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Abstract

We start by characterizing Brownian motion and giving its main properties, and then we
focus on studying Itô’s and Stratonovich’s integral. We take special interest in compa-
ring both perspectives and proving Wong-Zakai theorems, which connect stochastic and
deterministic behaviour. Finally, it is also presented a brief introduction to stochastic dif-
ferential equations, demonstrating a result for the existence and uniqueness of solutions.

Resum

Comencem caracteritzant el moviment brownià i donem les seves propietats principals,
per tot seguit, centrant-nos en l’estudi de les dues integrals estocàstiques més utilitzades:
la d’Itô i la de Stratonovich. Posem especial interès en comparar-les, així com en provar
els teoremes de Wong i Zakai que connecten el comportament estocastic i el determinista.
Finalment, donem una introducció a les equacions diferencials estocàstiques i demostrem
un resultat que n’assegura l’existència i unicitat de solucions.
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Introduction

One of the biggest challenges for mathematicians of all times has been characteriz-
ing randomness. Although the modern formulation of probability culminated with the
axiom system presented by A. N. Kolmogorov in 1933 combining the concept of sample
space and measure theory, there was still some difficulties when adding uncertainty to the
models that describe the evolution of a certain variable that fluctuates with time.

However, the publication of On stochastic processes (Infinitely divisible laws of probability)
in 1942 by the Japanese mathematician Kiyosi Itô meant a paradigm shift in the field
of stochastic processes. Providing a rigorous definition for stochastic integrals which
generalized Lebesgue-Stieljes integration, he initiated a parallel analysis theory for the
study of stochastic differential equations. This topic, one of the most active branches of
mathematics now, is applicable in a wide range of scientific fields such as Physics, where
it constitutes the key to insert noise to the systems, or Economics, having the most notable
application in Black-Scholes model.

Although his approach is still used when modeling new phenomena, twenty years
later, a Russian physicist called Ruslan Stratonovich proposed a different way of defining
stochastic integrals, an alternative tool that satisfies deterministic chain rule in exchange
for losing some other good properties. Then, an intuitive question arises: which is the
correct interpretation? What benefits are brought by each of them? Furthermore, an article
of E. Wong and M. Zakai shows how Stratonovich’s description is the limit of sequences
of deterministic integrals (and an analogous result for solutions of stochastic and ordinary
differential equations), which will determine the election of this new representation when
we are interested in approximating stochastic behaviour by well-behaved processes.

Throughout this project, we aim to lay the foundation of stochastic calculus, beginning
by characterizing Brownian motion, the integrator we are going to use, but also building
stochastic integrals emphasizing the benefits and differences between them. The third
chapter is devoted to giving a basic introduction to stochastic differential equations, pro-
viding some illustrative examples, and rigorously proving a theorem for the existence and
uniqueness of solutions. Our second goal will be studying Wong-Zakai theorems, even
computing some numerical simulations to show the behavior of approximating sequences
of deterministic processes predicted by theory.

As a bibliographic reference I mostly follow [4], which collects accessible but also rig-
orous proofs for the main results, and I also used [3, 9]. Sometimes, I needed to appeal the
original articles [11, 13], becoming a challenge to adapt them to a more modern notation.
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Chapter 1

Brownian Motion

With this first chapter, we want to define and give the main properties of one-dimen-
sional Brownian motion. The name of this stochastic process comes from the botanist
Robert Brown, who observing pollen in a water drop was the first in wondering the origin
of its erratic movement. In 1905, Albert Einstein developed Kinetic Theory to give a
satisfactory explanation to this phenomenon, but a complete mathematical construction
of it did not come until the contributions of Nolbert Wiener, which explains why it is also
often referred as Wiener process.

Before giving a formal definition and studying its interesting properties, we make
a short reminder of notions related to stochastic processes that will appear during the
whole project. Finally, we end this chapter with a brief description of white noise, a useful
concept when modeling uncertainty, strongly related to Brownian motion, which is going
to take center stage later in the chapter devoted to stochastic differential equations.

We fix a probability space (Ω, F , P), being Ω the sample space, F a σ-field and P a
probability measure. This will be implicit for the rest of the work.

1.1 Preliminaries

Definition 1.1. A stochastic process with state space S is a family {Xt, t ∈ T} of random
variables Xt : Ω→ S indexed by a parameter set T and defined on the same (Ω, F , P).

Stochastic processes are an excellent tool to model evolution in the real world as they
capture the stochasticity typical from Physics, Economics or Biology. Then T, which can
be countable or not, will be usually thought as time and Xt will mean the state of the
process at time t. In the sequel, we will take T = [a, b] ⊆ [0, ∞) and S will be a subset of
R. Although it is possible to think of stochastic processes as random vectors, in order to
study the evolution of the values of a given observable it is convenient to fix ω ∈ Ω.

Definition 1.2. If {Xt, t ∈ [a, b]} is a stochastic process, for every ω ∈ Ω, the mapping
X(ω) : T → S defined by X(ω)(t) = Xt(ω) is called sample path or trajectory.

We introduce now some notions that describe the main types of stochastic processes.

2



1.1 Preliminaries 3

Definition 1.3. We say that a stochastic process {Xt, t ∈ [a, b]} has independent increments
if the random variables Xt2 − Xt1 , . . . , Xtk − Xtk−1 are independent for any t1 < . . . < tk.

Definition 1.4. A stochastic process {Xt, t ∈ [a, b]} is said to have stationary increments if
for any s < t, Xt − Xs has the same law as the random variable Xa+(t−s) − Xa.

Definition 1.5. A filtration is a family {Ft, t ∈ [a, b]} of sub-σ-fields of F such that
Fs ⊂ Ft ⊂ F for any a ≤ s ≤ t. We say that a stochastic process {Xt, t ∈ [a, b]} is
adapted to {Ft, t ∈ [a, b]} if Xt is Ft-measurable for all t ∈ [a, b].

We should think that Ft contains all information available at time t so that knowing
this, it is possible to decide if a random variable Xt adapted to the filtration has occurred
or not at time t. There is a natural way to define a filtration for a given stochastic process
{Xt, t ∈ [a, b]} and consists of taking Ft = σ {Xs, a ≤ s ≤ t} , t ∈ [a, b], only when it is
right continuous. Fortunately, Brownian motion, the process we are going to focus on the
next section satisfies this property. Next definition plays a fundamental role in stochastic
theory.

Definition 1.6. A stochastic process {Xt, t ∈ [a, b]} is called a martingale with respect to
the filtration Ft if it holds:

1. For each t ∈ [a, b], the variable Xt belongs to L1(Ω).

2. Xt is adapted to the filtration Ft.

3. E (Xt|Fs) = Xs for every s, t ∈ [a, b] such that s ≤ t.

If the process satisfies E (Xt|Fs) ≥ Xs instead of 3, we say that it is a submartingale. When
the inequality hold is E (Xt|Fs) ≤ Xs, then it is a supermartingale.

Thus, if Xt is a martingale, knowing the value of Xt′ for a ≤ t′ < b is equal to have the
entire history of Xt up to t′. They exhibit really good properties and have been extensively
studied for mathematicians because of their applications in probability theory and gam-
bling. For this reason, it is a desired property when developing new stochastic processes.
Below are some celebrated inequalities for martingales due to Joseph L. Doob, one of the
initiators in the study of such processes.

Theorem 1.7. (Doob martingale inequalities). If {Xt, t ∈ [a, b]} is a right continuous martin-
gale (i.e., almost all sample paths are right continuous functions on [a, b]), Then for any
ε > 0 it holds

P

{
sup

t∈[a,b]
|Xt| ≥ ε

}
≤ 1

ε
E |Xb| .

Besides, there is also a version called Lp-inequality that states

E

(
sup

t∈[a,b]
|Xt|p

)
≤
(

p
p− 1

)p
sup

t∈[a,b]
E
(
|Xt|p

)
, ∀p ∈ (1, ∞) .



4 Brownian Motion

1.2 Definition and features

Definition 1.8. The Brownian motion (also called Wiener process) starting in t = 0 is a
continuous time stochastic process {Wt, t ≥ 0} that satisfies:

1. Wt = 0 a.s.

2. {Wt, t ≥ 0} has independent increments.

3. Wt −Ws is N(0, t− s), ∀ 0 ≤ s ≤ t. Consequently, it has stationary increments too.

Unless otherwise specified, we will always assume that Wt starts in 0. As it has been
described, the qualitative change in time of a Brownian particle which starts from x = 0 at
time 0 (i.e. is a Dirac mass at zero, δ{0}) only depends on the length of the increment and
the future evolution is independent of the past (Markov property). In addition, each Wt is
normally distributed so, for t > 0, its density is of the form,

pt(x) =
1√
2πt

exp
(
− x2

2t

)
.

Remark 1.9. After deriving last expression it can be proved that pt satisfies the diffusion
physical equation,

∂

∂t
pt(x) =

1
2

∂2

∂x2 pt(x).

The rest of this section is devoted to proving some results related to Brownian motion.
The first is necessary for a future demonstration, and the second implies that this process
satisfies martingale property (it is actually its most important example).

Lemma 1.10. For any s, t ≥ 0, E(WsWt) = min (s, t).

Proof. It is sufficient to check that assuming s < t,

E(WsWt) = E(Ws (Wt −Ws) + W2
s ) = E(Ws)E(Wt −Ws) + E(W2

s ) = 0 + s = s,

having used conditions 2 and 3 of the definition and the basic properties of the expectation.

Proposition 1.11. The Brownian motion {Wt, t ≥ 0} is a martingale.

Proof. First of all, we note that the increment Wt −Ws is independent of Fs = σ{Wr; 0 ≤
r ≤ s} since Wt −Ws and Wr −W0 = Wr are independent for 0 ≤ r ≤ s ≤ t and Fs is
generated by Ws. To prove now that {Wt, t ≥ 0} is a martingale, we take Ft = σ{Ws; s ≤
t}, and then, for any 0 ≤ s < t:

E(Wt|Fs) = E(Wt −Ws|Fs) + E(Ws|Fs) = E(Wt −Ws) + Ws = Ws,

because we have shown that Wt −Ws is independent of Fs and E(Wt −Ws) = 0, but also
we use the fact that Ws is Fs-measurable1.

1The properties of the conditional expectation we make use here are (a) and (d) from the list we present in
the appendices, subsection A.1.
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1.3 Path properties

As we mentioned before, we aim to use Brownian motion to build stochastic integrals,
so we should first study how its trajectories behave and which properties we can take
advantage of. To do so, we need to define some previous notions.

Definition 1.12. A function f : [a, b] → R, 0 ≤ a < b is called Hölder continuous with
exponent γ > 0 at point s if there exists a real constant K > 0 satisfying:

| f (t)− f (s)| ≤ K|t− s|γ, ∀t ∈ [a, b].

Remark 1.13. For any real function defined on [a, b] it holds:

1. f is continuously differentiable→ f is Hölder continuous with exponent 1.

2. f is γ-Hölder continuous→ f is uniformly continuous.

Let us outline the following theorem, which is necessary to prove the continuity of the
paths of the Brownian motion. Its proof can be read in [3].

Theorem 1.14. (Kolmogorov’s continuity criterion) Let {Xt, t ∈ [a, b]} be a stochastic process,
if for some α, β > 0 and any t, s there exists a real constant K > 0 such that:

E(|Xt − Xs|α) ≤ K|t− s|1+β,

then, the trajectories of the process are γ-Holder a.s. with γ < β
α .

Proposition 1.15. The Brownian motion {Wt, t ≥ 0} is a.s γ-Hölder continuous for any
γ < 1/2. In particular, their paths are continuous.

Proof. For all integers m ≥ 1 we have

E(|Wt −Ws|2m) =
1√
2πr

∫
R

x2me−
x2
2r dx =

1√
2π

rm
∫

R
y2me−

y2
2 dy = Krm = K|t− s|m,

being r = t − s and y = x√
r the changes of variables. More precisely, K = (2m)!

2mm! . Thus,
using Kolmogorov’s theorem we know that {Wt, t ≥ 0} is Hölder continuous a.s. for
exponents γ satisfying

0 < γ <
α

β
=

1
2
− 1

2m
.

Theorem 1.16. For γ ∈ ( 1
2 , 1] the Brownian motion {Wt, t ≥ 0} is nowhere Hölder

continuous with exponent γ. Consequently, the sample paths are nowhere differentiable
and have infinite variation on each subinterval.
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Proof. For simplicity, we consider only times 0 ≤ t ≤ 1. Fix γ ∈ ( 1
2 , 1] and an integer N so

big that N(γ− 1
2 ) > 1. If we assume that the path t → Wt(ω) is γ-Hölder continuous at

s ∈ [0, 1), then |Wt(ω)−Ws(ω)| ≤ K|t− s|γ for some constant K. Let n be large enough
and set i = [ns] + 1. Note that for j = i, i + 1, . . . , i + N − 1,∣∣∣∣W j

n
(ω)−W j+1

n
(ω)

∣∣∣∣ ≤ ∣∣∣∣Ws(ω)−W j
n
(ω)

∣∣∣∣+ ∣∣∣∣Ws(ω)−W j+1
n
(ω)

∣∣∣∣
≤ K

(∣∣∣∣s− j
n

∣∣∣∣γ +

∣∣∣∣s− j + 1
n

∣∣∣∣γ) ≤ M
nγ

,

given another constant M. Define now,

Ai
M,n =

{∣∣∣∣W j
n
(ω)−W j+1

n

∣∣∣∣ ≤ M
nγ

, j = i, i + 1, . . . , i + N − 1
}

,

so ω ∈ Ai
M,n for some 1 ≤ i ≤ n, M ≥ 1 and large n. Therefore, the collection of

trajectories Hölder continuous with exponent γ at s is contained in the set

∞⋃
M=1

∞⋃
k=1

∞⋂
n=k

n⋃
i=1

Ai
M,n.

Next, we show that this set has null probability. Since

P
(∣∣∣W 1

n

∣∣∣ ≤ M
nγ

)
=

√
n

2π

∫ Mn−γ

−Mn−γ
e−

nx2
2 dx =

1√
2π

∫ Mn1/2−γ

−Mn1/2−γ
e−

y2
2 dy ≤ Cn1/2−γ,

due to the fact that W j+1
n
−W j

n
are N

(
0, 1

n

)
and independent, we have

P

(
∞⋂

n=k

n⋃
i=1

Ai
M,n

)
≤ lim inf

n→∞
P

(
n⋃

i=1

Ai
M,n

)
≤ lim inf

n→∞

n

∑
i=1

P
(

Ai
M,n

)
≤ lim inf

n→∞
n
(

P
(∣∣∣W 1

n

∣∣∣ ≤ M
nγ

))N
≤ lim inf

n→∞
nC
(

n1/2−γ
)N

= 0,

for all k, M. Consequently, P
(⋃∞

M=1
⋃∞

k=1
⋂∞

n=k
⋃n

i=1 Ai
M,n

)
= 0. On the other hand, in

case that the trajectories were differentiable at s, then Wt would be Hölder continuous
(with exponent 1) at this point, but is a.s not so. Moreover, if it was of finite variation
at any subinterval, it would then be differentiable a.e. there2, which would lead to a
contradiction.

