the Y-BOCS symptom checklist; Supplementary Information 5 *symptom dimension analyses*).

All regression models and effect size estimates were fit at each site separately. Subsequently, a final Cohen's d-effect size estimate was obtained using an inverse variance-weighted random-effect meta-analysis model with the R package 'metaphor' (version 1.9-1¹⁸). The meta-analysis of disease severity, age at onset, and disease duration were exceptions. The scores on these variables were considered as continuous variables, so effect sizes are reported using Pearson's r, a partial-correlation after removing nuisance variables (age, sex, and intracranial volume). The final meta-analyzed Pearson's r was estimated following the same inverse variance-weighted random-effect meta-analysis models used for the other meta-analyses (Supplementary Information 3).

Moderator analyses

Meta-regressions were performed to examine the effects of moderator variables on metaanalysis effect sizes. We tested whether hypothesized moderating factors such as the mean age of each sample, field strength, percentage of patients taking antidepressants and percentage of patients taking antipsychotics influenced the effect size estimates of the OCD patients versus controls comparison of all subcortical volumes across samples included in the meta-analysis. Each moderator variable was separately included as a fixed effect predictor in a meta-regression model. We report uncorrected P-values with a significance threshold determined by Bonferroni correction for testing nine regions of interest $(P=0.05/9=5.6\times10^{-3})$.

Power Analysis

Sample sizes that achieve 80% power to detect group differences given the presented effect sizes were calculated based two-sided t-tests assuming unequal variance with G*Power v3.2.1. (25). See Supplementary Information 4 for full details of the power analysis.

Mega-analysis of subcortical brain volumes

We also performed a mega-analysis by pooling all volumetric measurements. The megaanalysis of each mean ((left+right)/2) subcortical volume was performed using the following model: Brain volume= $\beta_{age}X_{age}$ + $\beta_{sex}X_{sex}$ + $\beta_{intracranial volume}X_{intracranial volume}$ + $\beta_{diagnosis}X_{diagnosis}$ + $\beta_{cohort1}X_{cohort1}$ +...+ $\beta_{cohort35}X_{cohort35}$ + ϵ . Similar to the meta-analysis,

several covariates of interest were investigated using this regression model. Results were considered significant if they exceeded the Bonferroni corrected P-value threshold 5.6×10^{-3} .

Results

We included data of 25 adult cohorts and 10 pediatric cohorts. The *adult* meta- and megaanalysis contained 1,495 OCD patients and 1,472 controls and the *pediatric* meta- and megaanalysis contained 335 OCD patients and 287 controls. An overview of the number of participants included per cohort is given in Table 1. Supplementary Information 5 describes which sites were included in the analyses regarding the clinical characteristics, and what was considered a sufficient amount of data.

Meta-analysis

OCD patients versus healthy controls

Adult comparison—Results from the analysis comparing all adult OCD patients (N=1,495) to all adult controls (N=1,472) across nine regions of interest volumes are provided in Figure 1a and Table 3. Compared to controls, adult OCD patients showed significantly smaller hippocampal volume (Cohen's d [95% confidence interval]: d=-0.13 [-0.23, -0.04]; P-value= 5.08×10^{-3} , % difference -2.80) and larger pallidum volume (d= +0.16 [0.06, 0.26]; P-value= 1.60×10^{-3} , % difference 3.16). No significant diagnosis-by-sex or diagnosis-by-age interaction effect for any of the subcortical volumes was observed.

Pediatric comparison—None of the subcortical volumes was significantly different between pediatric OCD cases (N=335) and controls (N=287) after Bonferroni correction (Supplementary Table 2).

Influence of medication on subcortical volume

Adult comparisons—Compared to controls, *medicated* OCD patients (N=654) showed larger lateral ventricles (d=+0.24 [0.08, 0.41]; P-value= 2.95×10^{-3} , % difference 2.97) and a larger pallidum volume (d= +0.29 [0.16, 0.42]; P-value= 1.20×10^{-5} , % difference 4.38) as well as a smaller hippocampal volume (d=- 0.29 [-0.43, -0.16]; P-value= 2.39×10^{-5} , % difference -4.18). We did not detect any significant differences between *unmedicated* OCD patients (N=821) and healthy controls, nor between *medicated* OCD patients and *unmedicated* OCD patients. See Supplementary Table 3a–c for full meta-analytic details regarding medication influence on the adult comparisons.

Pediatric comparisons—Figure 1b and Table 4 show that the *unmedicated* pediatric OCD patients (N=159), compared with controls, had larger thalamic volume (d= +0.38 [0.14, 0.63]; P-value= 2.09×10^{-3} , % difference 3.08). Further, we found smaller nucleus accumbens volume in *medicated* pediatric OCD patients (N=170) compared with controls (d= -0.32 [-0.54, -0.09]; P-value= 5.25×10^{-3} , % difference -2.79). No significant differences were detected between *medicated* and *unmedicated* pediatric OCD patients (Supplementary Table 4a–b).

Influence of comorbid MDD on subcortical volume in adult OCD

Adult comparisons—Supplementary Table 5a–c shows that compared to controls, OCD patients with a comorbid lifetime diagnosis of depression (N=325) had smaller hippocampal volume (d=-0.27 [-0.43, -0.12]; P-value= 6.43×10^{-4} , % difference -3.41) and larger lateral ventricles (d= +0.29 [0.14, 0.44]; P-value= 1.16×10^{-4} , % difference 3.85). OCD patients without a comorbid lifetime diagnosis of MDD (N=1,041) present larger pallidum volume (d=+0.19 [0.09, 0.29]; P-value= 1.56×10^{-4} , % difference 3.78) and smaller hippocampal volume (d=-0.16 [-0.25, -0.06]; P-value= 1.04×10^{-3} , % difference -3.28). No significant subcortical volume differences were observed between OCD patients with and without a comorbid lifetime depression.

Pediatric comparisons—Too few pediatric samples had sufficient numbers of subjects with MDD to permit analyses (Supplementary Information 5).

Influence of a comorbid anxiety disorder on subcortical volume

Adult comparisons—Compared to controls, patients without a comorbid anxiety diagnosis (N=1002) showed bigger pallidum volume (d= +0.17 [0.05, 0.28]; P-value= 4.70×10^{-3} , % difference 2.83) and smaller hippocampal volume (d= -0.20 [-0.30, -0.10]; P-value= 1.51×10^{-4} , % difference -3.79). We did not detect any significant differences between OCD patients with a comorbid anxiety diagnosis (N=291) and controls. The comparison between OCD patients with and without a comorbid anxiety diagnosis showed that OCD patients with a comorbid lifetime anxiety diagnosis had larger intracranial volume (d= +0.41 [0.12, 0.70]; P-value= 5.08×10^{-3} , % difference 2.80) (Supplementary Table 6a–c).

Pediatric comparisons—Too few pediatric samples had sufficient numbers of subjects with comorbid anxiety disorders to permit analyses (Supplementary Information 5).

Influence of symptom dimensions on subcortical volume

Adult comparisons—Regression analyses within OCD patients on symptom dimensions (N=1,151) showed no association of the presence of a particular symptom dimension and volume of any of the subcortical volumes.

Pediatric comparisons—Insufficient data on the symptom dimensions was available to perform meta-analyses (Supplementary Information 5).

Influence of age of onset and disease duration on subcortical volume

Stratified analyses (Supplementary Table 7a–c) show that adult OCD patients with an early disease-onset (N=626) exhibited larger pallidum volumes (d=+0.25 [0.12, 0.38]; P-value= 2.30×10^{-4} , % difference 3.68) and that patients with a late disease-onset (N=794) exhibited smaller hippocampal volume (d=-0.18 [-0.29, -0.08]; P-value= 7.87×10^{-4} , % difference -3.36) than controls. No significant differences in subcortical brain volume were found when comparing early onset with late-onset adult OCD patients. In addition, we did not observe any significant association between age of onset nor disease duration - as continuous variables - and subcortical volumes in the *adult* (N=1420) nor *pediatric* (N=285) OCD group (Supplementary Table 8a–b and 9a–b).

Association of disease severity with subcortical volumes

We did not detect any significant associations, neither in *adult* (N=1,455) nor in *pediatric* (N=328) OCD patients, between disease severity and subcortical volumes (Supplementary Table 10 and 11).

Moderator analyses

Mean age of each sample and field strength did not moderate case-control differences in subcortical volumes in the *adult* or *pediatric* meta-analysis. The percentage of patients using an SSRI or antipsychotic medication of each adult sample did not moderate the subcortical volume differences (Supplementary 12 and 13).

Mega-analysis

Adult OCD

Results of the *adult* mega-analysis are shown in Supplementary Table 14. Overall the results of the mega-analysis yielded similar results as the meta-analysis. The case-control mega-analysis indicated a larger pallidum volume (β =0.06; P-value= 1.02×10^{-4}) and smaller hippocampal volume (β =-0.05; P-value= 4.66×10^{-4}). The pallidum (β =0.09; P-value= 5.50×10^{-7}) and hippocampus (β =-0.09; P-value= 1.99×10^{-7}) effects were more pronounced in the comparison between medicated OCD patients and controls. Early-onset patients showed larger pallidum volumes (β =0.08; P-value= 8.42×10^{-6}) than controls. Patients with a late disease-onset (β =-0.06; P-value= 8.23×10^{-5}) and patients with a comorbid depression (β =-0.07; P-value= 2.75×10^{-4}) presented smaller hippocampal volumes compared to controls.

Pediatric OCD

Results of the *pediatric* mega-analysis are shown in Supplementary Table 15. Pediatric OCD patients, compared with controls, have a larger thalamus volume (β =0.08; P-value= 5.47×10⁻³). The thalamic effect was more pronounced in patients without a comorbid anxiety disorder (β =0.11; P-value= 9.60×10⁻⁴) and in patients without a comorbid depression (β =0.09; P-value= 2.16×10⁻³).

Discussion

This worldwide collaborative analysis identified distinct subcortical volume alterations in pediatric and adult OCD. The adult meta- and mega-analyses were consistent and results showed that, compared with controls, adult OCD patients had significantly smaller hippocampal and larger pallidum volumes. Both findings were more pronounced in the subsample of medicated OCD patients versus controls. Furthermore, the smaller hippocampal volume seemed to be driven, at least partly, by the OCD patients with comorbid depression and late disease-onset. Indeed jackknife resampling showed a robust pallidum effect and a hippocampal effect dependent on site characteristics (data not shown). The larger pallidum finding was more pronounced in the adult OCD patients with an early disease-onset. The pediatric mega-analysis showed larger thalamus in OCD based on the main group comparison, whereas the meta-analysis only showed this in unmedicated

pediatric OCD patients compared with controls. The pediatric mega-analysis also suggests that larger thalamic volume in pediatric OCD patients is specific to those without comorbid anxiety or depression. The finding of a larger thalamic volume in pediatric OCD is in line with some previous research in pediatric OCD patients (18; 26). Notably, Gilbert et al. (18) suggested a normalizing effect of pharmacological treatments on thalamic volume in pediatric OCD. The current *adult* meta- and mega-analyses did not reveal group differences in thalamic volume, consistent with the most recent meta-analyses of OCD (11–13). The only meta-analytic findings of thalamic enlargement in OCD included pediatric patients (14; 19). These results provide evidence of a clear distinction in thalamic volume across pediatric and adult OCD, and suggest that an increased thalamic volume may be an early marker of the disease, unrelated to disease severity, and may be related to altered neurodevelopment. Indeed, patients with other neurodevelopmental disorders such as Tourette's syndrome (27) and ADHD (28), also present a morphologically enlarged thalamus.

Most previous research (11; 13–15; 19) did not report volumetric differences in the hippocampal complex of OCD patients. The (para)hippocampal regions are specifically vulnerable to stress-related toxic changes (29). Greater volume loss in these regions may thus be related to chronic stress and the exaggerated emotional responsiveness seen in OCD (30). The hippocampal effect in OCD patients was more pronounced in medicated patients and seemed to be driven, at least partly, by the OCD patients with a comorbid major depression (31). These two findings are probably not independent, since patients with comorbidities are often the patients who receive medication. Further, Selles et al (32) showed that a comorbid depression is associated with a late-onset of the disease. This is in line with our finding that the hippocampal effect seemed to be driven by late-onset OCD patients. Other ENIGMA disease working-groups, such as those focusing on MDD (33), schizophrenia (34), and bipolar disorder (35), also observed smaller hippocampal volume in patients, which suggests that the hippocampal abnormalities in OCD are disease non-specific, and possibly related to chronic stress and comorbid depression.

Our results suggest a key role for the pallidum in adult OCD patients. Prior meta-analyses have reported greater lenticular (i.e., putamen and pallidum) volume in OCD patients (11–14). On the contrary patients with other anxiety disorders showed decreased lenticular nucleus volume (13). Since repetitive behaviors differentiate OCD from other anxiety disorders, the increased lenticular volume in OCD may reflect these unique symptoms (13). Our analyses also suggested that the early-onset adult OCD patients drive the pallidum effect. We, therefore, hypothesize that a larger pallidum in OCD patients could be the consequence of disease chronicity. Notably, the ENIGMA-schizophrenia (34) Working-Group also observed a larger pallidum in schizophrenia patients compared to controls. Future ENIGMA research will enable cross-diagnosis analyses to further investigate common and distinct neural substrates across psychiatric disease groups.

Our analyses could not replicate findings of increased putamen and caudate nucleus volumes observed in smaller meta-analyses (11–14). Note that, these studies used different segmentation techniques. One may argue that the technique might influence findings in case of adjacent structures such as the pallidum and putamen (36). Our current observations

suggest that subcortical alterations in adult OCD may be limited to the pallidum and hippocampus rather than widespread.