Notice that the previous results do not say anything for γ = 1/2. To study what
happens then, it is required a deeper knowledge in probability theory, in particular, in the
analysis of the so-called modulus of continuity. The conclusion is that Brownian motion is
not Hölder continuous of degree 1/2 either. Now, we introduce a fundamental property
that provides a measure of the hardness of a function: quadratic variation. As it will be
accurately described next chapter, this gives an explanation to why stochastic calculus
behaves differently from classical deterministic one.

2The exact result in measure theory we make reference can be read in the appendices, subsection A.2.
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Proposition 1.17. Consider a partition of our interval [a, b] given by ∆n = {a = tn
0 ≤ tn

1 ≤
. . . ≤ tn

n = b}, n ≥ 1 such that ‖∆n‖ = sup1≤i≤n (ti − ti−1) tends to zero if n → ∞. Then,
in L2 (Ω),

n

∑
i=1

(
Wti −Wti−1

)2 → b− a, as n→ ∞.

Proof. Set from now on ∆iW = Wti −Wti−1 and ∆it = ti − ti−1. We also omit the depen-
dence on n of each ti to avoid clutter. Our aim is proving that

lim
n→∞

E

( n

∑
i=1

(∆iW)2 − (b− a)

)2
 = 0.

Note that b− a = ∑n
i=1 ∆it, so we can reformulate the problem in terms of

Φn =
n

∑
i=1

[
(∆iW)2 − ∆it

]
=

n

∑
i=1

Xi,

where Xi = (∆iW)2 − ∆it. Then, Φ2
n = ∑n

i,j=1 XiXj. Now, we can use the computation of
moments of Wt −Ws we developed indirectly in the proof of Proposition 1.15 to reason:

• If i 6= j, E
(
XiXj

)
= 0. This is because of the independent increments of Wt and

E
[
(Wt −Ws)

2
]
= |t− s|.

• If i = j, using E
[
(Wt −Ws)

4
]
= 3|t− s|2 we can compute:

E
(

X2
i

)
= E

[
(∆iW)4 − 2∆it (∆iW)2 + (∆it)

2
]

= 3 (∆it)
2 − 2 (∆it)

2 + (∆it)
2 = 2 (∆it)

2 .
(1.1)

Therefore, we finally get

E
(

Φ2
n

)
=

mn

∑
i=1

2 (∆it)
2 ≤ 2‖∆n‖

n

∑
i=1

∆it = 2 (b− a) ‖∆n‖ → 0, as ‖∆n‖ → 0.

This proposition justifies the heuristic idea that dW2
t ≈ dt, so the products dt2, dtdWt

become negligible in front of dt and dWt. These rules are collected in the called Itô’s table,
which will be an important tool for next chapter.

· dWt dt

dWt dt 0

dt 0 0

Table 1.1: Itô’s table
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1.4 White noise

In experimental sciences, the most usual way to model randomness is through small
perturbations acting on the system with arbitrary directions so that the average of all
of them is zero. In order to add this effect to the equations that govern the dynamics,
it is common to consider a Gaussian process Xt determined by its zero mean and the
covariance function E ([Xt − E (Xt)] [Xs − E (Xs)]) = E (XtXs). This expectation is in fact
known as the autocorrelation function r(s, t) of Xt, and expresses how short is the effect of
the pulses causing this noise. When r(s, t) = c (t− s) for some function c : R → R and
E (Xt) = E (Xs), ∀t, s in the parameter set we say that it is stationary in the wide sense. A
special example of this kind of processes is white noise.

Definition 1.18. We say that a Gaussian process ξt is white noise if it is stationary in
the wide sense and satisfies E (ξt) = 0 and E (ξtξs) = δ0 (t− s), being δ0 a Dirac delta
function.

It means that ξt and ξt+∆t will be uncorrelated for arbitrary small values of ∆t. More-
over, it is called "white" because the spectrum of ξt is flat. More precisely, the spectral
density of a process is defined as the Fourier transform of the autocorrelation function,

f (λ) :=
1

2π

∫ ∞

−∞
e−iλtc(t)dt,

with λ ∈ R. Then, for white noise,

f (λ) =
1

2π

∫ ∞

−∞
e−iλtδ0(t)dt =

1
2π

,

which means that all "frequencies" contribute equally to the correlation function, the same
idea that makes all colors form white light.

The first attempt to describe rigorously white noise was in connection with the theory
of generalized functions (or distributions). Here, we make a brief introduction to this field
in order to justify why white noise plays the role of the "derivative" of Brownian motion,
even after proving that it is nowhere differentiable. Let us begin with a general definition.

Definition 1.19. Denoting by K the space of all infinitely differentiable functions ϕ(t),
t ∈ R that vanish identically outside a finite interval (which in general can be different
for each ϕ), we define a generalized stochastic process as the random variable Φ(ϕ), ϕ ∈ K
satisfying:

1. Linearity on K a.s.:

Φ (c1 ϕ + c2ψ) = c1Φ (ϕ) + c2Φ (ψ) , ∀c1, c2 ∈ R, ϕ, ψ ∈ K, a.s.

2. Continuity: for any sequence of functions ϕkj converging to ϕk in K, ∀k = 1, 2 . . . , n
as j→ ∞, it holds that,(

Φ
(

ϕ1j
)

, . . . , Φ
(

ϕnj
))
→ (Φ (ϕ1) , . . . , Φ (ϕn)) , as j→ ∞ in distribution.
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For example, we can consider the generalized stochastic process Φ created by means
of taking continuous stochastic processes X and inserting them to the formula

ΦX (ϕ) =
∫ ∞

−∞
ϕ(t)X(t)dt, ∀ϕ ∈ K.

In the same line, we can also define,

E (Φ (ϕ)) = m (ϕ) and E ([Φ (ϕ)−m (ϕ)] [Φ (ψ)−m (ψ)]) = Cov (ϕ, ψ) .

Somehow, we can imagine that our goal is measuring values of X(t) but the measuring
instrument affects this estimation smoothly so that ΦX (ϕ) exhibits better properties than
X, for instance, it will always exist the derivative of ΦX (even if X does not have it) which
is defined symbolically as Φ̇ (ϕ) = −Φ (ϕ̇), or explicitly,∫ ∞

−∞
ϕ(t)Ẋ(t)dt = −

∫ ∞

−∞
ϕ̇(t)X(t)dt.

Notice that this expression is similar to the formula of integration by parts. Let us set
an example, we say that a generalized process is Gaussian when (Φ (ϕ1) , . . . , Φ (ϕn)) is
normally distributed ∀ϕ1, . . . , ϕn ∈ K. In particular, we are interested in focusing on the
Wiener process and its derivative. As we said, we can represent its generalization as

ΦW (ϕ) =
∫ ∞

0
ϕ(t)Wtdt,

because we have set Wt ≡ 0 for t < 0. Then, m (ϕ) = 0 and for the covariation, we use
Lemma 1.10 to write

Cov (ϕ, ψ) =
∫ ∞

0

∫ ∞

0
min (t, s) ϕ(t)ψ(t)dtds.

Hence, integrating by parts we obtain the expression

Cov (ϕ, ψ) =
∫ ∞

0
[ϕ̂(t)− ϕ̂(∞)]

[
ψ̂(t)− ψ̂(∞)

]
dt,

where

ϕ̂(t) =
∫ t

0
ϕ(s)ds, ψ̂(t) =

∫ t

0
ψ(s)ds.

On the other hand, if we compute the derivative of the Brownian motion as a generalized
stochastic process, it will satisfy ṁ (ϕ) = −m (ϕ̇), but also

˙Cov (ϕ, ψ) = Cov (ϕ̇, ψ̇) =
∫ ∞

0
ϕ(t)ψ(t)dt =

∫ ∞

0

∫ ∞

0
δ (t− s) ϕ(t)ψ(t)dtds.

Consequently, white noise can be written as the derivative of the Wiener process, when
both are considered as generalized stochastic processes. For this reason, we will some-
times find in the literature the short-hand notation

ξt = Ẇt or Wt =
∫ t

0
ξtds.



Chapter 2

Stochastic Integration

After explaining why a classical approach would not work when using Brownian mo-
tion as integrator, this chapter is devoted to build and compare our two main stochastic
integrals: Itô’s and Stratonovich’s. Finally, we present and illustrate numerically the first
Wong-Zakai theorem, which establishes a relation between stochastic integrals and the
limits of deterministic ones.

Although this topic is usually dealt with martingales, here we decided to tackle it only
for the Brownian motion, as well as we only considered one-dimensional processes, which
simplifies the notation and let us go further. For brevity, we will follow using the notation
∆iW = Wti −Wti−1 , ∆it = ti − ti−1 and also omitting the n-dependence of the partition
‖∆n‖ to avoid clutter.

2.1 Motivation

In order to give rigorous mathematical meaning to stochastic differential equations
driven by Brownian motion, it is required to introduce a new kind of integral compatible
with the non-differentiability drawback of Wt. The key is that, although there exist many
extensions of classical Riemann approach to integrate respect to some function g, they
only allow well-behaved integrators. For instance, a bounded function f defined on [a, b]
is Riemann-Stieltjes integrable, if the following limit exists:

∫ b

a
f (t) dg (t) = lim

‖∆n‖→ 0

n

∑
i=1

f (τi) (g (ti)− g (ti−1)),

where ∆n = {t0, t1, . . . , tn} is a partition of [a, b], ‖∆n‖ = sup1≤i≤n ∆it and τi is the evalua-
tion point in the interval [ti−1, ti]. A known result on measure theory asserts the ensuing.

Theorem 2.1. Let g : [a, b] → R be a bounded function. If the Riemann-Stieljes integral∫ b
a f (x) dg (x) exists for any f ∈ C ([a, b]), then g is of bounded variation.

10
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As we have seen in the preceding chapter, Brownian motion has an infinite variation
on each subinterval (Theorem 1.16) so it is not allowed to be used as integrator in the
previous formula. This, together with its non-zero quadratic variation, make that if we try
to extend the idea of the Riemann sums to the stochastic case we get defective properties,
such us the fact that the election of the evaluation point τi will determine the result.

Example 2.2. Given a partition ∆n of [a, b], we want to compute:

Rn :=
n

∑
k=1

Wτk ∆kW,

where τk = (1− λ) tk + λtk−1, being 0 ≤ λ ≤ 1 a fixed parameter. We can actually rewrite
last expression as:

Rn :=
n

∑
k=1

Wτk ∆kW =
W2

b−a
2

A︷ ︸︸ ︷
−1

2

n

∑
k=1

(∆kW)2 +

B︷ ︸︸ ︷
n

∑
k=1

(
Wτk −Wtk−1

)2

+
n

∑
k=1

(
Wtk −Wτk

) (
Wτk −Wtk−1

)
︸ ︷︷ ︸

C

.

In effect, if we expand

A = −1
2

n

∑
k=1

(
W2

tk
+ W2

tk−1
− 2Wtk Wtk−1

)
, B =

n

∑
k=1

(
W2

τk
+ W2

tk−1
− 2Wτk Wtk−1

)
,

C =
n

∑
k=1

(
Wtk Wτk −Wtk Wtk−1 −W2

τk
+ Wτk Wtk−1

)
,

we can check that

A + B + C =
n

∑
k=1

(
Wτk Wtk −Wτk Wtk−1

)
− 1

2

n

∑
k=i

(
W2

tk
−W2

tk−1

)
= Rn −

W2
b−a
2

.

Besides, according to Proposition 1.17 on quadratic variation, A → a−b
2 as n → ∞ in

L2 (Ω). A similar argument reflects that B → λ (b− a) as n → ∞. However, for C we
proceed:

E

∣∣∣∣∣ n

∑
k=1

(
Wtk −Wτk

) (
Wτk −Wtk−1

)∣∣∣∣∣
2
 =

n

∑
k=1

E
(∣∣Wtk −Wτk

∣∣2) ·E (∣∣Wτk −Wtk−1

∣∣2)
=

n

∑
k=1

(1− λ)∆ktλ∆kt ≤ λ (1− λ) (a− b)‖∆n‖.

which tends to zero as n → ∞. Gathering the three last convergences together, it results
in

lim
n→∞

Rn =
W2

b−a
2

+

(
λ− 1

2

)
· (b− a) in L2 (Ω) .
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Remark 2.3. In particular, the limit of the Riemann sum depends on the choice of inter-
mediate points:

• The election of λ = 0 corresponds to the definition of Itô’s integral (discussed later
in Section 2.2). That is: ∫ b

a
WtdWt =

W2
b−a
2
− b− a

2
.

• Alternately, one can take λ = 1
2 to follow the expected rules of deterministic calculus.

This definition is due to Stratonovich (more deeply developed in Section 2.3) and
uses the symbol "◦" to be differentiated from Itô’s description:

∫ b

a
Wt ◦ dWt =

W2
b−a
2

.

2.2 Itô’s integral

To build the very first stochastic integral defined by K. Itô, we need to consider a
Wiener process {Wt, t ≥ 0} and its associated natural filtration {Ft, t ≥ 0}. Throughout
this chapter, we will work with L2

ad ([a, b]×Ω), the space of stochastic processes ft (ω)

satisfying:

• f is jointly measurable in (t, ω) with respect to the σ-field B ([a, b])⊗F .

•
∫ b

a E
(

f 2
t
)

dt < ∞.

2.2.1 Construction

For clarity, we have divided the discussion into two parts: we start by defining the
Itô’s stochastic integral for the so-called step processes and after, we generalize for any
function in our set L2

ad ([a, b]×Ω).

Itô’s integral for step processes

Definition 2.4. A stochastic process f is said to belong to the subset E ⊆ L2
ad ([a, b]×Ω)

consisting of step processes if it can be written as:

ft =
n

∑
i=1

ui−11[ti−1,ti)
(t),

with a = to ≤ . . . ≤ tn = b and where ui−1 are Fti−1 -measurable random variables in
L2 (Ω).

Note that having specified ui−1 for each 1[ti−1,ti)
we achieve the state of the subinterval

not to depend on future values (the class of the nonanticipating processes). Next definition
corresponds to the first attempt to give a natural meaning to a stochastic integral formula.
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Definition 2.5. In the above conditions, we define the Itô’s stochastic integral for a step process
f ∈ E as:

I ( f ) =
n

∑
i=1

ui−1∆iW. (2.1)

We will usually write I ( f ) as
∫ b

a ftdWt.

Particularly, I (·) is a random variable and has some good qualities summarized by
next proposition.

Proposition 2.6. For any f ∈ E , I ( f ) has the following properties:

1. Linearity: given g ∈ E and a, b ∈ R, then a f + bg ∈ E , but also, I (a f + bg) =

aI ( f ) + bI (g).

2. Centrality: E (I ( f )) = 0.

3. Isometry: E
(
|I ( f )|2

)
=
∫ b

a E
(

f 2
t
)

dt.