This study constitutes the largest meta- and mega-analysis of subcortical brain volumes in OCD to date. Strengths of this study include the sample size (N=3,589) and inclusion of both adults and children. Another strength is our strategy that ensured great methodological homogeneity by standardizing brain segmentation techniques and statistical models across all participating samples, which increased the power to detect small effects. A similar strategy has been used in parallel by other ENIGMA working-groups (33–35). This method generates highly significant findings and allows us to systematically investigate the effects of clinical characteristics on brain alterations in OCD patients.

This study also had limitations. First, a recent study showed effects of workstation vendor and operating system version on brain volume and cortical thickness estimates (37). Indeed the individual sites did differ in operating system and workstation vendor. Additionally, Schoemaker et al. 2016 showed that FreeSurfer tends to overestimate subcortical volumes in children (38). However, this non-systematic error probably affects patients and controls equally. Second, although we have pooled an enormous amount of data, subjects with comorbidities and subjects categorized to each specific symptom dimension especially in the pediatric datasets were still limited. However, the key variable, i.e., the CY-BOCS score, the gold standard clinical instrument in pediatric OCD research, was present in all subjects. Third, the structure labelled as "thalamus" by FreeSurfer's segmentation algorithm may contain both white matter and grey matter. We, therefore, cannot conclude that this thalamic enlargement involves grey matter enlargement solely. Fourth, our findings indicate medication effects. It should be noted, however, that only current medication status has been taken into consideration. It is difficult to attribute the results to direct effects of the medication itself. Furthermore, the range of medications that are generally prescribed to OCD patients is very broad. Although we have tested whether different types of medication influenced our findings, we were not able to calculate relative doses of different medication types and analyze medication effects in a more fine-grained fashion due to the retrospective nature of our study. Thus we need to interpret these findings with caution.

Despite these limitations, results of this first initiative of the ENIGMA-OCD Working-Group clearly indicate a key role of the thalamus and pallidum in the pathophysiology of pediatric and adult OCD, respectively. Our findings suggest a different pattern of subcortical abnormalities in pediatric and adult OCD patients, which is in line with the developmental nature of OCD and neuroplastic changes during the course of the disease. The current study is a first step toward identifying robust brain volume alterations in OCD patients. An important next step is to apply similar methods in order to identify robust cortical imaging markers on cortical thickness and surface area measures associated with OCD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Premika S.W. Boedhoe, M.Sc.^{1,2,3}, Lianne Schmaal, Ph.D.^{1,3}, Yoshinari Abe, M.D.⁴, Stephanie H. Ameis, M.D.⁵, Paul D. Arnold, M.D., Ph.D.⁶, Marcelo C. Batistuzzo, Ph.D.⁷, Francesco Benedetti, M.D.⁸, Jan C. Beucke, Ph.D.⁹, Irene Bollettini, Psy.D⁸, Anushree Bose, M.A.¹⁰, Silvia Brem, Ph.D.¹¹, Anna Calvo, M.Sc.¹², Yugi Cheng, Ph.D.¹³, Kang Ik K. Cho, B.Sc.¹⁴, Sara Dallaspezia, M.D.⁸, Damiaan Denys, M.D., Ph.D.^{15,16}, Kate D. Fitzgerald, M.D.¹⁷, Jean-Paul Fouche, M.Sc.^{18,19}, Monica Giménez, Ph.D.^{20,21}, Patricia Gruner, Ph.D.²², Gregory L. Hanna, M.D.¹⁷, Derrek P. Hibar, Ph.D.²³, Marcelo Q. Hoexter, M.D., Ph.D.⁷, Chaim Huyser, M.D., Ph.D.^{24,25}, Keisuke Ikari, M.D.²⁶, Neda Jahanshad, Ph.D.²³, Norbert Kathmann, Ph.D.⁹, Christian Kaufmann, Ph.D.⁹, Kathrin Koch, Ph.D.^{27,28}, Jun Soo Kwon, M.D., Ph.D. ^{14,29}, Luisa Lazaro, M.D., Ph.D.^{21,30,31,32}, Yanni Liu, Ph.D.¹⁷, Christine Lochner, Ph.D.³³, Rachel Marsh, Ph.D.^{34,35}, Ignacio Martínez-Zalacaín, M.Sc.²⁰, David Mataix-Cols, Ph.D.³⁶, José M. Menchón, M.D., Ph.D.^{20,21,37}, Luciano Minuzzii, M.D., Ph.D.³⁸, Takashi Nakamae, M.D., Ph.D.^{4,39}, Tomohiro Nakao, M.D., Ph.D.²⁶, Janardhanan C. Narayanaswamy, M.D.¹⁰, Fabrizio Piras, Ph.D.⁴⁰, Federica Piras, Ph.D.⁴⁰, Christopher Pittenger, M.D., Ph.D.²², Y.C. Janardhan Reddy, M.D.¹⁰, Joao R. Sato, Ph.D.⁴¹, H. Blair Simpson, M.D., Ph.D.^{34,42}, Noam Soreni, M.D.⁴³, Carles Soriano-Mas, Ph.D.^{20,21,44}, Gianfranco Spalletta, M.D., Ph.D.^{40,45}, Michael C. Stevens, Ph.D.^{46,47}, Philip R. Szeszko, Ph.D.^{48,49}, David F. Tolin, Ph.D.^{46,50}, Ganesan Venkatasubramanian, M.D., Ph.D.¹⁰, Susanne Walitza, M.D., M.Sc.¹¹, Zhen Wang, M.D., Ph.D.^{51,52}, Guido A. van Wingen, Ph.D.¹⁵, Jian Xu, Ph.D.⁵³, Xiufeng Xu, M.D.¹³, Je-Yeon Yun, M.D., Ph.D.²⁹, Qing Zhao, M.D.⁵¹, ENIGMA-OCD Working-Group*, Paul M. Thompson, Ph.D.²³, Dan J. Stein, M.D., Ph.D.³³, and Odile A. van den Heuvel, M.D., Ph.D.^{1,2,3}

Affiliations

¹Department of Psychiatry, VU university medical center, Amsterdam, The Netherlands ²Department of Anatomy & Neurosciences, VU university medical center, Amsterdam, The Netherlands ³Neuroscience Campus Amsterdam, Free University/VU university medical center, Amsterdam, The Netherlands ⁴Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan ⁵Centre for Addiction and Mental Health and Hospital for Sick Children, Toronto, Ontario, Canada ⁶Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada ⁷Department of Psychiatry, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil ⁸Clinical Research Group Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy ⁹Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany ¹⁰Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry National Institute of Mental Health & Neurosciences, Bangalore, India ¹¹Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland ¹²Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques

August Pi i Sunyer (IDIBAPS), Barcelona, Spain ¹³Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China ¹⁴Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea ¹⁵Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ¹⁶Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands ¹⁷Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, U.S.A ¹⁸Department of Psychiatry, University of Cape Town, Cape Town, South Africa ¹⁹Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa ²⁰Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain ²¹entro de Investigación Biomèdica en Red de Salud Mental (CIBERSAM), Barcelona, Spain ²²Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, U.S.A ²³Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, California, U.S.A²⁴De Bascule, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands ²⁵Department of Child and Adolescent Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ²⁶Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ²⁷Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany ²⁸TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany ²⁹Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea ³⁰Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain ³¹Institut d'Investigacions Biomèdiques August Pi i Sunver (IDIBAPS), Barcelona, Spain ³²Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain ³³SU/UCT MRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa ³⁴Columbia University Medical College, Columbia University, New York, NY, U.S.A ³⁵The Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, U.S.A ³⁶Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ³⁷Department of Clinical Sciences, University of Barcelona, Barcelona, Spain ³⁸Mood Disorders Clinic, St. Joseph's HealthCare, Hamilton, Ontario, Canada ³⁹Department of Neural Computation for Decision-Making, ATR Brain Information Communiciation Research Laboratory Group, Kyoto, Japan ⁴⁰Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy ⁴¹Center of Mathematics, Computation and Cognition, Universidade Federal Do ABC, Santo Andre, Brazil ⁴²Center for OCD and Related Disorders, New York State Psychiatric Institute, New York, NY, U.S.A ⁴³Anxiety Treatment and Research Center, St. Joseph's HealthCare, Hamilton, Ontario, Canada ⁴⁴Department of Psychobiology and Methodology of Health

Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain ⁴⁵Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, U.S.A ⁴⁶Yale University School of Medicine, New Haven, Connecticut, U.S.A ⁴⁷Clinical Neuroscience and Development Laboratory, Olin Neuropsychiatry Research Center, Hartford, Connecticut, U.S.A ⁴⁸Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A ⁴⁹James J. Peters VA Medical Center, Bronx, NY, U.S.A ⁵⁰Institute of Living/Hartford Hospital, Hartford, Connecticut, U.S.A ⁵¹Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, Shanghai, PR China ⁵²Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China ⁵³Department of Internal Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China

Acknowledgments

Acknowledgements, funding sources and conflict of interests can be found in Supplementary Information 6.

Dan J. Stein has received research grants and/or consultancy honoraria from AMBRF, Biocodex, Cipla, Lundbeck, National Responsible Gambling Foundation, Novartis, Servier, and Sun in the past 3 years.

The ENIGMA-Obsessive Compulsive Disorder Working-Group gratefully acknowledges support from the NIH BD2K award U54 EB020403-02 (PI: Dr. Thompson). Supported by the Neuroscience Campus Amsterdam (NCA), IPB-grant to Dr. Schmaal & Dr. van den Heuvel; the Hartmann Muller Foundation (No. 1460 to Dr. Brem); the International Obsessive-Compulsive Disorder Foundation (IOCDF) Research Award to Dr. Gruner; the Deutsche Forschungsgemeinschaft (DFG) (KO 3744/2-1 to Dr. Koch); the Marató TV3 Foundation grants 01/2010 and 091710 to Dr. Lazaro; the Wellcome Trust and a pump priming grant from the South London and Maudsley Trust, London, UK (Project grant no. 064846) to Dr. Mataix-Cols; the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT KAKENHI No. 26461753 to Dr. Nakamae); the Government of India grants to Prof. Y.C. Janardhan Reddy (SR/S0/HS/0016/2011) and Dr. Janardhanan C. Narayanaswamy (DST INSPIRE faculty grant -IFA12-LSBM-26) of the Department of Science and Technology; the Government of India grants to Prof. Y.C. Janardhan Reddy (No.BT/PR13334/Med/30/259/2009) and Dr. Janardhanan C. Narayanaswamy (BT/06/ IYBA/2012) of the Department of Biotechnology; the Wellcome-DBT India Alliance grant to Dr. Ganesan Venkatasubramanian (500236/Z/11/Z); the Carlos III Health Institute (CP10/00604, PI13/00918, PI13/01958, PI14/00413/PI040829); FEDER funds/European Regional Development Fund (ERDF), AGAUR (2014 SGR 1672 and 2014 SGR 489); a "Miguel Servet" contract (CP10/00604) from the Carlos III Health Institute to Dr. Soriano-Mas; the Italian Ministry of Health (RC10-11-12-13-14-15A to Dr. Spalletta); the Swiss National Science Foundation (No. 320030_130237 to Dr. Walitza); and the Netherlands Organization for Scientific Research (NWO VIDI 917-15-318 to Dr. van Wingen).

Further we wish to acknowledge Juliane Ball, Ph.D., Elizabeth Buimer, B.Sc., Kenji Fukui, M.D., Ph.D., Jin Narumoto, M.D., Ph.D., Seiji Nishida, M.D., Ph.D., Reto Iannaccone Ph.D., Yuki Sakai, M.D., Ph.D., Tobias U. Hauser, Ph.D., Anri Watanabe, M.D., and Kei Yamada, M.D., Ph.D.

References

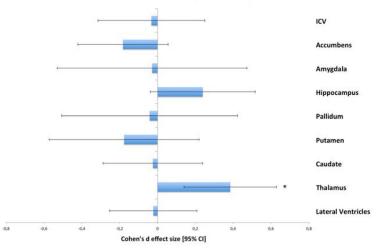
- Ruscio M, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010; 15:53–63. [PubMed: 18725912]
- Wittchen HU, Jacobi F. Size and burden of mental disorders in Europe A critical review and appraisal of 27 studies. Eur Neuropsychopharmacol. 2005; 15:357–376. [PubMed: 15961293]
- Nestadt G, Samuels J, Bienvenu O, Liang K, LaBuda M, Walkup J, Grados M, Hoehn-Saric R. A Family Study of Obsessive-compulsive Disorder. Arch Gen Psychiatry. 2000; 57:358–363. [PubMed: 10768697]