Proof. To see the first point, we shall take a partition a = to ≤ . . . ≤ tn = b and write

ft =
n

∑
i=1

ui−11[ti−1,ti)
(t) and gt =

n

∑
i=1

vi−11[ti−1,ti)
(t),

where ui−1 and vi−1 are Fti−1 -measurable random variables. Note that if the two partitions
happen to be different, it will always be possible to find a common refinement of them.
Then

a f + bg =
n

∑
i=1

(aui−1 + bvi−1) 1[ti−1,ti)
(t),

and so

I (a f + bg) =
n

∑
i=1

(aui−1 + bvi−1)∆iW = a
n

∑
i=1

ui−1∆iW + b
n

∑
i=1

vi−1∆iW = aI ( f ) + b (g) .

To prove that I( f ) is a centered random variable we just have to use the independency of
ui−1 and Wti −Wti−1 to compute:

E
(∫ b

a
ftdWt

)
= E

(
n

∑
i=1

ui−1∆iW

)
=

n

∑
i=1

E (ui−1) E (∆iW) = 0.

Finally, to prove the last property we proceed by splitting the sum to reason separately,

E
(∫ b

a
ftdWt

)2

= E

(
∑
i,j

ui−1uj−1 (∆iW)
(
∆jW

))
=

n

∑
i=1

E
(

u2
i−1 (∆iW)2

)
+ 2 ∑

i<j
E
(
ui−1uj−1 (∆iW)

(
∆jW

))
.

The second term vanishes because for i < j, ui−1uj−1∆iW is independent of ∆jW, so

E
(
ui−1uj−1∆iW∆jW

)
= E

(
ui−1uj−1∆iW

)
E
(
∆jW

)
= 0.
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On the other hand, the first term turns out to be:

n

∑
i=1

E(u2
i−1)E((∆iW)2) =

n

∑
i1

E(u2
i−1) (∆it) =

∫ b

a
E( f 2

t )dt,

again, due to the independence of u2
i−1 and (∆iW)2.

It is important to highlight that isometry takes equidistant points in E to equidistant
points in L2 so, in particular, I (·) maps a Cauchy sequence in E into a Cauchy sequence
in L2. The relevance of this observation is understood by next theorem, which states that
any f ∈ L2

ad ([a, b]×Ω) can be approximated by elements of E .

Theorem 2.7. For all f ∈ L2
ad ([a, b]×Ω) there exists a sequence { f n}n≥1 ⊆ E such that:

lim
n→∞

∫ b

a
E
(
| ft − f n

t |
2
)
= 0. (2.2)

This means that E is dense in L2
ad.

Proof. To show the result, we first consider different cases to finish with the general proof.
Case 1: E ( ft fs) is continuous of (t, s) ∈ [a, b]2. First, we start taking a partition ∆n of [a, b]
and defining a process { f n

t (ω)}n≥1 ⊆ E as:

f n
t (ω) = fti−1 (ω) , ti−1 < t ≤ ti. (2.3)

Due to the continuity of E ( ft fs), we have lims→t E(| ft − fs|2) = 0, and consequently,

lim
n→∞

E
(
| ft − f n

t |
2
)
= 0, ∀t ∈ [a, b] . (2.4)

On the other hand, using the inequality |α− β|2 ≤ 2(|α|2 + |β|2), it holds:

E
(
| ft − f n

t |
2
)
≤ 2

{
E
(
| ft|2

)
+ E

(
| f n

t |
2
)}
≤ 4 sup

t∈[a,b]
E
(
| ft|2

)
.

Therefore, we can apply the dominated convergence theorem1 to Equation (2.4), concluding
that

lim
n→∞

∫ b

a
E
(
| ft − f n

t |
2
)

dt = 0.

Case 2: f is bounded. Then, we define:

gn
t (ω) =

∫ n(t−a)

0
e−τ ft−n−1τ (ω) dτ.

Note that gn ∈ L2
ad ([a, b]×Ω) , ∀n. Next step consists of justifying

∫ b

a
E
(
| ft − gn

t |
2
)

dt→ 0, as n→ ∞. (2.5)

1This important theorem on measure theory can be read in the appendices, subsection A.2.
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Indeed, since

ft − gn
t =

∫ ∞

0
e−τ

(
ft − ft−n−1τ

)
dτ ⇒ | ft − gn

t |
2 ≤

∫ ∞

0
e−τ

∣∣ ft − ft−n−1τ

∣∣2 dτ,

we can compute:∫ b

a
E
(
| ft − gn

t |
2
)

dt ≤
∫ b

a

∫ ∞

0
e−τE

(∣∣ ft − ft−n−1τ

∣∣2) dτdt

=
∫ ∞

0
e−τ

(∫ b

a
E
(∣∣ ft − ft−n−1τ

∣∣2) dt
)

dτ

=
∫ ∞

0
e−τE

(∫ b

a

∣∣ ft − ft−n−1τ

∣∣2 dt
)

dτ.

However, as f is assumed to be bounded, it yields a.s.∫ b

a

∣∣ ft − ft−n−1τ

∣∣2 dt→ 0, as n→ ∞, (2.6)

which proves the desired statement in Equation (2.5). Moreover, E (gn
t gn

s ) is continuous
(it is easily provable by rewriting gn

t =
∫ t

a ne−n(t−u) fu (ω) du, with u = t− τn−1, to verify
that limt→s E(|gn

t − gn
s |

2) = 0). Therefore, we can apply Case 1 to approximate each gn by
an adapted step process f n such that:

lim
n→∞

∫ b

a
E
(
|gn

t − f n
t |

2
)

dt ≤ 1
n

,

and using the claim in Equation (2.5), it leads to the requested formula.
General case: Having fixed f ∈ L2

ad ([a, b]×Ω) we define for each n:

gn
t (ω) =

{
ft (ω) if | ft (ω)| ≤ n.

0 if | ft (ω)| > n.

Then, the dominated converge theorem implies that∫ b

a
E
(
| ft − gn

t |
2
)

dt→ 0, as n→ ∞. (2.7)

Finally, for each n we recover Case 2 to pick an adapted step process f n
t (ω) such that∫ b

a
E
(
|gn

t − f n
t |

2
)

dt ≤ 1
n

(2.8)

and the Equation (2.2) of the theorem follows from Equations (2.7) and (2.8).

Once we have established the existence of such sequences of step processes, we have
the necessary tools to give a more general definition by making limits in mean square.
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Itô’s integral for processes belonging to L2
ad ([a, b]×Ω)

Definition 2.8. For any process f ∈ L2
ad ([a, b]×Ω), we define its Itô’s stochastic integral

I( f ) as
I ( f ) = lim

n→∞
I ( f n), in L2 (Ω) . (2.9)

In the same vein, we will denote I ( f ) =
∫ b

a ftdWt.

Notice that to see if this definition makes sense, we should verify that the limit exists
and this does not depend on the approximating sequence. The first claim is a consequence
that our f n

t ⊆ E is a Cauchy sequence in L2 (Ω) for all t ∈ [a, b], which is a complete space,

E

(∣∣∣∣∫ b

a
f n
t dWt −

∫ b

a
f m
t dWt

∣∣∣∣2
)

= E
(∫ b

a
( f n

t − f m
t )2 dt

)
≤ 2E

(∫ b

a
( f n

t − ft)
2 dt
)

+ 2E
(∫ b

a
( ft − f m

t )2 dt
)
→ 0, as n, m→ 0.

On the other hand, to prove that the definition for a stochastic process ft approximated by
two difference sequences f n

t and f m
t coincide, we use the triangular inequality to compute:

‖In ( f )− Im ( f )‖L2 ≤
∥∥∥∥In ( f )−

∫ b

a
f n
t dWt

∥∥∥∥
L2
+

∥∥∥∥∫ b

a
f n
t dWt −

∫ b

a
f m
t dWt

∥∥∥∥
L2

+

∥∥∥∥Im ( f )−
∫ b

a
f m
t dWt

∥∥∥∥
L2

, ∀t ∈ [a, b] .

As the right-hand side of the inequality tends to zero as n → ∞, the left-hand side also
vanishes. This following lemma is a kind of extension of Proposition 2.6, not only consid-
ering processes in E .

Lemma 2.9. For any f ∈ L2
ad ([a, b]×Ω), it holds:

1. I (a f + bg) = aI ( f ) + bI (g) , ∀a, b ∈ R, g ∈ L2
ad ([a, b]×Ω).

2. E (I ( f )) = 0, which means that stochastic integrals are centered random variables.

3. E
(
|I ( f )|2

)
=
∫ b

a E
(

f 2
t
)

dt .

Proof. The fact that I (·) is a linear operator is a trivial consequence of the linearity for step
processes. Zero mean value derives from:

lim
n→∞

E (I ( f n)) = E (I ( f ))

and E (I ( f n)) = 0, ∀n ≥ 1 . And finally, to see the isometry we use norm notation,

‖I ( f )‖L2 = lim
n→∞

‖I ( f n)‖L2 = lim
n→∞

‖ f n‖L2 = ‖ f ‖L2

which concludes the proof.
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Remark 2.10. One can actually extend this construction to a larger set of functions con-
sisting of all processes whose sample paths are functions in L2 [a, b] (i.e.

∫ b
a | ft|2 dt < ∞

a.s.). Although we omit here this tedious development, it can be found in [4].

To complete this section, we discuss a theorem that establishes a direct relation between
Riemann sums and the definition of the stochastic integral given in this section.

Theorem 2.11. For any f ∈ L2
ad ([a, b]×Ω) such that E ( ft fs) is continuous of t and s, it

holds in L2 (Ω), ∫ b

a
ftdWt = lim

‖∆n‖→0

n

∑
i=1

fti−1 ∆iW,

where ∆n = {a = t0 < t1 < . . . < tn = b} and ‖∆n‖ = sup1≤i≤n ∆it.

Proof. We saw in the proof of Theorem 2.7 that defining a stochastic process as in Equation
(2.3), we have

lim
n→∞

∫ b

a
E
(
| ft − f n

t |
2
)

dt = 0.

Therefore, using Equation (2.9) and Definition 2.5 given for step processes, we get in
L2 (Ω) that ∫ b

a
ftdWt = lim

n→∞
I ( f n) = lim

n→∞

n

∑
i=1

f n
ti−1

∆iW,

thus we have shown that in the limit, this sequence of sums converges to Itô’s integral.

Once we have justified this picture of the Itô’s stochastic integral, we can regain the
discussion on Example 2.2 to see the consistency of this approach.

2.2.2 Stochastic processes driven by Itô’s integrals

Having introduced this new integral as Itô did, it involves many interesting properties
we can take advantage of in stochastic calculus. Next step consists of studying indefinite
Itô’s stochastic integral for processes f ∈ L2

ad ([a, b]×Ω). This is naturally defined by

Xt =
∫ t

a fsdWs :=
∫ b

a fs1[a,t] (s) dWs. Note first that this makes sense because

∫ t

a
E
(
| fs|2

)
ds ≤

∫ b

a
E
(
| fs|2

)
< ∞,

so f ∈ L2
ad ([a, t]×Ω). In addition, such a stochastic process in Itô’s sense is defined so

that it achieves a crucial property, which is proved in Proposition 2.13. Before doing that,
we first see a classical lemma of convergence of conditional random variables necessary
for its demonstration.
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Lemma 2.12. Let {Xn}n be a sequence of square integrable random variables on some
probability space (Ω, F , P). If Xn → X as n→ ∞ in L2 (Ω), then

E (Xn|G )→ E (X|G ) , as n→ ∞,

for any σ-field G ⊆ F . In particular, L2 (Ω)-limits of martingales are also martingales.

Proof. Consider the expression

|E (X|G )− E (X|G )|2 = |E (Xn − X|G )|2 .

As | · |2 is a convex function, we can apply Jensen’s inequality2 to get

|E (Xn − X|G )|2 ≤ E
(
|Xn − X|2 |G

)
⇒ E

(
|E (Xn|G )− E (X|G )|2

)
≤ E

(
E
(
|Xn − X|2 |G

))
= E

(
|Xn − X|2

)
→ 0, as n→ ∞,

having used the property of conditional expectation which says that E(E(X|G )) = E(X)

for any X integrable random variable and G a σ-field contained in F .

Proposition 2.13. The process defined by Xt =
∫ t

a fsdWs, with t ∈ [a, b] is a martingale.

Proof. First of all, due to the previus lemma, proving the proposition is equal to see the
result for any approximating sequence in E ,

Xn
t =

∫ t

a
f n
s dWs, ∀t ∈ [a, b] ,

where f n converges to f in L2 (Ω× [a, b]) and f n ∈ E . Fixing a ≤ s ≤ t ≤ b and assuming
that tk−1 < s ≤ tk < tl < t ≤ tl+1 we will have

Xn
t − Xn

s = uk
(
Wtk −Ws

)
+

l

∑
j=k+1

uj∆jW + ul+1
(
Wt −Wtl

)
.

Notice that due to Lemma 2.9

E
(
|Xt|2

)
=
∫ t

a
E
(
| fs|2

)
ds < ∞⇒ E (Xt) ≤

[
E
(
|Xt|2

)]1/2
< ∞,

which means that Xt is integrable and thus we can take the conditional expectation of Xt
with respect to the filtration Fs. Managing its terms3 we get

E (Xn
t − Xn

s |Fs) = E
(
uk
(
Wtk −Ws

)
|Fs
)
+

l

∑
j=k+1

E
(

E
(

uj∆jW|Ftj−1

)
|Fs

)
+ E

(
ul+1E

(
Wt −Wtl |Fs

))
= 0,

and so E (Xn
t |Fs) = Xn

s a.s., proving that Xn
t is a martingale.

2To remind this result, consult the appendices, subsection A.1.
3More precisely, we use properties (a), (e), (f) of the conditional expectation, gathered in the appendices,

subsection A.1.
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One can also wonder if the stochastic process Xt defined by the indefinite Itô’s integral
satisfies a basic property as it is continuity. Although it could seem trivial by simple exten-
sion with respect to deterministic results, the problem here is that the stochastic integral is
not defined path-wise as a Riemman(-Stieljes) integral or even Lebesgue integral. For that
reason, although there exists a result confirming that Xt is continuous, namely, almost all
of its paths are continuous functions on the interval [a, b], its proof is not immediate at all.
For more details, we recommend consulting [4].

2.2.3 Itô formula

One of the most used identities in Leibniz-Newton calculus is the well-known chain
rule, which gives an easy expression for the derivative of a composite function f (g(t)). It
states that if f and g are differentiable functions, then f (g(t)) is also differentiable with
derivative:

d
dt

f (g(t)) = f ′(g(t))g′(t).

Or equally, using the fundamental theorem of calculus we can write

f (g(t))− f (g(a)) =
∫ t

a
f ′(g(s))g′(s)ds.

We can now question on the existence of such expression for Itô’s stochastic calculus.
Though we know that the equality d

dt f (Wt) = f ′(Wt)W ′t has no meaning since the sam-
ple paths of Brownian motion are nowhere differentiable, it could be true that f (Wt) −
f (Wa) =

∫ t
a f ′(Ws)dWs, being f a differentiable function. Nevertheless, due to the nonzero

quadratic variation of Brownian motion, this formula is slightly modified with an extra
term, as it shows next theorem.