- Stewart SE, Geller D, Jenike M, Pauls D, Shaw D, Mullin B, Faraone SV. Long-term outcome of pediatric obsessive-compulsive disorder: a meta-analysis and qualitative review of the literature. Acta Psychiatr Scand. 2004; 110:4–13. [PubMed: 15180774]
- Van den Heuvel, Oa, van Wingen, G., Soriano-Mas, C., Alonso, P., Chamberlain, SR., Nakamae, T., Denys, D., Goudraiaan, aE, Veltman, DJ. Brain Circuitry of Compulsivity [Internet]. Eur Neuropsychopharmacol. 2015:1–18. In Press. [PubMed: 25523882]
- Milad MR, Rauch SL. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012; 16:43–51. [PubMed: 22138231]
- Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchón JM, Deus J, Vallejo J. Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry. 2004; 61:720–730. [PubMed: 15237084]
- Gilbert AR, Keshavan MS, Diwadkar V, Nutche J, MacMaster F, Easter PC, Buhagiar CJ, Rosenberg DR. Gray matter differences between pediatric obsessive-compulsive disorder patients and high-risk siblings: A preliminary voxel-based morphometry study. Neurosci Lett. 2008; 435:45–50. [PubMed: 18314272]
- Szeszko PR, Christian C, MacMaster F, Lencz T, Mirza Y, Taormina SP, Easter P, Rose M, Michalopoulou G, Rosenberg DR. Gray matter structural alterations in psychotropic drug-naive pediatric obsessive-compulsive disorder: An optimized voxel-based morphometry study. Am J Psychiatry. 2008; 165:1299–1307. [PubMed: 18413702]
- Zarei M, Mataix-Cols D, Heyman I, Hough M, Doherty J, Burge L, Winmill L, Nijhawan S, Matthews PM, James A. Changes in gray matter volume and white matter microstructure in adolescents with obsessive-compulsive disorder. Biol Psychiatry. 2011; 70:1083–1090. [PubMed: 21903200]
- Peng Z, Lui SSY, Cheung EFC, Jin Z, Miao GD, Jing J, Chan RCK. Brain structural abnormalities in obsessive-compulsive disorder: Converging evidence from white matter and grey matter. Asian J Psychiatr. 2012; 5:290–296. [PubMed: 23174435]
- Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry. 2009; 195:393–402. [PubMed: 19880927]
- Radua J, van den Heuvel OA, Surguladze S, Mataix-Cols D. Meta-analytical comparison of voxelbased morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch Gen Psychiatry. 2010; 67:701–711. [PubMed: 20603451]
- Rotge J-Y, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, Aouizerate B, Burbaud P. Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation metaanalysis. Neuropsychopharmacology. 2010; 35:686–691. [PubMed: 19890260]
- 15. De Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchón JM, Stein DJ, Fouche JP, Soriano-Mas C, Sato JR, Hoexter MQ, Denys D, Nakamae T, Nishida S, Kwon JS, Jang JH, Busatto GF, Cardoner N, Cath DC, Fukui K, Jung WH, Kim SN, Miguel EC, Narumoto J, Phillips ML, Pujol J, Remijnse PL, Sakai Y, Shin NY, Yamada K, Veltman DJ, Van Den Heuvel Oa. Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry. 2014; 171:340–349. [PubMed: 24220667]
- Atmaca M, Yildirimb H, Ozdemirb H, Aydinb A, Tezcana E, Ozlera S. Volumetric MRI assessment of brain regions in patients with refractory obsessive-compulsive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry. 2006; 30:1051–1057.
- Atmaca M, Yildirim H, Ozdemir H, Tezcan E, Kursad Poyraz a. Volumetric MRI study of key brain regions implicated in obsessive-compulsive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry. 2007; 31:46–52.
- Gilbert R, Moore GJ, Keshavan MS, Paulson La, Narula V, Mac Master FP, Stewart CM, Rosenberg DR. Decrease in thalamic volumes of pediatric patients with obsessive-compulsive disorder who are taking paroxetine. Arch Gen Psychiatry. 2000; 57:449–456. [PubMed: 10807485]
- Rotge J-Y, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B. Meta-analysis of brain volume changes in obsessive-compulsive disorder. [Internet]. Biol Psychiatry. 2009; 65:75–83. [PubMed: 18718575]

- Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR, Lewis DV, LaBar KS, Styner M, McCarthy G. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage. 2009; 45:855–66. [PubMed: 19162198]
- 21. Thompson PM, Andreassen Oa, Arias-Vasquez A, Bearden CE, Boedhoe PS, Brouwer RM, Buckner RL, Buitelaar JK, Bulaeva KB, Cannon DM, Cohen Ra, Conrod PJ, Dale AM, Deary IJ, Dennis EL, de Reus Ma, Desrivieres S, Dima D, Donohoe G, Fisher SE, Fouche J-P, Francks C, Frangou S, Franke B, Ganjgahi H, Garavan H, Glahn DC, Grabe HJ, Guadalupe T, Gutman Ba, Hashimoto R, Hibar DP, Holland D, Hoogman M, Pol HEH, Hosten N, Jahanshad N, Kelly S, Kochunov P, Kremen WS, Lee PH, Mackey S, Martin NG, Mazoyer B, McDonald C, Medland SE, Morey Ra, Nichols TE, Paus T, Pausova Z, Schmaal L, Schumann G, Shen L, Sisodiya SM, Smit DJa, Smoller JW, Stein DJ, Stein JL, Toro R, Turner Ja, van den Heuvel M, van den Heuvel Oa, van Erp TGM, van Rooij D, Veltman DJ, Walter H, Wang Y, Wardlaw JM, Whelan CD, Wright MJ, Ye J. ENIGMA and the Individual: Predicting Factors that Affect the Brain in 35 Countries Worldwide. Neuroimage. 2015 In Press.
- 22. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron. 2002; 33:341–355. [PubMed: 11832223]
- 23. Scahill L, Riddle Ma, McSwiggin-Hardin M, Ort SI, King Ra, Goodman WK, Cicchetti D, Leckman JF. Children's Yale-Brown Obsessive Compulsive Scale: reliability and validity. J Am Acad Child Adolesc Psychiatry. 1997; 36:844–852. [PubMed: 9183141]
- Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney DS. The Yale-Brown Obsessive. Arch Gen Psychiatry. 1989; 48:1006–1011.
- 25. Erdfelder E, Faul F, Buchner A. GPOWER: A general power analysis program. Behav Res Methods, Instruments, Comput. 1996; 28:1–11.
- Rosenberg DR, Benazon NR, Gilbert A, Sullivan A, Moore GJ. Thalamic volume in pediatric obsessive-compulsive disorder patients before and after cognitive behavioral therapy [Internet]. Biol Psychiatry. 48:294–300.
- Miller MB. Enlargement of thalamic nuclei in tourette syndrome. Arch Gen Psychiatry. 2010; 67:955–964. [PubMed: 20819989]
- Ivanov I, Bansal R, Hao X, Zhu H, Kellendonk C, Miller L, Sanchez-Pena J, Miller AM, Chakravarty MM, Klahr K, Durkin K, Greenhill LL, Peterson BS. Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am J Psychiatry. 2010; 167:397–408. [PubMed: 20123910]
- Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR. Stress-Induced Grey Matter Loss Determined by MRI Is Primarily Due to Loss of Dendrites and Their Synapses. Mol Neurobiol. 2012:1–17.
- Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder. The orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008; 32:525–549. [PubMed: 18061263]
- Cardoner N, Soriano-Mas C, Pujol J, Alonso P, Harrison BJ, Deus J, Hernández-Ribas R, Menchón JM, Vallejo J. Brain structural correlates of depressive comorbidity in obsessive-compulsive disorder. Neuroimage. 2007; 38:413–421. [PubMed: 17889563]
- Selles RR, Storch E, Lewin AB. Variations in Symptom Prevalence and Clinical Correlates in Younger Versus Older Youth with Obsessive–Compulsive Disorder [Internet]. Child Psychiatry Hum Dev. 2014; 45:666–674. [PubMed: 24549726]
- 33. Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N, Loehrer E, Tiemeier H, Hofman a, Niessen WJ, Vernooij MW, Ikram Ma, Wittfeld K, Grabe HJ, Block a, Hegenscheid K, Völzke H, Hoehn D, Czisch M, Lagopoulos J, Hatton SN, Hickie IB, Goya-Maldonado R, Krämer B, Gruber O, Couvy-Duchesne B, Rentería ME, Strike LT, Mills NT, de Zubicaray GI, McMahon KL, Medland SE, Martin NG, Gillespie Na, Wright MJ, Hall GB, MacQueen GM, Frey EM, Carballedo a, van Velzen LS, van Tol MJ, van der Wee NJ, Veer IM, Walter H, Schnell K, Schramm E, Normann C, Schoepf D, Konrad C, Zurowski B, Nickson T, McIntosh aM, Papmeyer M, Whalley HC, Sussmann JE, Godlewska BR, Cowen PJ, Fischer FH, Rose M, Penninx BWJH,