Theorem 2.14. (Itô formula, simplified version) Let f : R → R be a C2-function. Then, for
any a ≤ t ≤ b,

f (Wt)− f (Wa) =
∫ t

a
f ′(Ws)dWs +

1
2

∫ t

a
f ′′(Ws)ds. (2.10)

Observe that the first integral is an indefinite Itô’s integral (as defined in subsection
2.2.2), but the second one is just a common Riemann integral for each sample path of Ws.
The proof is a consequence of two technical lemmas. To discuss them, we consider as
usual a partition ∆n = {a = t0, t1, . . . , tn = t} of [a, t] such that limn→∞ ‖∆n‖ = 0.

Lemma 2.15. For any real continuous function g and λi ∈ (0, 1), 1 ≤ i ≤ n, there exists a
subsequence, denoted by (n), such that

Xn :=
n

∑
i=1

(
g
(
Wti−1 + λi∆iW

)
− g

(
Wti−1

))
(∆iW)2

converges to 0 in probability when n→ ∞.
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Proof. Define the random variable

Yn = max
1≤i≤n, 0<λ<1

∣∣g (Wti−1 + λ∆iW
)
− g

(
Wti−1

)∣∣.
Then, obviously it holds

|Xn| ≤ Yn

n

∑
i=1

(∆iW)2.

and owing to the continuity of g(x) and the Brownian motion, {Yn}n≥1 converges to zero
a.s. On the other hand, by Proposition 1.17, ∑n

i=1 (∆iW)2 converges to t − a in L2 (Ω).
Therefore, Xn converges to zero in probability.

Lemma 2.16. Under the same hypotheses in Lemma 2.15, the sequence

n

∑
i=1

g
(
Wti−1

) (
(∆iW)2 − ∆it

)
(2.11)

converges to zero in probability.

Proof. For each L > 0, we define the set of events

A(L)
i−1 ≡

{∣∣∣Wtj

∣∣∣ ≤ L, ∀j ≤ i− 1
}

, 1 ≤ i ≤ n.

Note that this is a decreasing family in i. Moreover, let Sn denote the summation in
Equation (2.11) and label

Sn,L ≡
n

∑
i=1

g(Wti−1)1A(L)
i−1

(
(∆iW)2 − ∆it

)
=

n

∑
i=1

g(Wti−1)1A(L)
i−1

Xi =
n

∑
i=1

Yi, (2.12)

where Xi = (∆iW)2− ∆it and Yi = g(Wti−1)1A(L)
i−1

Xi. Our goal is to see that E
(
|∑i Yi|2

)
→

0 as n→ ∞. Consider now the filtration Ft = σ {Ws; s ≤ t} and fix 1 ≤ i < j ≤ n. Hence,
using conditional expectation4:

E
(
YiYj

)
= E

(
E
(

YiYj|Ftj−1

))
= E

(
Yig(Wtj−1)1A(L)

j−1
E
(

Xj|Ftj−1

))
= 0. (2.13)

Additionally, we clearly have Y2
i ≤ sup|x|≤L

(
|g(x)|2

)
X2

i , and recovering Equation (1.1)
in Proposition 1.17 we get

E
(

Y2
i

)
≤ 2 (∆it)

2 sup
|x|≤L

(
|g(x)|2

)
. (2.14)

Consequently, from Equations (2.12), (2.13) and (2.14) we observe that

E
(

S2
n,L

)
=

n

∑
i=1

E
(

Y2
i

)
≤ 2 sup

|x|≤L

(
|g(x)|2

) n

∑
i=1

(∆it)
2 ≤ 2‖∆n‖ (t− a) sup

|x|≤L

(
|g(x)|2

)
→ 0,

4The actual properties required here are (c) and (d) from the list in the appendices, subsection A.1
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as ‖∆n‖ → 0. Next step consists of realizing that due to the definition of A(L)
i−1 and Sn,L it

holds true that A(L)
n−1 ⊂ {Sn = Sn,L}, so

{Sn 6= Sn,L} ⊂
(

A(L)
n−1

)C
⊂
{

sup
s∈[a,t]

|Ws| > L

}
⇒ P {Sn 6= Sn,L} ≤ P

{
sup

s∈[a,t]
|Ws| > L

}
.

However, Doob’s inequality in Theorem 1.7 yields

P

{
sup

s∈[a,t]
|Ws| > L

}
≤ 1

L
E |Ws| =

1
L

∫ ∞

0

2x√
2πt

exp
(
−x2

2t

)
dx =

1
L

√
2t
π

.

and therefore, ∀n ≥ 1 we have P {Sn 6= Sn,L} ≤ 1
L

√
2t
π . Eventually, observe that ∀ε > 0,

{|Sn| > ε} ⊂ {|Sn,L| > ε} ∪ {Sn 6= Sn,L} ⇒ P {|Sn| > ε} ≤ P {|Sn,L| > ε}+ 1
L

√
2t
π

,

so choosing L large enough so that 1
L

√
2t
π < ε

2 , we have also proved that Sn,L → 0 in
probability as ‖∆n‖ → 0, thus there is n0 ≥ 1 satisfying P {|Sn,L| > ε} < ε

2 , ∀n ≥ n0. In
conclusion, P {|Sn| > ε} < ε, ∀n ≥ n0 which means that Sn converges to 0 in probability
as ‖∆n‖ → 0.

Proof. Theorem 2.14. To begin, we can write f (Wt)− f (Wa) = ∑n
i=1
(

f (Wti )− f (Wti−1)
)
.

Since f ∈ C2, we compute its Taylor expansion up to the second order with the remainder
in Lagrange form, obtaining

f (Wt)− f (Wa) =
n

∑
i=1

f ′(Wti−1)∆iW +
1
2

n

∑
i=1

f ′′(Wti−1 + λi∆iW) (∆iW)2,

where λi ∈ (0, 1). On the one hand, the first term in the summation converges in proba-
bility to

∫ t
a f ′(Ws)dWs, as ‖∆n‖ → 0 through Theorem 2.11. On the the other, we rewrite

the second expression as

n

∑
i=1

f ′′(Wti−1 + λi∆iW) (∆iW)2 =
n

∑
i=1

(
f ′′(Wti−1 + λi∆iW)− f ′′(Wti−1)

)
(∆iW)2

+
n

∑
i=1

f ′′(Wti−1)
(
(∆iW)2 − ∆it

)
+

n

∑
i=1

f ′′(Wti−1)∆it.

By Lemmas 2.15 and 2.16 (with f ′′ instead of g), the two first addends in the right-hand
side converge to zero as n→ ∞, and lastly, the third term converges to

∫ t
a f ′′(Ws)ds by the

classical theorem on approximation of Riemann integrals by sums.

This formula, which captures the anomalies of stochastic calculus, can be generalized
to deal with a greater set of functions. The first thought should be considering functions
ft(x) ≡ f (t, x) with continuous derivatives ∂t f , ∂x f and ∂2

x f . Then, a similar argument by
means of Taylor expansions would prove that the corresponding formula is

ft(Wt) = fa(Wa) +
∫ t

a

∂ fs

∂x
(Ws)dWs +

∫ t

a

(
∂ fs

∂t
(Ws) +

1
2

∂2 fs

∂x2 (Ws)

)
ds. (2.15)
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However, there exists a more general version of Itô formula. Examining Equations (2.10)
and (2.15), we realize that both expressions mix Itô’s integrals together with Riemann
ones, which suggests next definition.

Definition 2.17. An Itô process is a stochastic process of the form

Xt = Xa +
∫ t

a
fsdWs +

∫ t

a
gsds, a ≤ t ≤ b, (2.16)

where Xa is Fa-measurable, and ft and gt are Ft-adapted processes such that
∫ b

a | ft|2 dt <

∞ and
∫ b

a |gt| dt < ∞.

Alternately, we can also write it in stochastic differential form: dXt = ftdWt + gtdt.
Nevertheless, we can not forget that it is just a convenient symbolic shorthand with no
mathematical meaning by itself because Brownian sample paths are nowhere differen-
tiable. Note that it will also be defined the Itô’s integral of an Itô process. To check it, we
compute

|Xt|2 ≤ 3

[
|Xa|2 +

(∫ t

a
fsdWs

)2
+

(∫ b

a
gsds

)2
]

,

where we used the identity (a + b + c)2 ≤ 3(|a|2 + |b|2 + |c|2). Then, taking the expecta-
tion and using the isometry property,

E |Xt|2 ≤ 3
[

E |Xa|2 +
∫ t

a
E
(

f 2
s

)
ds + (b− a)

(∫ b

a
E
(

g2
s

)
ds
)]
≤ ∞,

so Xt ∈ L2
ad ([a, b]×Ω). Next theorem extends the previous Itô formula to this special

class of stochastic processes.

Theorem 2.18. (Itô formula, general form) Let θ : [a, b]×R→ R be a C1,2 - function and Xt
an Itô process as in Equation (2.16). Then, θt(Xt) is also an Itô process and it holds:

θt (Xt) = θa (Xa) +
∫ t

a

∂θs

∂x
(Xs) fsdWs +

∫ t

a

[
∂θs

∂s
(Xs) +

∂θs

∂x
(Xs) gs +

1
2

∂2θs

∂x2 (Xs) f 2
s

]
ds

(2.17)

Although the rigorous proof of the theorem requires long developments, we can derive
symbolically Equation (2.17) using Taylor series and Table 1.1 as a hint for the differentials.
Beginning by the Taylor expansion,

dθt (Xt) =
∂θt

∂t
(Xt) dt +

∂θt

∂x
(Xt) dXt +

1
2

∂2θt

∂x2 (Xt) (dXt)
2 ,

we can then apply the rules for the differentials in Itô’s table to see that (dXt)
2 = f 2

t dt and
consequently,

dθt (Xt) =
∂θt

∂t
(Xt)dt +

∂θt

∂x
(Xt) · ( ftdWt + gtdt) +

1
2

∂2θt

∂x2 (Xt) f 2
t dt

=
∂θt

∂x
(Xt) ftdWt +

(
∂θt

∂t
(Xt) +

∂θt

∂x
(Xt)gt +

1
2

∂2θt

∂x2 (Xt) f 2
t

)
dt,

which can be easily converted to the integral form in Equation (2.17).
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Example 2.19. We want to apply Itô formula to the process Yt = e cWt− c2
2 t, with c ∈ R

and t ∈ [a, b]. Note that now, Xt = Wt and then ft = 1, gt = 0 in the above expressions.
Deriving properly, we obtain

Yt = Ya + c
∫ t

a
YsdWs.

This means that the solution for the stochastic differential equation dYt = cYtdWt is Yt =

Yae cWt− c2
2 t instead of the expected Yt = Yae cWt .

2.3 Stratonovich’s integral

In this section, we introduce a different way to define a stochastic integral based on
the article of R. L. Stratonovich [11]. Although he developed the integral for a wider class
of stochastic process (the so-called diffusive Markov processes), we will only particularize
functions ft(Wt) in order to follow the outline from previous sections. Then, we take
advantage of the conversion formula to generalize this definition for any Itô processes and
after, we discuss some of the properties we can derive from this alternative description of
the stochastic integral.

2.3.1 Definition and conversion formula

Here, the procedure to define Stratonovich’s integral begins with its approximation by
sums, as a difference with Itô’s integral that we did it after all the construction. Likewise,
we will use as always a partition ∆n of the interval [a, b] where is defined the time.

Definition 2.20. Let ft(x) ≡ f (t, x) : [a, b]×R→ R a C1,1-function satisfying∫ b

a
E [ ft(Wt)]

2 dt < ∞ and
∫ b

a
E [∂x ft(Wt)]

2 dt < ∞,

Then, the Stratonovich’s integral of ft with respect to the Brownian motion is defined as∫ b

a
ft(Wt) ◦ dWt = lim

‖∆n‖→0

n

∑
i=1

fti−1

(
Wti + Wti−1

2

)
∆iW. (2.18)

To see if the previous definition makes sense, we shall prove that the limit exists. To
do it, we consider the difference between this formula and the integral in the sense of Itô
(whose interpretation is discussed in Section 2.2):

D∆ =
n

∑
i=1

[
fti−1

(
Wti + Wti−1

2

)
− fti−1(Wti−1)

]
∆iW,

Hence, if we see that lim‖∆n‖→0 D∆ exists, we will have also shown the consistency of
Equation (2.18). Making use of the differentiability with respect to x, we apply the Mean
Value Theorem (MVT) to ft, obtaining the expression

D∆ =
1
2

n

∑
i=1

∂ fti−1

∂x
(
θWti + (1− θ)Wti−1

)
(∆iW)2 ,
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being 0 ≤ θ ≤ 1
2 a fixed parameter. Although it is not difficult to intuit that the latter

tends in probability to the integral

1
2

∫ b

a

∂ ft

∂x
(Wt)dt,

let us justify it rigorously. Remember that we have been picking points from the original
∆n-partition of [a, b]. We now define

D∆ε =
1
2

n

∑
i=1

f
ε

t(∆)i−1
(Wt)

(
∆(∆)

i W
)2

with f
ε
t (Wt) = sup

t∈
[
t(ε)j−1, t(ε)j

)
{

∂ f
∂x

(Wt)

}
,

D∆ε =
1
2

n

∑
i=1

f ε

t(∆)i−1
(Wt)

(
∆(∆)

i W
)2

with f ε
t
(Wt) = inf

t∈
[
t(ε)j−1, t(ε)j

)
{

∂ f
∂x

(Wt)

}
,

having taken an ε-partition of the interval satisfying {t(ε)j , j = 0, 1, . . . , m} ⊂ {t(∆)i , i =
0, 1, . . . , n}. Note that each evaluation time is carefully indicated to belong to our ε or ∆
partition with the superscript. By construction, it holds that D∆ε ≤ D∆ ≤ D∆ε. Moreover,
we can use again the quadratic variation of the Wiener process (Proposition 1.17) to write

lim
‖∆n‖→0

∑
i∈[j−1, j)

(
∆(∆)

i W
)2

=
∫ t(ε)j

t(ε)j−1

dt,

and consequently,

lim
‖∆n‖→0

D∆ε =
1
2

∫ b

a
f

ε
t (Wt)dt ≡ Dε,

lim
‖∆n‖→0

D∆ε =
1
2

∫ b

a
f ε

t
(Wt)dt ≡ Dε.

However, owing to the continuity of ∂x ft (Wt) we can make the differences f
ε − f ε and

Dε − Dε as small as desired if we increase ε. Therefore, there follows the existence with
probability 1 of the limit,

lim
‖∆n‖→0

D∆ = lim
‖εm‖→0

Dε = lim
‖εm‖→0

Dε =
1
2

∫ b

a

∂ ft

∂x
(Wt)dt.

Then, under these assumptions, the integral in Equation (2.18) exists and is related to Itô’s
integral by the formula∫ b

a
ft(Wt) ◦ dWt =

∫ b

a
ft(Wt)dWt +

1
2

∫ b

a

∂ ft

∂x
(Wt)dt. (2.19)

Equally, we can also write last expression in stochastic differential form as ft(Wt) ◦ dWt =

ftdWt +
1
2 ∂x ft(Wt)dt. We now understand easily why we required some special conditions

to the function ft: we must ensure the existence of Itô’s integral but also the convergence of
the second addend. This formula will play a relevant role since it connects both views (Itô
and Stratonovich) with a term understood as drift. As we will discuss, there is no a better
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approach, but each formulation is beneficial depending on situation and the properties
we are requiring. For this reason, it is important to keep in mind that last expression is
the key to implicate both insights and take profit of each of them.

Although last definition is the usual choice because it makes its justification computa-
tionally easier, there is an alternative way to give meaning to the Stratonovich’s integral
consisting of the following:∫ b

a
ft(Wt) ◦ dWt = lim

‖∆n‖→0

n

∑
i=1

fti−1

(
W ti+ti−1

2

)
∆iW.

Notice that this approach recovers the interpretation given in Example 2.2 in which we
stated how the main discrepancy between these two views is the evaluation point of the
Brownian motion. Anyway, let us reflect that both definitions of Stratonovich’s integrals
coincide with a simple sketch (the rigorous steps are analogous to the previous reasoning).
We also need to make the difference with Itô’s integral, so inside the sum we will get[

fti−1(W ti+ti−1
2

)− fti−1

(
Wti−1

)]
∆iW =

∂ fti−1

∂x

(
W∗ti

)(
W ti+ti−1

2
−Wti−1

)
∆iW

=
∂ fti−1

∂x

(
W∗ti

)(
W ti+ti−1

2
−Wti−1

)2
+

∂ fti−1

∂x

(
W∗ti

)(
W ti+ti−1

2
−Wti−1

)(
Wti −W ti+ti−1

2

)
where we used once more the MVT (taking W∗ti

= θW ti+ti−1
2

+ (1− θ)Wti−1 for some fixed

parameter 0 ≤ θ ≤ 1), and rewrote the expression conveniently. Nonetheless, the second
term tends in probability to 0 due to the property of stationary increments of Wt and the
first term has limit 1

2 ∂x f (W∗ti
)∆it, which is coherent with the other definition.

Remark 2.21. Notice from Equation (2.19) that in general, for any ft satisfying the above
conditions, ∫ b

a
ft(Wt)dWt 6=

∫ b

a
ft(Wt) ◦ dWt,

so the properties we proved in Itô’s case do not extend for Stratonovich’s integral. Note
also that the equality holds when ft does not depend on the Brownian. For this kind of
simpler processes, the integral carries the name of Wiener integral.

Although the way to understand the original idea of the Russian probabilist follows
this previous reasoning, we now introduce a more general definition to deal with a greater
set of stochastic processes.

Definition 2.22. For any Itô processes Xt, Yt, we define the Stratonovich’s integral of Xt with
respect to Yt as ∫ b

a
Xt ◦ dYt =

∫ b

a
XtdYt +

1
2

∫ b

a
(dXt) (dYt). (2.20)

Remark 2.23. When dYt = dWt and Xt is written as Xt = Xa +
∫ t

a f X
s dWs +

∫ t
a gX

s ds for
convenient functions f X

t , gX
t , the expression is simplified using Itô’s table,∫ b

a
Xt ◦ dWt =

∫ b

a
XtdWt +

1
2

∫ b

a
f X
t dt. (2.21)
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Particularly, we recover the construction developed before. More precisely, if Xt = ft (Wt),
assuming regularity in the derivatives of ft and applying Itô formula we have dXt =

∂x ft (Wt) dWt + [∂t ft (Wt) +
1
2 ∂2

x ft (Wt)]dt. And this, supported by Table 1.1 gives f X
t =

∂x f (Wt), which is exactly Equation (2.19). On the other hand, it will be interesting for
next chapter considering the Stratonovich’s representation of processes of the form θt (Xt),
where Xt is an Itô process written as above and θ is a real C1,2-function defined on [a, b]×
R. By Theorem 2.18, θt (Xt) is another Itô process, so we can apply Definition 2.20 to reach∫ b

a
θt (Xt) ◦ dWt =

∫ b

a
θt (Xt) dWt +

1
2

∫ b

a

∂θt

∂x
(Xt) ftdt. (2.22)

As we will see in Section 3.4, this will be the main tool to change from Stratonovich’s
stochastic differential equation perspective to Itô’s one and obtain a direct formula be-
tween them.

Moreover, this general definition satisfies some good properties, such as the fact that
the collection of Itô processes is closed under making its Stratonovich’s integral, as it
asserts next theorem.

Theorem 2.24. For any Xt, Yt Itô process, the resulting stochastic process of making its
Stratonovich integral,

Zt =
∫ t

a
Xs ◦ dYs, ∀t ∈ [a, b]

is another Itô process.

Proof. As Xt and Yt are Itô processes, there exist Xa, Ya Fa-measurable random variables

and f X
t , gY

t Ft-measurable adapted processes with
∫ b

a

∣∣∣ f X,Y
t

∣∣∣2 dt < ∞,
∫ b

a

∣∣∣gX,Y
t

∣∣∣ dt < ∞
such that

Xt = Xa +
∫ t

a
f X
s dWs +

∫ t

a
gX

s ds, ∀t ∈ [a, b] ,

Yt = Ya +
∫ t

a
f Y
s dWs +

∫ t

a
gY

s ds, ∀t ∈ [a, b] .

In stochastic differential form, we can compute with the help of Itô’s table (dXt) (dYt) =

f X
t f Y

t dt and then, rewriting Equation (2.20) we get∫ b

a
Xt ◦ dYt =

∫ b

a
Xt f Y

t dWt +
∫ b

a

(
XtgY

t +
1
2

f X
t f Y

t

)
dt.

Now, we just have to bound each of these terms. As we mentioned, almost all of the sam-
ple paths of Xt are continuous, so we can consider its supremum to bound the expression.
Then it follows, ∫ b

a

∣∣∣Xt f Y
t

∣∣∣2 dt ≤ sup
s∈[a,b]

|Xs|2
∫ b

a

∣∣∣ f Y
t

∣∣∣2 dt < ∞,

∫ b

a

∣∣∣XtgY
t

∣∣∣ dt ≤ sup
s∈[a,b]

|Xs|
∫ b

a

∣∣∣gY
t

∣∣∣ dt < ∞.
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Moreover, by the Schwarz inequality5 we have

∫ b

a

∣∣∣ f X
t f Y

t

∣∣∣ dt ≤
(∫ b

a

∣∣∣ f X
t

∣∣∣2 dt
)1/2 (∫ b

a

∣∣∣ f Y
t

∣∣∣2 dt
)1/2

< ∞.

As the Ft-measurability of each of the terms is fulfilled trivially, we have shown that Zt is
an Itô process too.

In the sequel, we will always make Stratonovich’s integrals with respect to the Brow-
nian, i.e, dYt = dWt, to follow the line of previous chapters, so the Equations that will
characterize these processes are (2.19) and (2.22), which carry the same information but
are expressed for different contexts.

2.3.2 Advantages and disadvantages

The election of a different evaluation point for the Brownian motion makes Stratono-
vich’s integral to exhibit different properties. For example, one can wonder whether the
assertion in Lemma 2.9 is also satisfied or not. To discuss it, we will generally appeal to
the conversion formula. For example, the Stratonovich’s integral of an Itô processes with
respect to Wt is linear. It is a trivial consequence of the same property for Itô’s integrals
and also linearity of the derivative and standard integral,∫ b

a
(aXt + bYt) ◦ dWt =

∫ b

a
(aXt + bYt) dWt +

1
2

∫ b

a

∂

∂x

(
a f X

t + b f Y
t

)
dt

= a
∫ b

a
XtdWt +

a
2

∫ b

a

∂ f X
t

∂x
dt + b

∫ b

a
YtdWt +

b
2

∫ b

a

∂ f Y
t

∂x
dt

= a
∫ b

a
Xt ◦ dWt + b

∫ b

a
Yt ◦ dWt,

when Xt = Xa +
∫ t

a f X
s dWs +

∫ t
a gX

s ds and Yt = Ya +
∫ t

a f Y
s dWs +

∫ t
a gY

s ds are Itô processes
defined ∀t ∈ [a, b]. However, the rest of the good conditions are not fulfilled anymore.
The centrality is substituted by

E
(∫ b

a
Xt ◦ dWt

)
= E

(∫ b

a
XtdWt

)
+

1
2

E
(∫ b

a
ftdt
)
=

1
2

∫ b

a
E ( ft) dt,

which is not zero in general, and finally, the isometry is not true either since

E
(∫ b

a
Xt ◦ dWt

)2

= E
(∫ b

a
XtdWt

)2

+ 2E
(∫ b

a
XtdWt ·

∫ b

a
ftdt
)
+ E

(∫ b

a
ftdt
)2

=
∫ b

a
E
(

X2
t

)
dt + 2E

(∫ b

a
XtdWt ·

∫ b

a
ftdt
)
+
∫ b

a

∫ b

a
E ( ft fs) dtds.

It is also important to check whether martingale property is also lost. The following result
clarifies the matter.

5In fact, it is a particular case of Hölder’s inequality, an important result in mathematical analysis which is
reminded in the appendices, subsection A.2.
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Lemma 2.25. Given an Itô process Xt = Xa +
∫ t

a fsdWs +
∫ t

a gsds, then the indefinite
Stratonovich’s integral Yt =

∫ t
a Xt ◦ dWt,

• Is a submartingale when E ( ft) > 0, ∀t ∈ [a, b].

• Is a supermartingle when E ( ft) < 0, ∀t ∈ [a, b].

• Is a martingale when E ( ft) = 0, ∀t ∈ [a, b].

In general, we can only say that Yt can be expressed as a martingale plus another process
of finite variation.

Proof. We first fix a ≤ s ≤ t ≤ b. Turning again to the conversion formula for our two
different integrals in Equation (2.21), we see that Yt is integrable since it is Xt =

∫ t
a ft(Ws)dt

too and the hypothesis on the coefficient
∫ b

a | ft|2 < ∞ implies

E
(∫ t

a
ftdt
)
≤ E

(∫ b

a
f 2
t dt
)1/2

=

(∫ b

a
E
(

f 2
t

)
dt
)1/2

< ∞.

Hence, we can compute the conditional expectation of Yt with respect to the filtration Fs,
and using its linearity we get

E (Yt|Fs) = E (Xt|Fs) + E
(∫ t

a
fsds|Fs

)
.

As we shew in Proposition 2.13, Itô’s integral is a martingale so the first term is equal to
Xs. Therefore, it holds that

E (Yt|Fs) = Xs +E
(∫ t

a
ftdt|Fs

)


< Xs + E
(∫ s

a ftdt|Fs
)
= Ys if E( ft) > 0, ∀t ∈ [a, b]

> Xs + E
(∫ s

a ftdt|Fs
)
= Ys if E( ft) < 0, ∀t ∈ [a, b]

= Xs = Ys if E( ft) = 0, ∀t ∈ [a, b]

proving the different cases stated in the lemma.

Until here, it seems as if we had lost properties with respect to Itô’s integral, even
though, having chosen the intermediate of the interval to evaluate Wt makes the process
to satisfy deterministic techniques of integration.

Theorem 2.26. Let Ft(x) be an antiderivative in x of a function ft(x). Suppose that ∂tF, ∂t f and
∂x f are continuous. Then,∫ b

a
ft (Wt) ◦ dWt = Ft (Wt)

]
b
a −

∫ b

a

∂Ft

∂t
(Wt) dt. (2.23)

Particularly, when f has no dependecy on time, we get∫ b

a
ft (Wt) ◦ dWt = Ft (Wt)

]
b
a.
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Proof. Consider a function Ft(x) with continuous derivatives ∂tF, ∂2
xxF and ∂2

txF. Taking
the stochastic differential form of Equation (2.19) applied to ∂xF gives

∂Ft

∂x
(Wt) ◦ dWt =

∂Ft

∂x
(Wt) dWt +

1
2

∂2Ft

∂x2 (Wt) dt.

Otherwise, by Itô formula, we know

dFt (Wt) =
∂Ft

∂t
(Wt) dt +

∂Ft

∂x
(Wt) dWt +

1
2

∂2Ft

∂x2 (Wt) dt,

so we obtain the equivalence

∂Ft

∂x
(Wt) ◦ dWt = dFt (Wt)−

∂Ft

∂t
(Wt) dt,

which corresponds to the differential form of Equation (2.23).

This crucial result means that Stratonovich’s integral behaves like standard integral in
Leibniz-Newton calculus. In addition, we can use it to evaluate Stratonovich’s integrals
and then use the conversion formula to obtain the respective Itô’s solution faster.

Example 2.27. We want to compute
∫ b

a cos (Wt)dWt. To do it, it is easier to consider first
its Stratonovich’s representation since the integral will be direct,∫ b

a
cos (Wt) ◦ dWt = sin (Wt)]

a
b = sin (Wa)− sin (Wb).

Thus, with the conversion formula we obtain∫ b

a
cos (Wt)dWt =

∫ b

a
cos (Wt) ◦ dWt −

1
2

∫ b

a
[− sin (Wt)] dt

= sin (Wa)− sin (Wb) +
1
2

∫ b

a
sin (Wt)dt.

Consequently, an important question arises over what is the correct interpretation for
the stochastic integral. The answer is not clear and will depend on the situation. For exam-
ple, due to the martingale property of Itô’s integral, it is easier to compute the conditional
expectation of a process so this perspective would be more appropriate in mathematical
theory. Moreover, imagine that a stochastic integral for given observable ft comes from a
noisy term as ∫ b

a
ftdWt =

∫ b

a
ftξtdt.

Then, guessing that ft is a Ft-adapted process seems to be the suitable in gambling,
since the decision must be taken before you are provided with new information, and in
Itô’s integral the current knowledge is independent of the noise increment produced at
this time. In other words, choosing Itô’s approach makes the stochastic process ft to be
uncorrelated with the white noise acting on the system at this same time. That is why it
is usually called nonanticipating.

Hence, while Itô’s view is more used in Mathematics and Economics, Stratonovich’s is
the common choice in experimental sciences. Next section tries to explain the because of
this advisable election.
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2.4 Approximation of stochastic integrals

As we commented previously, many physical systems are influenced by white noise
(for example, if they are driven by the Langevin equation, described next chapter). How-
ever, Brownian motion is an idealization as it cannot be achievable in real world, but
approximated by a sequence {Φn

t }n≥1 of well-behaved stochastic processes. For that rea-
son, it becomes interesting to study the convergence of integrals

∫ b
a ht(Φn

t )dΦn
t , where

each Φn
t is a reasonable smooth function satisfying ordinary calculus. Before giving the

main result in this area due to E. Wong and M. Zakai, we distinguish the following types
of approximations to the Brownian motion.

(C1) For almost all ω, Φn
t → Wt a.s. ∀t ∈ [a, b] when n → ∞ and Φn

t (ω) are continuous
functions of bounded variation ∀n ≥ 1.

(C2) Condition (C1) and also that for almost all ω, ∃ n0(ω), k(ω) < ∞ such that Φn
t (ω) ≤

k(ω), ∀n > n0, ∀t ∈ [a, b].