Thompson PM, Hibar DP. Subcortical brain alterations in major depressive disorder. findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2015:1–7. [PubMed: 25648202]

- 34. Van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen Oa, Agartz I, Westlye LT, Haukvik UK, Dale aM, Melle I, Hartberg CB, Gruber O, Kraemer B, Zilles D, Donohoe G, Kelly S, McDonald C, Morris DW, Cannon DM, Corvin a, Machielsen MWJ, Koenders L, de Haan L, Veltman DJ, Satterthwaite TD, Wolf DH, Gur RC, Gur RE, Potkin SG, Mathalon DH, Mueller Ba, Preda a, Macciardi F, Ehrlich S, Walton E, Hass J, Calhoun VD, Bockholt HJ, Sponheim SR, Shoemaker JM, van Haren NEM, Pol HEH, Ophoff Ra, Kahn RS, Roiz-Santiañez R, Crespo-Facorro B, Wang L, Alpert KI, Jönsson EG, Dimitrova R, Bois C, Whalley HC, McIntosh aM, Lawrie SM, Hashimoto R, Thompson PM, Turner Ja. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2015:1–7. [PubMed: 25648202]
- 35. Hibar D. ENIGMA Bipolar disorder working group findings from 1, 747 cases and 2, 615 controls. 2014; 3:66–68.
- Grimm O, Pohlack S, Cacciaglia R, Plichta M, Demirakca T, Flor H. Amygdala and hippocampal volume. A comparison between manual segmentation, Freesurfer and VBM. J Neurosci Methods. 2015; 253:254–261. [PubMed: 26057114]
- 37. Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J, Marcelis M. The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLoS One. 2012; 7:e38234. [PubMed: 22675527]
- Schoemaker D, Buss C, Head K, Sandman Ca, Davis EP, Chakravarty MM, Gauthier S, Pruessner J. Hippocampus and amygdala volumes from magnetic resonance images in children. Assessing accuracy of FreeSurfer and FSL against manual segmentation. Neuroimage. 2016; 129:1–14. [PubMed: 26824403]


Subcortical volume differences OCD patients versus controls

* Asterisk represents a significant effect P<5.6 × 10⁻³. Abbreviations: Obsessive Compulsive Disorder (OCD), Confidence Interval (CI), Intracranial Volume (ICV).

Figure 1a

Subcortical volume differences unmedicated pediatric OCD patients versus controls

* Asterisk represents a significant effect P<5.6 × 10⁻³. Abbreviations: Obsessive Compulsive Disorder (OCD), Confidence Interval (CI), Intracranial Volume (ICV).

Figure 1.

(a) Cohen's d-effect sizes 95% CI for differences in subcortical brain volumes between adult OCD patients and healthy controls. (b) Cohen's d-effect sizes 95% CI for differences in subcortical brain volumes between unmedicated pediatric OCD patients and pediatric healthy controls. Effect sizes were corrected for age, sex, and intracranial volume.

Author Manuscript

Author Manuscript

Table 1

ENIGMA-OCD Working-Group Demographics (age in years), sex, and OCD patients-control breakdown for participating sites

Study #	Site PI	Site, Country	Field Strength	Age Controls	ntrols	Age OCD patients	patients	% Male Controls	% Male OCD	Total N Controls	Total N OCD	Total N
				Mean	SD	Mean	SD					
1	Benedetti	Milan, ITA	3T	34.0	12.3	35.0	10.4	73	71	62	99	128
2	Beucke	Berlin, GER	1.5T	31.9	9.5	32.4	9.7	49	50	104	92	196
З	Cheng	Kunming, CHN I	1.5T	31.4	8.0	30.6	10.2	33	38	40	24	64
4		Kunming, CHN II	3T	26.2	4.2	32.9	10.6	28	55	95	56	151
5	Denys	Amsterdam, NLD	3T	39.6	10.3	33.8	9.6	44	21	25	24	49
9	van den Heuvel	Amsterdam, NLD I	1.5T	31.6	7.7	33.5	9.2	39	30	49	54	103
7		Amsterdam, NLD II	3T	39.6	11.4	38.3	10.1	47	48	38	42	80
8	Hoexter	Sao Paulo, BRA I	1.5T	27.6	7.8	31.5	10.1	35	44	37	50	87
6	Koch	Munchen, GER	3T	30.2	9.0	31.1	9.7	40	33	75	72	147
10	Kwon	Seoul, KOR I	1.5T	24.0	3.6	24.8	5.4	56	76	104	45	149
11		Seoul, KOR II	1.5T	24.9	5.3	28.8	6.8	64	56	45	34	62
12		Seoul, KOR III	3T	26.3	6.9	26.3	6.8	61	61	89	06	179
13	Mataix-Cols	Stockholm, SWE	1.5T	36.1	11.3	38.7	10.9	36	43	33	44	LT
14	Menchon	Barcelona, ESP	1.5T	33.1	10.2	34.8	9.2	45	50	66	117	183
15	Nakamae	Kyoto, JPN I	1.5T	30.3	7.8	31.7	9.3	52	49	48	82	130
16		Kyoto, JPN II	3T	30.0	7.4	33.3	9.7	48	35	42	34	76
17	Nakao	Fukuoka, JPN	3T	39.3	13.0	36.6	10.0	39	42	41	81	122
18	Reddy	Bangalore, IND I	1.5T	27.2	6.4	27.5	6.3	74	59	46	44	06
19		Bangalore, IND II	3T	26.3	5.0	29.6	8.0	62	52	156	208	364
20	Simpson	New York, USA	3T	28.3	8.0	29.6	8.0	52	52	33	33	99
21	Spalletta	Rome, ITA	3T	36.5	10.5	36.7	11.6	59	67	128	84	212
22	Stein	Cape Town, ZAF	3T	30.6	10.8	30.7	10.8	38	50	29	22	51
23	Tolin	Conneticut, USA	3T	48.0	11.9	32.1	12.0	22	67	32	27	59
24	Walitza	Zurich, CHE I	3T	32.9	9.2	31.2	<i>T.T</i>	28	47	18	17	35
25	Wang	Shanghai, CHN	3T	26.2	7.5	29.6	9.3	54	57	37	53	06
								adult samples combined	bined	1472	1495	2967
	Anorld	Ontario, CAN	3T	12.3	2.2	12.9	2.4	54	58	13	40	53

$\mathbf{\Sigma}$
_
<u> </u>
=
_
-
\mathbf{O}
\sim
<
0
a
a
lan
lanu
7
Ĕ
7
SDI
Ĕ
NUSC
NUSCL
nuscri
NUSCL
nuscri

Boedhoe et al.