Observe that (C1) ensures the existence of the Riemann-Stieljes integral because of Theo-
rem 2.1. In the sequel, we examine a result which gives a direct relation between these
sequences of ordinary integrals and the Stratonovich’s stochastic integral defined before.
In its proof, we require some tools from a course on measure theory that are collected in
the appendices, subsection A.2.

Theorem 2.28. (Wong and Zakai, I part) Let ht(x) a continuous function with continuous
partial derivative ∂xht(x), and ∂tht(x) Moreover, {Φn

t }n≥1 will be a sequence of stochastic
processes satisfying (C2). Then, a.s.,

lim
n→∞

∫ b

a
ht(Φn

t ) dΦn
t =

∫ b

a
ht(Wt) ◦ dWt.

In addition, if ht(x) is independent of t, the same assertion is correct under conditon (C1).

Proof. We define a function

Ft(x) =
∫ x

0
ht(y)dy t ∈ [a, b] , x ∈ R,

whose differential evaluated on Φn
t is, due to the chain rule in Newton-Leibniz determin-

istic calculus
dFt(Φn

t ) =
∂Ft

∂t
(Φn

t ) dt + ht(Φn
t ) dΦn

t .

Consequently, ∫ b

a
ht (Φn

t ) dΦn
t = Fb (Φ

n
b )− Fa (Φn

a )−
∫ b

a

∂Ft

∂t
(Φn

t ) dt.

When making the limit of the previous expression, the first two terms in the right-side do
not show problem as the sequence is on the evaluation point of the integral, however, for
the last one, we proceed more subtly. As ∂xht(x) is a continuous function defined on the
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interval [a, b], it will bounded and then, applying the theorem of derivation under the integral
sign we will get

∂Ft

∂t
(x) =

∂

∂t

(∫ x

a
ht(y)dy

)
=
∫ x

a

∂ht

∂t
(y)dy.

Therefore, using (C2),

∂Ft

∂t
(Φn

t ) =
∫ Φn

t

a

ht

∂t
(y)dy⇒

∣∣∣∣∂Ft

∂t
(Φn

t )

∣∣∣∣ ≤ ∫ k

a

∣∣∣∣∂ht

∂t
(y)
∣∣∣∣ dy ≤ max

y∈[a,k]

∂th
∂t

(y) (k− a) .

Notice that the existence of such a maximum is due to Weierstrass theorem (∂tht is a
continuous function defined on a closed interval). Consequently, we can use the dominated
convergence theorem to obtain

lim
n→∞

∫ b

a

∂Ft

∂t
(Φn

t )dt =
∫ b

a

(
lim

n→∞

∂Ft

∂t
(Φn

t )

)
dt =

∫ b

a

∂Ft

∂t
(Wt)dt,

and so,

lim
n→∞

∫ b

a
ht (Φn

t ) dΦn
t = Fb (Wb)− Fa (Wa)−

∫ b

a

∂Ft

∂t
(Wt) dt. (2.24)

In case that ∂tht = 0, the last integral would vanish and the statement of the theorem
is satisfied if we replace (C1) by (C2). On the other hand, we can take Itô formula in
Equation (2.15) to write F as

Fb (Wb) = Fa (Wa) +
∫ b

a

∂Ft

∂t
(Wt) dt +

∫ b

a
ht (Wt) dWt +

1
2

∫ b

a

∂ht

∂x
(Wt) dt (2.25)

Again, we used the continuity of ∂tht and ∂xht to derive the integral under the integral
sign. Then, at the final point we only have to connect Equations (2.24) and (2.25) to reach
the expression

lim
n→∞

∫ b

a
ht (Φn

t ) dΦn
t =

∫ b

a
ht (Wt) dWt +

1
2

∫ b

a

∂ht

∂x
(Wt) dt,

where the left-hand side of the equation corresponds to the definition of the Stratonovich’s
integral in terms of Itô’s one.

As a consequence, if we come back to Itô-Stratonovich dilemma, this tells that the
second will be the right choice when the noise is approximated by smoothly well-defined
processes. This is the case of a particle suspended in a fluid, where the collisions happen
in a smaller scale of time than the average motion of the object. Then, as the speed is
finite its correlation time τ will be tiny, but we ideally expect recovering white noise when
τ → 0 and the frequency spectrum tends to be uniform. It is important to emphasize that
this is not applicable to Finance, where the processes are usually discontinuous and thus
Itô’s calculus is chosen.

Furthermore, we can generalize this result in case that ξt does not satisfy E (ξtξt+∆t) =

0, the so-called coloured noise. Then, the Stratonovich’s integral is also the limit of contin-
uous time coloured noise.
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2.4.1 Numerical simulation I

The aim of this part is applying the theory developed in this section to study a case
numerically. In particular, we focus on solving Example 2.2, showing the main differences
between Itô’s and Stratonovich’s integration and give evidence of Wong-Zakai theorem
for approximating integrals. For the sake of simplicity, we take a = 0, b = 1. In other
words, we want to compute

∫ t
0 WsdWs and

∫ t
0 Ws ◦ dWs, 0 ≤ t ≤ 1, so as to exemplify the

discrepancy of both points of views.

Figure 2.1: Value of the indefinite integral of Wt for Itô’s and Stratonovich’s description
and also using an approximating sequence of well-behaved functions. The simulation of
the Brownian was taken for 1000 steps in time and only 300 to approximate it with splines.

To do so, we fix a time scale and a partition of it with a considerable number of time
steps of length ∆jt where the functions will be evaluated. Then, we approximately build

∆jW ≈ γj

√
∆jt, being γj a normal distributed random number, and W is the cumulative

sum of the vector dW. After that, a simple way of computing stochastic integrals is re-
covering Theorem 2.11 and Definition 2.18 to obtain values for each indefinite integral in
the "Riemann style". Finally, if we also want to compute its approximating deterministic
integrals, we proceed as follows:

• We first set n the number of points of intermediate points at which we will take the
exact values of Wt. The resulting number of steps in time must be lower than the
taken to build the original Brownian vector.

• We interpolate the rest of the values of the time vector with splines. These are well-
behaved functions and satisfy the assumptions in Theorem 2.28.
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• We make the numerical derivative of this, for example, with the five-point method.

• To estimate the Riemann-Stieljes integral, we solve with Simpson 1/3 rule the follow-
ing integral, ∫ b

a
Φn

t dΦn
t =

∫ b

a
Φn

t
dΦn

t
dt

dt.

• Then, we can repeat the same argument for a higher number of intermediate points.

The results are shown in Figure 2.1. Note that we can distinguish different results for
Itô’s and Stratonovich’s approaches, and the approximating sequence of deterministic
integrals clearly tends to the Stratonovich’s integral, which is coherent with Theorem 2.28.
Moreover, we note that in this case, Stratonovich’s integral always takes greater values of
Itô’s one (even for other simulations of the same problem). This is direct consequence of
the conversion formula, because here ft(Wt) = Wt and so 1

2

∫ t
0

∂ ft
∂x (Wt) =

t
2 > 0, ∀t ∈ [0, 1].



Chapter 3

Stochastic Differential Equations

In this section, we introduce the study of Stochastic Differential Equations (SDEs). On
the one hand, using both Itô’s and Stratonovich’s differantials we give some examples to
explore the behaviour of the solutions and then we prove a crucial result which states
existence and uniqueness of these processes under some hypothesis we will mention. On
the other, the chapter finishes with a discussion referred to the approximation of solutions
of SDEs by the analogous solutions of Ordinary Differential Equations (ODEs).

As a historical note, the first person proposing a "SDE" was Louis Bachelier, who
in 1900 used Wt to describe the market fluctuations affecting the price of the Paris Stock
Exchange. Of course he did not mention the term Brownian motion, but he used a process
with the same properties.

3.1 Introductory examples

Our goal is solving equations of the form:

dXt = σt(Xt)dWt + ft(Xt)dt, Xa = xa,

where σt(x) and ft(x) are measurable functions of t ∈ [a, b], x ∈ R, and also knowing an
initial condition xa, which is a random variable independent of the Brownian motion Wt.
Remember, as usual, that the accurate sense of this kind of expressions comes from its
integral representation, called Stochastic Integral Equation (SIE):

Xt = xa +
∫ t

a
σs(Xs)dWs +

∫ t

a
fs(Xs)ds, t ∈ [a, b] , (3.1)

because dWt does not have meaning by itself. Commonly, the coefficients ft(Xt) and σt(Xt)

are known as drift and diffusion coeffient respectively. Note that when the latter vanishes,
we recover the ordinary differential approach dXt

dt = bt(Xt).

To give some heuristic interpretation to a SDE, we can think that the increment ∆Xt =

Xt+∆t − Xt is the sum of two terms: one comes from a deterministic sight, bt(Xt), and the
other is a random impulse σt(Xt), so that the distribution of the increment will be normal

34
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with mean bt(Xt)∆t and variance σ2
t (Xt)∆t. This view is connected with the following

example.

Example 3.1. (Langevin equation) To model the velocity of a Brownian particle under fric-
tional forces, we use the equation

dXt

dt
= −βXt + αξ, Xa = xa,

where β > 0 and t ≥ a. For the sake of simplicity, we will also take α ∈ R, which defines
the noise as additive. If we had taken α = α (Xt), it is said multiplicative noise and requires
a more sophisticated treatment. Notice that Langevin equation is not more than the 2nd
Newton’s Law with a diffusion extra term. Written in stochastic differential notation it is

dXt = −βXtdt + αdWt, Xa = xa.

To solve this, we use the technique of variation of constants. We first consider the solution
of the same equation without the diffusion term,

dXt = −βXtdt⇒ Xt = xa(t)e−βt, t ≥ a.

Since xa(t) is a random variable, in order take the differential form of Xt we shall use Itô
formula, obtaining

dXt = dxa(t)e−βt − βxa(t)e−βtdt = dxa(t)e−βt − βXtdt,

which must be equal to the original SDE,

dxa(t)e−βt − βXtdt = −βXtdt + αdWt ⇒ dxa(t) = αeβtdWt ⇒ xa(t) = xa + α
∫ t

a
eβsdWs,

so we finally get

Xt = xae−βt +
∫ t

a
e−β(t−s)dWs.

One further point: this kind of solutions has its own name: Ornstein-Uhlenbech processes,
and they play an important role in Physics and Mathematical Finance.

Before moving forward, we give two more examples that show how stochastic differ-
ential equations can sometimes exhibit defective properties.

Example 3.2. Let us analyze now the following SDE:

dXt = X2
t dWt + X3

t dt, Xa = 1.

To find the solution for t ∈ [a, b], it is convenient to apply Itô formula to compute

d
(

1
Xt

)
= − 1

X2
t

dXt +
1
2

2
X3

t
(dXt)

2 = − 1
X2

t

(
X2

t dWt + X3
t dt
)
+ Xtdt = −dWt.

Hence, we have that 1
Xt

= −Wt + C, being C a constant. This, together with the initial
condition result in the solution

Xt =
1

1− (Wt −Wa)
.

Consequently, the process Xt exists only up to τ = inft∈[a,b] {Wt = 1 + Wa}, which is called
the explosion time of the SDE.
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Example 3.3. Consider also the following equation to solve

dXt = 3X2/3
t dWt + 3X1/3

t dt, X0 = 0.

It is easily verifiable that Xt = (Wt − c)3
1{Wt≥c} is solution of the equation ∀c > 0 (just

using anew Itô formula), which means that there exist infinite processes satisfying such
SDE.

These two last examples, which actually have equivalent versions in ordinary differen-
tial calculus, show the necessity to impose further conditions to the functions σt(x) and
ft(x) in order to achieve existence and uniqueness of solutions.

3.2 Preparatory lemmas and hypothesis

We aim to prove the analogous Peano and Picard’s theorem of ODEs for our SDEs
coming Equation (3.1). Before doing that, we should specify what kind of solutions we
are searching for and which assumptions we need to reach the desired result.

Definition 3.4. We will say that a Ft-adapted stochastic process Xt is a solution of our SIE
in Equation (3.1) ∀t ∈ [a, b] if it holds:

1. σ ∈ L2
ad ([a, b]×Ω), so that

∫ t
a σs(Xs)dWs is an Itô’s integral, ∀t ∈ [a, b].

2. f ∈ L1 ([a, b]×Ω) , ∀t ∈ [a, b].

3. For any t ∈ [a, b], Equation (3.1) holds true a.s.

Definition 3.5. We say that the Equation (3.1) has a path-wise unique solution if given any
X(1)

t and X(2)
t satisfying Definition (3.4), then

P
{

X(1)
t = X(2)

t , t ∈ [a, b]
}
= 1.

What is to say, they are indistinguishable.

Let us now talk about the requirements for drift and diffusion coefficients, discussing
a bit why they are necessary.

Definition 3.6. Given a measurable function ft(x) on [a, b] ×R, we say it is Lipschitz in
the x variable when it is Hölder continuous of degree 1. What is to say, if there exists a
constant K > 0 such that:

| ft (x)− ft (y)| ≤ K |x− y| , ∀t ∈ [a, b] , ∀x, y ∈ R.

This is some kind of bound for the derivative of the function (in case that f had one)
and was also present in the deterministic case. Notice that Example 3.3 does not satisfy
Lipschitz condition on x so it seems to be required to ensure uniqueness of solutions.

Definition 3.7. We say that a measurable function ft(x) on [a, b]×R follows linear growth
condition if there exists a constant K > 0 such that:

| ft (x)| ≤ K (1 + |x|) , ∀t ∈ [a, b] , ∀x ∈ R.
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In fact, this condition is equivalent to the existence of a constant K > 0 satisfying
| ft (x)|2 ≤ K

(
1 + x2). This is decisive in order to guarantee the existence avoiding explo-

sion. Notice that, for example, the process in Example 3.2 does not satisfy it. Moreover, it
is important to remark that this condition is weaker than continuity in time. Indeed, for
any continuous time process ft(x), also Lipschitz in x, we can bound

| ft(x)| ≤ | ft(x)− ft(0)|+ | ft(0)| ≤ K (1 + |x|) ,

where K is now the maximum between the Lipschitz constant and the bound for the
continuous function ft(0). To finish this section, we give a pair of lemmas that will appear
in the proof of the theorems.

Lemma 3.8. (a Gronwall lemma) Let u, v : [a, b]→ R+ be continuous functions. If

v(t) ≤ α +
∫ t

a
u(s)v(s)ds, ∀t ∈ [a, b] ,

for some constant α > 0, then v(t) ≤ αe
∫ t

a u(s)ds.

Proof. Define a function ψ as ψ(t) := α +
∫ t

a u(s)v(s)ds whose derivative is ψ′(t) =

u(t)v(t). Hence,(
e−
∫ t

a u(s)dsψ(t)
)′

=
[
ψ′(t)− u(t)ψ(t)

]
e−
∫ t

a u(s)ds ≤ [u(t)ψ(t)− u(t)ψ(t)] e−
∫ t

a u(s)ds = 0,

and so
ψ(t)e−

∫ t
a u(s)ds ≤ ψ(a)e−

∫ a
a u(s)ds = α.

Finally, the result follows from v(t) ≤ ψ(t) ≤ αe
∫ t

a u(s)ds.

Lemma 3.9. For any process f ∈ L2
ad ([a, b]×Ω), and ε, N > 0, it holds

P
{∣∣∣∣∫ b

a
ftdWt

∣∣∣∣ > ε

}
≤ P

{∫ b

a
f 2
t dt > N

}
+

N
ε2 .

We omit the demonstration of this lemma, but we want to emphasize that it is one
of the crucial tools we need to extend the definition of Itô’s integral for a larger set of
processes, as we mentioned in Remark 2.10.

3.3 A result on existence and uniqueness of solutions

In the following, we prove these two notable results always under the considerations
we made in the previous section. As we will see, there are involved many notions studied
during the degree, so we highly recommend the reader consulting the appendix as a
reminder.
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Theorem 3.10. Let σt(x) and ft(x) be measurable functions on [a, b]×R satisfying Lip-
schitz and linear growth conditions on x. Assume also that the initial state Xa is a Fa-
measurable random variable with E

(
X2

a
)
< ∞. Under these hypothesis, the SDE

dXt = σt(Xt)dWt + ft(Xt)dt, Xa = xa (3.2)

has a continuous solution Xt.

Proof. We are going to proceed similarly as with the proof for ODEs. Given a sequence of
continuous stochastic processes {X(n)

t }n≥1, we set Picard’s iteration scheme in the follow-
ing way:

X(0)
t = Xa, X(n+1)

t = X0 +
∫ t

a
σs

(
X(n)

s

)
dWs +

∫ t

a
fs

(
X(n)

s

)
ds, n ≥ 0, (3.3)

with t ∈ [a, b]. To begin, we should see that this sequence defined recursively belongs
to L2

ad ([a, b]×Ω). Let us do it by induction. Trivially, X(0)
t fulfills this assumption, and

suppose now that it is also true for a process X(n)
t . Then, using linear growth condition

(being K1, K2 the respective constants),

E
∫ b

a
σ
(

t, X(n)
t

)2
dt ≤ K1 (b− a) + K1E

∫ b

a

∣∣∣X(n)
t

∣∣∣2 dt < ∞, (3.4)

∫ t

a

∣∣∣ fs

(
X(n)

s

)∣∣∣ ds ≤ K2

∫ b

a

(
1 +

∣∣∣X(n)
t

∣∣∣) dt ≤ K2 (b− a) +
∫ b

a

∣∣∣X(n)
t

∣∣∣ < ∞, (3.5)

and we used the inductive hypothesis to prove that such expressions are finite. With this,
we prove that σs(X(n)

s ) ∈ L2
ad ([a, b]×Ω) and ft(X(n)

s ) ∈ L1 ([a, b]×Ω). On the other hand,
applying the identity |a + b + c|2 ≤ 3

(
a2 + b2 + c2) to the iterative Equation (3.3) we get∣∣∣X(n+1)

t

∣∣∣2 ≤ 3

[
X2

0 +

(∫ t

a
σs

(
X(n)

s

)
dWs

)2
+

(∫ t

a
fs

(
X(n)

s

)
ds
)2
]

,

which together with Equations (3.4) and (3.5) lead us to conclude

E
∫ b

a

∣∣∣X(n+1)
t

∣∣∣2 dt < ∞⇒ X(n+1)
t ∈ L2

ad ([a, b]×Ω) .

Next, we compute Dn
t := E(|X(n+1)

t − X(n)
t |2). As in the previous step, we will prove by

induction on n that

Dn
t ≤

[M(t− a)]n+1

(n + 1)!
, (3.6)

for some constant M, depending on (b− a), Xa and L which is defined to be the maximum
of the two linear growth constants. The case for n = 0 follows from

D0
t = E

(∣∣∣X(1)
t − X(0)

t

∣∣∣2) = E

(∣∣∣∣∫ t

a
fs(Xa)ds +

∫ t

a
σs(Xa)dWs

∣∣∣∣2
)

≤ 2E

(∣∣∣∣∫ t

a
L (1 + |Xa|) ds

∣∣∣∣2
)
+ 2E

(∫ t

a
L2 (1 + |Xa|)2 ds

)
≤ 2L2 (b− a) E

(∫ t

a
(1 + |Xa|)2 ds

)
+ 2L2E

(∫ t

a
(1 + |Xa|)2 ds

)
≤ M (t− a) ,
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being M = 2L2 (1 + b− a) E(1 + |Xa|2). After this, we make the hypothesis that the in-
equality is valid for any natural number m ≤ n− 1. Then,

D(n)
t = E

(∣∣∣∣∫ t

a
fs

(
X(n)

s

)
− fs

(
X(n−1)

s

)
ds +

∫ t

a
σs

(
X(n)

s

)
− σs

(
X(n−1)

s

)
dWs

∣∣∣∣2
)

≤ 2 (b− a) L2E
(∫ t

a

∣∣∣X(n)
s − X(n−1)

s

∣∣∣2 ds
)
+ 2L2E

(∫ t

a

∣∣∣X(n)
s − X(n−1)

s

∣∣∣2 ds
)

,

which by the induction hypothesis results in

D(n)
t ≤ 2L2 (1 + b− a)

∫ t

a

Mnsn

n!
ds ≤ Mn+1 (t− a)n+1

(n + 1)!
,

if we carefully choose the same value of M as above. Hence, the desired claim is proven.
After this, we consider

sup
t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣2 ≤ 2 (b− a) L2
∫ b

a

∣∣∣X(n)
t − X(n−1)

t

∣∣∣2 ds

+ 2 sup
t∈[a,b]

∣∣∣∣∫ t

a

[
σs

(
X(n)

t

)
− σs

(
X(n−1)

)]
dWs

∣∣∣∣2.

Now, we can apply Dood’s L2 inequality (stated in Theorem 1.7) to the second term so
that we reach to

E

(
sup

t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣2) ≤ 2 (b− a) L2E

(∫ b

a
sup

t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣2ds

)

+ 8L2E

(∫ b

a
sup

t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣2ds

)
≤ C

Mn (t− a)n

n!
,

where we used the Inequality (3.6) proved before to bound the whole result, and C > 0
collects some of the other constants. Moreover, using Chevychev’s inequality we can write

P

(
sup

t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣ > 1
2n

)
≤ 22nE

(
sup

t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣2) ≤ 22nC
Mn (t− a)n

n!
.

Therefore, as ∑∞
n=1 22n Mn(t−a)n

n! < ∞ (easily demonstrable using Ratio Test), first Borel Can-
telli lemma implies that

P

(
lim inf

n

{
sup

t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣ ≤ 1
2n

})
= 1.

In other words, ∀ω a.s., ∃m0(ω) such that ∀n ≥ m0(ω)

sup
t∈[a,b]

∣∣∣X(n+1)
t − X(n)

t

∣∣∣ ≤ 1
2n .
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And consequently, making use of Weierstrass M-test we obtain that the following series

X(m)
t = Xa +

m−1

∑
k=0

[
X(k+1)

t + X(k)
t

]
,

converges uniformly on [a, b] to a process Xt = limn→∞ X(n)
t . Anyway, we still have to

check some conditions to see that this solution meets the requirements in Definition 3.4.
To prove that Xt satisfies Equation (3.1), we distinguish:

• The a.s. convergence of the path-wise integrals is a consequence of∣∣∣∣∫ t

a

[
fs(X(n)

s )− fs(Xs)
]

ds
∣∣∣∣ ≤ L

∫ t

a

∣∣∣X(n)
s − Xs

∣∣∣ ds ≤ L sup
s∈[a,t]

∣∣∣X(n)
s − Xs

∣∣∣→ 0.

• However, for the stochastic integral, we need the Lemma 3.9, and thus

P
(∣∣∣∣∫ t

a

[
σs(X(n)

s )− σs(Xs)
]

dWs

∣∣∣∣ > ε

)
≤ P

(∫ t

a

∣∣∣σs(X(n)
s )− σs(Xs)

∣∣∣2 ds > N
)
+

N
ε2 .

The first term in the right-hand side tends to zero due to the uniform convergence
of σt(X(n)

t ) → σt (Xt) (true because σ is continuous), so choosing appropriate ε and
N the assertion is proven.

Finally, the conditions on the coefficients σ and f are direct from Equations (3.4) and (3.5)
and we have also seen∥∥∥X(n+1)

t − X(n)
t

∥∥∥
L2
≤ CMn (t− a)n

n!
⇒ ‖Xt‖L2 ≤ ‖X0‖L2 +

∞

∑
n=1

CMn (t− a)n

n!
.

Therefore, E
∫ b

a |Xt|2 dt < ∞ and so Xt ∈ L2
ad ([a, b]×Ω), which completes the proof.

Theorem 3.11. Under the same hypothesis in Theorem 3.10, the solution to the stochastic
differential Equation (3.2) is unique.

Proof. In the following, K will denote a big enough constant which can be different in each
expression. Let us suppose that Xt and Yt are different continuous solutions of our SIE.
We can write Zt = Xt −Yt as

Zt =
∫ t

a
[σs(Xs)− σs(Ys)] dWs +

∫ t

a
[ fs(Xs)− fs(Ys)] ds.

Then, using again the identity (a + b)2 ≤ 2
(
a2 + b2) we get

Z2
t ≤ 2

{(∫ t

a
[σs(Xs)− σs(Ys)] dWs

)2
+

(∫ t

a
[ fs(Xs)− fs(Ys)] ds

)2
}

. (3.7)
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Now, applying the expectation to the each of its terms, and using Lipschitz property for
both σt(x) and ft(x) gives us

E
(∫ t

a
[σs(Xs)− σs(Ys)] dWs

)2
= E

∫ t

a
[σs(Xs)− σs(Ys)]

2 ds ≤ K2
∫ t

a
E(Z2

s )ds,

E
(∫ t

a
[ fs(Xs)− fs(Ys)] ds

)2
= (t− a) E

∫ t

a
[ fs(Xs)− fs(Ys)]

2 ds ≤ (t− a)K2
∫ t

a
E(Z2

s )ds.

All in all, inserting these two last expressions in Equation (3.7), we reach to

E
(

Z2
t

)
≤ 2K2 (1 + b− a)

∫ t

a
E
(

Z2
s

)
ds.

Therefore, Gronwall’s Lemma (3.8) with α = 0 implies that E
(
Z2

t
)
= 0, ∀t ∈ [a, b]. Hence,

X(1)
t = X(2)

t , ∀t ∈ [a, b] a.s. and in particular X(1)
r = X(2)

r for all rational numbers r ∈ [a, b]
except for a set of probability zero. However, as X(1)

t and X(2)
t are assumed to have

continuous sample paths a.s., and consequently

P

(
sup

t∈[a,b]

∣∣∣X(1)
t − X(2)

t

∣∣∣ > 0

)
= 0.

3.4 Stratonovich’s view of a SDE

Once we have solved some examples and proven the existence and uniqueness of
solutions for SDEs of the form as Equation (3.2), one can wonder whether it is possible to
change Itô’s perspective of the differentials to the other kind of representation we studied
in the chapter devoted to stochastic integration. To analyse this, we first consider

dXt = σt(Xt) ◦ dWt + ft(Xt)dt, Xa = xa, (3.8)

which is just the same expression, replacing Itô’s differential by Stratonovich’s one de-
noted with "◦". The coefficients ft (Xt) and σt (Xt) satisfy conditions in Definition 3.4, and
we also assume that σt (Xt) ∈ C1,2 in [a, b]×R, with |∂xσt (Xt)| < ∞. Then, we can apply
the formula in Equation (2.22) with θt (Xt) = σt (Xt) and also ft (Xt) = σt (Xt) so that

σt(Xt) ◦ dWt = σt(Xt)dWt +
1
2

∂σt

∂x
(Xt) σt (Xt) dt.

Thus, we finally get that the equivalent Equation (3.8) by substituting this expression there,
is

dXt = σt(Xt)dWt +

[
ft(Xt) +

1
2

∂σt

∂x
(Xt) σt (Xt)

]
dt, Xa = xa. (3.9)

Note that the existence and uniqueness of solution of this equation is guaranteed by The-
orems 3.10 and 3.11, always if we appropriately suppose Lipschitz and linear growth con-
ditions for the new coefficients. We only have to check that the second term in bounded.
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Starting with the triangular inequality, we can separate∫ b

a

∣∣∣∣ ft(Xt) +
1
2

∂σt

∂x
(Xt) σt (Xt)

∣∣∣∣ dt ≤
∫ b

a
| ft(Xt)| dt +

1
2

∫ b

a

∣∣∣∣∂σt

∂x
(Xt) σt (Xt)

∣∣∣∣ dt.

The first term is bounded by hypothesis. For the second, as the integrator is a continuous
function, it is easily bounded by its maximum in the interval [a, b].

Remark 3.12. Notice that from the conversion formula (3.9), we see that both approaches
coincide when σt does not depend on Xt, for example, Langevin equation with additive
white noise has the same solution no matter which differential you choose. Anyway, it is
important to highlight that in general, the solution of a SDE depends on which is the view
we take, and its properties can considerably differ as it shows next example.

Example 3.13. We want to analyze a population growth model in presence of white noise
given by the following SDE,

dNt

dt
= Nt (α + βξt) , ∀t ≥ 0,

where Nt denotes the number of individuals at time t and α, β ∈ R are the average growth
constant and the noise intensity respectively. Remember also that ξt is white noise. Let us
begin solving it with Itô’s description assuming an initial population N0. We can rewrite
the previous equation as

dNt = αNtdt + βNtdWt ⇒
dNt

Nt
= αdt + βdWt. (3.10)

Now, it is convenient to use Itô formula to compute

d (log Nt) =
1

Nt
βNtdWt +

(
1

Nt
Ntα−

1
2

β2
)

dt =
dNt

Nt
− 1

2
β2dt,

because we can replace this expression in Equation (3.10) and integrate from 0 to t to get

log
(

Nt

N0

)
=

(
α− 1

2
β2
)

t + βWt ⇒ Nt = N0 exp
[(

α− 1
2

β2
)

dt + βWt

]
.

On the contrary, if we had taken Stratonovich differential, the equation whould have been

dNt = αNtdt + βNt ◦ dWt with βNt ◦ dWt = βNtdWt +
1
2

β2Ntdt,

so instead of Equation (3.10) we would have

dNt

Nt
=

(
α +

1
2

β

)
dt + βdWt,

and the finale solution would have been

NStrat
t = N0 exp (αt + βWt).
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Notice that the solutions disagree in the accompanying factor of time, and this gives
different predictions for this process. For example, we can find the expectation of such
processes. For Itô’s solution,

E (Nt) = N0 exp
[(

α− 1
2

β2
)

t
]

E [exp (βWt)] , (3.11)

and in order to compute that, we define Yt = exp (βWt) so

dYt = β exp (βWt)dWt +
1
2

β2 exp (βWt)dt⇒ Yt = Y0 + β
∫ t

0
YsdWs +

1
2

β2
∫ t

0
Ysds.

Then, using that Itô’s integrals are centered random variables (Lemma 2.9), we apply the
expectation to both sides of the equality to obtain

E (Yt) = E (Y0) +
1
2

β2E
[∫ t

0
Ysds

]
⇒ d

dt
E (Yt) =

1
2

β2E (Yt) ,

so we finally have E (Yt) = exp
(

1
2 β2t

)
which substituted in Equation (3.11) gives

E (Nt) = N0 exp (αt).