Mean SD Mean SD Mean SD 2 Fitzgerald Micigan, USA 3T 129 29 139 26 49 67 74 141 3 Gruner Conneticut, USA 3T 129 29 139 26 57 69 67 74 141 4 Hoster Sao Paulo, BRA II 3T 120 23 57 57 57 53 56<	Study #	Site PI	Site, Country	Field Strength	Age Controls	ıtrols	Age OCD patients	atients	% Male Controls	% Male OCD	Total N Controls	Total N OCD	Total N
Fitzgerald Michigan, USA 3T 12.9 2.9 13.9 2.6 5.2 4.9 6.7 74 Gruner Conneticut, USA 3T 14.2 2.2 14.3 2.1 52 57 57 53 23 Hoexter Sao Paulo, BRA II 3T 12.0 2.4 12.6 2.5 57 61 28 23 Huyser Amsterdam, NLD 3T 13.3 2.5 13.6 2.5 36 37 28 27 27 Huyser Barcelona, ESP II 1.5T 14.6 2.3 14.6 2.0 47 58 32 31 Reddy Barcelona, ESP II 1.5T 14.6 2.0 50 47 58 32 31 Reddy Barcelona, ESP II 3T 14.6 2.0 50 56 14 58 58 Reddy Barcelona, ESP II 3T 14.6 2.0 50 56 14 58 Storiet Omatio.CAN 3T 14.6 2.0 50 <td< th=""><th></th><th></th><th></th><th></th><th>Mean</th><th>SD</th><th>Mean</th><th>SD</th><th></th><th></th><th></th><th></th><th></th></td<>					Mean	SD	Mean	SD					
Grune Conneticut, USA 3T 14.2 2.2 14.3 2.1 5.2 5.7 5.7 5.3	2	Fitzgerald	Michigan, USA	3T	12.9	2.9	13.9	2.6	52	49	67	74	141
Hoxter Sao Paulo, BRA II 3T 120 24 12.6 25 57 61 28 28 Huyser Amsterdam, NLD 3T 13.3 25 13.6 25 36 37 25 27 Lazaro Barcelona, ESP I 1.5T 14.6 2.0 47 58 32 31 Barcelona, ESP II 3T 14.6 2.0 47 58 32 31 Barcelona, ESP II 3T 14.6 2.0 47 58 32 31 Roddy Bangalore, IND III 3T 14.6 2.0 50 40 58 Soreni Ontario, CAN 3T 14.6 2.1 14.6 50 50 60 44 58 Walitza Ontario, CAN 3T 14.6 2.1 14.6 50 50 60 44 58 Walitza Zurich, CHE II 3T 14.6 2.5 50 60 21	3	Gruner	Conneticut, USA	3T	14.2	2.2	14.3	2.1	52	57	23	23	46
Huyser Amsterdam, NLD 3T 13.3 2.5 13.6 2.5 3.6 3.7 2.5 2.7 Lazaro Barcelona, ESP1 1.5T 14.6 2.3 14.6 2.0 4.7 58 32 31 Barcelona, ESP1 3T 14.6 2.0 50 60 44 58 Reddy Bangore, IND III 3T 13.1 2.1 14.6 2.0 50 60 44 58 Soreni Ontario, CAN 3T 13.1 2.1 14.6 2.0 50 56 14 58 Walitza Ontario, CAN 3T 11.2 31 13.4 57 50 80 21 20 Walitza Zurich, CHE II 3T 14.6 1.3 50 81 20 <td>4</td> <td>Hoexter</td> <td>Sao Paulo, BRA II</td> <td>3T</td> <td>12.0</td> <td>2.4</td> <td>12.6</td> <td>2.5</td> <td>57</td> <td>61</td> <td>28</td> <td>28</td> <td>56</td>	4	Hoexter	Sao Paulo, BRA II	3T	12.0	2.4	12.6	2.5	57	61	28	28	56
Lazaro Barcelona, ESP1 1.5T 14.6 2.3 14.6 2.0 47 58 32 31 Barcelona, ESP1I 3T 14.6 2.1 14.6 2.0 55 60 44 58 Reddy Bangalore, IND III 3T 13.1 2.1 14.6 2.0 55 60 44 58 Soreni Ontario, CAN 3T 13.1 2.1 14.6 50 55 40 20 20 Walitza Ontario, CAN 3T 14.6 1.3 257 1.4 50 81 20 20 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 20 16	5	Huyser	Amsterdam, NLD	3T	13.3	2.5	13.6	2.5	36	37	25	27	52
Barcelona, ESPII 3T 14.6 2.1 14.6 2.0 55 60 44 58 Reddy Bangalore, IND III 3T 13.1 2.1 14.6 20 50 56 14 18 Soreni Ontario, CAN 3T 13.1 2.1 14.6 20 50 56 14 18 Walitza Ontario, CAN 3T 11.2 31 13.4 2.5 52 40 21 20 Walitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 Malitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 Nalitza Zurich, CHE II 3T 14.6 1.3 16.7 14 50 16 16 Nalitza Zurich, CHE II 3T 14.6 50 81 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	9	Lazaro	Barcelona, ESP I	1.5T	14.6	2.3	14.6	2.0	47	58	32	31	63
Reddy Bangalore, IND III 3T 13.1 2.1 14.6 2.0 56 14 18 Soreni Ontario, CAN 3T 11.2 3.1 13.4 2.5 52 40 21 20 Waitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 Waitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 South Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 South Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 35	7		Barcelona, ESP II	3T	14.6	2.1	14.6	2.0	55	60	44	58	102
Soreni Ontario, CAN 3T 11.2 3.1 13.4 2.5 5.2 40 21 20 Walitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 Malitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 Malitza Zurich, CHE II 3T 14.6 1.3 15.7 14 20 16 Anticka Anticka Anticka Samples combined 287 335 Anticka Anticka Anticka Anticka 1759 1830	8	Reddy	Bangalore, IND III	3T	13.1	2.1	14.6	2.0	50	56	14	18	32
Walitza Zurich, CHE II 3T 14.6 1.3 15.7 1.4 50 81 20 16 total total 13.7 1.4 50 81 16 total total 287 335 total total 1759 1830	6	Soreni	Ontario, CAN	3T	11.2	3.1	13.4	2.5	52	40	21	20	41
paediatric samples combined 287 335 total total 1759 1830	10	Walitza	Zurich, CHE II	3T	14.6	1.3	15.7	1.4	50	81	20	16	36
total 1759 1830								Ĩ	paediatric samples co	mbined	287	335	622
	35				tot	al					1759	1830	3589

Abbreviations: Obsessive Compulsive Disorder (OCD), Principal Investigator (PI), Standard Deviation (SD)

Table 2

ENIGMA-OCD Working-Group Clinical characteristics of OCD patients. Percentage of OCD patients using medication, disease severity (measured with the YBOCS), age of onset of OCD, percentage of patients with a comorbid anxiety disorder, and percentage of patients with a comorbid depression are 1:0403

Adult samples 1 Benedetri	Dires Country	% medicated UCD patients	YBOCS		Age of onset	t % Comorbid lifetime anxiety	vo como na menne debression
<i>dult samples</i> 1 Benedetti			Mean	SD	Mean SD		
1 Benedetti							
	Milan, ITA	64	30.9	5.6 1	16.0 6.1	1.52	10.61
2 Beucke	Berlin, GER	40	20.1	7.1 1	17.2 7.8	11.96	18.48
3 Cheng	Kunming, CHN I	71	31.0 6	6.1 2	26.8 10.4	50.00	16.67
4	Kunming, CHN II	68	28.2	6.3 2	27.2 10.7	7 89.29	28.57
5 Denys	Amsterdam, NLD	63	26.6	6.2 1	18.1 6.9	4.17	41.67
6 van den Heuvel	vel Amsterdam, NLD I	0	22.7	6.1 1	14.4 7.7	22.22	33.33
7	Amsterdam, NLD II	0	21.5 0	6.1 1	15.5 6.9	40.48	52.38
8 Hoexter	Sao Paulo, BRA I	20	27.2	6.1 1	13.1 7.0	62.00	54.00
9 Koch	Munchen, GER	60	20.9	6.2 1	17.0 6.7	I	I
10 Kwon	Seoul, KOR I	24	20.2	6.0 1	17.4 5.2	0.00	0.00
11	Seoul, KOR II	0	23.9	6.5 1	18.9 6.6	0.00	2.94
12	Seoul, KOR III	2	26.5	6.5 1	19.0 6.4	1.11	2.22
13 Mataix-Cols	ls Stockholm, SWE	41	25.9	7.7 1	18.4 9.2	27.27	34.09
14 Menchon	Barcelona, ESP	97	25.5	5.8 2	21.4 8.5	20.51	18.80
15 Nakamae	Kyoto, JPN I	49	25.2	6.4 2	25.1 9.4	9.76	21.95
16	Kyoto, JPN II	0	22.4	6.9 2	25.2 9.1	8.82	20.59
17 Nakao	Fukuoka, JPN	88	22.5	5.6 2	24.6 9.5	I	35.80
18 Reddy	Bangalore, IND I	0	25.8	7.3 2	21.7 7.5	15.91	18.18
19	Bangalore, IND II	40	25.8 (6.3 2	22.0 7.6	7.69	15.38
20 Simpson	New York, USA	0	25.5	3.7 1	15.0 7.0	21.21	30.30
21 Spalletta	Rome, ITA	88	23.4 8	8.9 1	18.9 10.9	9.52	9.52
22 Stein	Cape Town, ZAF	41	22.9	4.2 1	13.6 6.6	0.00	0.00
23 Tolin	Conneticut, USA	78	22.7	4.8	I	44.44	40.74
24 Walitza	Zurich, CHE I	59	17.1	9.9 1	16.7 7.8	47.06	47.06

Author Manuscript

Author Manuscript

25 Wang Paediatric samples							
25 Wang Paediatric samples			Mean	SD	Mean SD	D	
Paediatric samples	Shanghai, CHN	0	25.5	5.1	23.3 10	10.3 0.00	0.00
1 Anorld	Ontario, CAN	53	20.9	7.8	8.7 2.	2.6 25.00	17.50
2 Fitzgerald	Michigan, USA	50	18.7	7.8	9.9 3.	3.0 50.00	6.76
3 Gruner	Conneticut, USA	52	26.9	4.5	I	43.48	39.13
4 Hoexter	Sao Paulo, BRA II	46	26.9	5.4	7.2 3.	3.0 21.43	0.00
5 Huyser	Amsterdam, NLD	0	25.1	5.0	10.9 2.	2.8 48.15	25.93
6 Lazaro	Barcelona, ESP I	55	22.2	6.0	12.4 2.	2.2 16.13	3.23
7	Barcelona, ESP II	79	18.6	7.4	12.0 2.	2.4 25.86	5.17
8 Reddy	Bangalore, IND III	83	22.6	7.3	13.1 2.1	.1 22.22	5.56
9 Soreni	Ontario, CAN	0	22.8	4.3	I	Ι	I
10 Walitza	Zurich, CHE II	56	14.7	1.0	11.1 2.2	.2 50.00	6.25

Table 3

Full meta-analytic results for each mean structure for the OCD patients versus controls comparison, controlling for age, sex, scan center, and intracranial volume. Adjusted Cohen's d is reported.

Boedhoe et al.

	Cohen's d (OCD-HC)	Standard error		95% CI		% Difference	P-value	I2	Number of controls Number of patients	Number of patients
Lateral Ventricles	0,108	0,063	-0,016	to	0,231	1,712	0,087	61,327	1466	1491
Thalamus	-0,079	0,042	-0,162	to	0,005	-1,851	0,064	12,542	1387	1375
Caudate	0,032	0,038	-0,043	to	0,107	0,844	0,399	0,003	1424	1441
Putamen	0,017	0,044	-0,070	to	0,103	0,380	0,704	16,141	1335	1365
Pallidum	0,160	0,051	0,061	to	0,259	3,156	$1,60 imes 10^{-3}$	32,877	1312	1336
Hippocampus	-0,135	0,048	-0,229	to	-0,040	-2,802	$5,08 imes 10^{-3}$	32,692	1440	1444
Amygdala	-0,108	0,050	-0,206	to	-0,010	-2,163	0,031	37,194	1418	1452
Accumbens	-0,041	0,040	-0,120	to	0,037	-1,025	0,305	8,384	1446	1465
ICV^*	0,014	0,048	-0,081	to	0,109	0,286	0,775	35,547	1470	1493

* Controlled for age, sex and scan center

Table 4

Full meta-analytic results for each mean structure for the pediatric unmedicated OCD patients versus pediatric controls comparison, controlling for age, sex. scan center, and intracranial volume. Adjusted Cohen's d is reported

Boedhoe et al.

	Cohen's d (unmedicated pediatric OCD-HC)	Standard error		95% CI		% Difference	P-value	12	Number of controls Number of patients	Number of patients
Lateral Ventricles	-0,022	0,118	-0,253	to	0,209	-0,189	0,850	0,000	216	115
Thalamus	0,384	0,125	0,139	to	0,628	3,078	$2,09 imes 10^{-3}$	0,000	201	103
Caudate	-0,024	0,134	-0,288	to	0,239	-0,182	0,855	14,641	198	109
Putamen	-0,177	0,202	-0.572	to	0,219	-0,875	0,382	59,152	204	104
Pallidum	-0,042	0,237	-0.506	to	0,423	-0,176	0,860	66,561	174	87
Hippocampus	0,239	0,141	-0,038	to	0,516	1,688	0,091	22,715	210	107
Amygdala	-0,029	0,256	-0.530	to	0,473	-0,112	0,911	72,254	188	89
Accumbens	-0,183	0,122	-0,422	to	0,056	-1,500	0,134	0,004	203	111
ICV^*	-0,033	0,144	-0,314	to	0,249	-0,226	0,821	29,531	219	116

* Controlled for age, sex and scan center