Note that it coincides with the solution of a non-noisy model. On the other hand, we
can repeat the same argument for the Stratonovich’s solution reaching to the following
expression

E
(

NStrat
t

)
= N0 exp

[(
α +

1
2

β2
)

t
]

,

which is greater than the other result.

All in all, although is could seem that the choice of the vision would determine the
behaviour of our solution Xt, this is not the reality. We should think that depending on
the formalism, the coefficients ft and σt take different forms but the mathematics behind
them is the same.

3.5 Approximation of solutions of SDEs

In the line with the discussion of Section 2.4, we are now interested in studying which
is the limit of solutions of well-behaved stochastic processes in ODEs and how it is related
to its analogous SDE associated. Before tackling the problem presenting the solution
proposed by Wong and Zakai, we need to prove the following lemma.

Lemma 3.14. (Another Gronwall inequality) Let u : [a, b] → R+ be a continuous function

and suppose also that
∫ b

a v(s)ds <
(

ρµe µρ(b−a)
)−1

. Then, if

log
(

1 +
u(t)

µ

)
≤ log (1 + v(t)) + ρ

∫ t

a
u(s)ds, (3.12)
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for some fixed constants 0 < µ < ∞, ρ > 0, it holds the following inequality

u(t) ≤ µ
v(t) + ρµe ρµ(a−b)

∫ b
a v(t)dt

1− ρµe ρµ(a−b)
∫ b

a v(t)dt
. (3.13)

Proof. By making the exponential of the whole expression in Equation (3.12) we have

1 + u(t)
µ

e ρ
∫ t

a u(s)ds
≤ 1 + v(t). (3.14)

Now, we arrange the equation by multiplying both sides of the equality by µρe−ρµt to
realize that the left-hand side can be written as a simple derivative,

ρµ + ρu(t)

e
(

ρ
∫ t

a u(s)ds+ρµt
) = − d

dt
e
(
−ρ
∫ t

a u(s)ds−ρµt
)
≤ ρµ (1 + v(t)) e−ρµt.

Hence, integrating from a to t, we will get

e−ρµa − e−ρ
∫ t

a u(s)ds−ρµt ≤ e−ρµa − e−ρµt + ρµe−ρµa
∫ b

a
v(t)dt,

and thus, simplifying a bit we obtain

e−ρ
∫ t

a u(s)ds ≥ 1− ρµe ρµ(t−a)
∫ b

a
v(t)dt.

Finally, since ρµe ρµ(b−a)
∫ b

a v(t)dt < 1 we can invert last expression to reach

e ρ
∫ t

a f (s)ds ≤ 1

1− ρµe ρµ(t−a)
∫ b

a v(t)
≤ 1

1− ρµe ρµ(b−a)
∫ b

a v(t)
,

and the desired Inequality (3.13) is a consequence of inserting this to the expression (3.14)

Now, to the conditions we gave in the previous chapter, we add these two more,

(C3) Condition (C2) and also that Φn
t (ω) has a piecewise continuous derivative ∀n ≥ 1.

(C4) Condition (C3) and also that Φn
t (ω)→Wt (ω) as n→ ∞ uniformly ∀t ∈ [a, b].

which are the hypothesis of the following notable result.

Theorem 3.15. (Wong and Zakai, II part) Assume that:

1. The functions ft(x), σt(x), ∂xσt(x) and ∂tσt(x) exist and are continuous ∀x ∈ R and
∀t ∈ [a, b].

2. Lipschitz condition in x is satisfied by ft(x), σt(x) and ∂xσ2
t (x).

3. ∃C1 > 0 such that |σt(x)| ≥ C1 and also |∂tσt(x)| ≤ C2σ2
t (x) for some other positive

constant C2.
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Then, if {Φn
t }n≥1 is a sequence of random variables satisfying (C3) and X(n)

t the solution
of the ODE

dX(n)
t = σt(X(n)

t )dΦn(t) + ft(X(n)
t )dt, X(n)

a = xa,

it holds that X(n)
t → Xt a.s. as n→ ∞, being Xt the solution of the SDE

dXt = σt (Xt) ◦ dWt + ft (Xt) dt, Xa = xa.

Furthermore, if {Φn
t }n≥1 satisfies (C4), the convergence is uniform in [a, b].

Proof. Let us define now an auxiliary function Gt(x) by

Gt(x) =
∫ x

0

dy
σt(y)

, t ∈ [a, b] , ∀x ∈ R.

Then, the differential of Gt(X(n)
t ), due to Newton-Leibniz chain rule, is

dGt(X(n)
t ) =

∂Gt

∂t
(X(n)

t )dt +
dX(n)

t

σt(X(n)
t )

=
∂Gt

∂t
(X(n)

t )dt + dΦ(n)
t +

ft(X(n)
t )

σt(X(n)
t )

dt,

and in integral notation takes the form

Gt(X(n)
t ) = Ga(X(n)

a ) + Φ(n)
t −Φ(n)

a +
∫ t

a

[
∂Gs

∂s
(X(n)

s ) +
fs(X(n)

s )

σs(X(n)
s )

]
ds. (3.15)

On the other hand, applying Itô formula to our solution of the SDE, developed as an Itô’s
integral we get the expression

Gt (Xt) = Ga (Xa) +
∫ t

a

[
∂Gs

∂x
(Xs) · σs (Xs)

]
dWs +

∫ t

a

∂Gs

∂s
(Xs) ds

+
∫ t

a

∂Gs

∂x
(Xs) ·

[
fs (Xs) +

1
2

σs (Xs)
∂σs

∂x
(Xs)

]
ds +

1
2

∫ t

a

∂2Gs

∂x
(Xs) · σ2

s (Xs) ds.

Now, using the fundamental theorem of calculus, we will have ∂xGs (Xs) = σ−1 (Xs), and
therefore,

Gt (Xt) = Ga (Xa) +
∫ t

a
dWs +

∫ t

a

Gs

∂s
(Xs) ds +

∫ t

a

[
ft (Xs)

σs (Xs)
+

1
2

∂σs

∂x
(Xs)

]
ds

+
1
2

∫ t

a

∂

∂x

(
1

σs (Xs)

)
· σ2

s (Xs) ds = Ga (Xa) + Wt −Wa

+
∫ t

a

∂Gs

∂s
(Xs) ds +

∫ t

a

ft (Xs)

σs (Xs)
ds.

(3.16)

Our objective is bounding the difference between Equation (3.15) and (3.16):

Gt(X(n)
t )− Gt (Xt) =

∫ t

a

{[
∂Gs

∂s
(X(n)

s )− ∂Gs

∂s
(Xs)

]
−
[

ft(X(n)
s )

σs(X(n)
s )
− ft (Xs)

σs (Xs)

]}
ds

+
(

Φ(n)
t −Wt

)
+
(

Φ(n)
a −Wa

)
,

(3.17)

but before, we need some considerations. In the sequel, K will denote a big enough
constant, not necessary equal at all inequalities, that we use to simplify the notation.
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(a) Because of the continuity and Lipschitz condition on ft(x), it will also satisfy linear
growth, so we can develop∣∣∣∣ ft (x)

σt (x)
− ft (y)

σt (y)

∣∣∣∣ ≤ ∣∣∣∣ ft (x)
σt (x)

− ft (y)
σt (x)

∣∣∣∣+ ∣∣∣∣ ft (y)
σt (x)

− ft (y)
σt (y)

∣∣∣∣
=

∣∣∣∣ 1
σt (x)

∣∣∣∣ | ft (x)− ft (y)|+ | ft (y)|
∣∣∣∣ 1
σt (x)

− 1
σt (y)

∣∣∣∣
≤
∣∣∣∣ 1
σt (x)

∣∣∣∣K |x− y|+
∣∣∣∣ 1
σt (x)

− 1
σt (y)

∣∣∣∣K (1 + |y|)

≤ K |x− y| (1 + |y|) .

(b) As σ−2
t (x) · ∂tσt(x) is uniformly bounded by hypothesis,∣∣∣∣∂Gt

∂t
(x)− ∂Gt

∂t
(y)
∣∣∣∣ = ∣∣∣∣∫ x

y

−1
σ2

t (z)
∂σt

∂t
(z) dz

∣∣∣∣ ≤ K |x− y| .

(c) We also need to prove that

|Gt(x)− Gt(y)| ≥ K log
(

1 +
|x− y|
1 + |y|

)
,

and to do so, we require linear growth condition on σ, which is consequence of
Lipschitz on x and time continuity, so |σt(x)| ≤ K (1 + |x|). Then, we make a case-
based reasoning depending on the sign of x and y.

• If they have the same sign, we can assume without loss of generality that both
are non-negative. Then, by defining u = max (x, y) and v = min (x, y), we get

|Gt(x)− Gt(y)| ≥ K
∫ u

v

dz
1 + z

= K [log (1 + u)− log (1 + v)]

= K log
(

1 +
|u− v|
1 + v

)
≥ K log

(
1 +
|x− y|
1 + |y|

)
.

• Otherwise, if their signs are opposite and supposing that u ≤ |v|,

|Gt(x)− Gt(y)| ≥ K [log (1 + u) + log (1 + |v|)] ≥ K log (1 + u + |v|)

= K log (1 + |x− y|) ≥ K log
(

1 +
|x− y|
1 + |y|

)
.

All together, if we apply these inequalities with x = X(n)
t and y = Xt in Equation (3.17)

and define a random variable µ := 1 + maxt∈[a,b] Xt we have that

log

1 +

∣∣∣X(n)
t − Xt

∣∣∣
µ

 ≤ K
(

Φ(n)
t −Wt

)
+ K

(
Φ(n)

a −Wa

)
+ µK

∫ t

a

∣∣∣X(n)
s − Xs

∣∣∣ ds.

Finally, we identify ε
(n)
t = ε(t) = exp{K[(Φ(n)

t −Wt) + (Φ(n)
a −Wa)]}, in order to apply

Lemma 3.14 and proving that X(n)
t → Xt as n → ∞ a.s. To do so, it is required to
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make use of dominated convergence theorem to see that
∫ b

a ε
(n)
t and ε

(n)
t → 0 as n → ∞,

supported by the bounding of Φ(n)
t (remember condition (C2)) and Wt (it is a continuous

function defined on the interval [a, b]). In addition, under (C4), for almost all samples, the
convergence X(n)

t → Xt is uniform in [a, b].

3.5.1 Numerical simulation II

With the same spirit we tried to capture the differences between Itô’s and Stratonovich’s
stochastic integrals numerically, we now want to plot the distinct behaviour of solutions of
SDEs when we take one approach or the other. To do that, we focus on Example 3.13 about
the noisy population model expecting to recover the analytic results but also estimating
the solution of this SDE by means of Wong-Zakai theorem.

Before showing the plots, we describe briefly the algorithm used to solve the SDE
numerically: Euler-Maruyama method. This basically consists of approximating a general
SDE given as

dXt = σt(Xt)dWt + ft(Xt)dt,

by
Xtj = Xtj−1 + gtj−1(Xtj−1)∆jW + ftj−1(Xtj−1)∆jt,

with j = 1, . . . , n a partition of the interval of work. To justify it, one has to appeal the
corresponding SIE and estimate∫ tj

tj−1

gt (Xt) dWt ≈ gtj−1(Xtj−1)∆jW and
∫ tj

tj−1

ft (Xt) dt ≈ ftj−1(Xtj−1)∆jt,

where ∆jW = γj

√
∆jt, and γj is chosen from N (0, 1). This is a modification of the classical

Euler method to solve ordinary differential equations to deal with an extra term that does
not increase ∆jt but

√
∆jt. Notice that this lets us solve both Itô’s and Stratonovich’s dif-

ferential equations because we can rewrite the latter in form of Itô due to the conversion
formula in Equation (3.9). Furthermore, if we are interested in observing the conver-
gence of solutions of ordinary to stochastic differential equations, we recover the picture
in Subsection 2.4.1 to interpolate points using spline functions, then make its numerical
derivation to end up with the standard Euler method to solve the differential equation
numerically.

We can even get more juice to this example trying to reproduce the expectation of each
description by computing the mean of several simulations. This two quantities should be
the same a.s. due to the Strong Law of Large Numbers1.

1It is collected in the appendix, in the part concerning probability notions, subsection A.1.
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Figure 3.1: Illustrative plot that shows how the approximating successions of solutions
of ODEs tend to the corresponding solution of SDE under Stratonovich’s view. This is
particularized for the example of the growth of a population Nt under uncertainty with
parameters α = 6, β = 2, N0 = 1. The number of intermediate steps in time is 10000.

Figure 3.2: The solid curves are the mean of 5000 different curves, and the theoretical
dashed lines are the corresponding to the expressions we deduced in Example 3.13. For
both descriptions they fit well, which is coherent with the Law of Large Numbers.



Conclusions

With this project I had the opportunity of learning the fundamentals of stochastic
calculus up to point of applying them to model different phenomena related to Physics
or Ecology. Although I just had minute knowledge of stochastic processes before starting,
thanks to my tutor and the books I read, I really enjoyed initiating myself in such an
uprising field.

I began by providing the basic definitions related to stochastic processes, and we
quickly immersed in the first main concept we would deal with during all the work:
Brownian motion. Here, we focused on proving some path properties that make it spe-
cial, basically the non-differentiability a.e. and the value of its quadratic variation. We also
defined white noise, connecting it with the derivative of the Brownian motion considered
as a generalized stochastic process.

Next step has been giving a rigorous construction of stochastic integrals for the two dif-
ferent descriptions we studied. We carefully built Itô’s integral, first for step processes and
later extending it for a larger set of functions, and besides, we defined Stratonovich’s inte-
gral, establishing a conversion formula for both approaches. It has been taken particular
interest in how choosing a different evaluating point when defining stochastic integrals
can cause so different properties: Statonovich’s follows deterministic calculus rules but
loses good attributes such us centrality or the fact of being a martingale, as Itô’s is. At
that point, we discussed about the dilemma of electing the best integral, coming to the
conclusion that it would strongly depend on the situation. We also realized how Itô for-
mula, the principal tool when computing stochastic integrals, captures stochasticity with
an extra term which does not appear in Newton-Leibniz chain rule.

Then, we made a brief introduction to the study of stochastic differential equations,
taking illustrative examples to justify the assumptions needed to ensure existence and
uniqueness of solutions. When proving this theorem, we made use of several tools studied
during this project and also recovering results viewed in different subjects of the degree,
which has been compelling. Again, we proposed a different way of interpreting SDEs
using Stratonovich’s integral, highlighting that the resulting process might have different
properties.

Finally, we have also discussed and simulated Wong-Zakai theorems, a powerful result
that establishes a direct connection between stochastic integrals/solutions of a SDE, and
the deterministic integrals/limits of solutions of ODEs, constituting a vital instrument
when modelling white noise in experimental sciences.
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Moreover, while studying all these mathematics, I realized in future outlook which
could be done. Beginning by rewriting all this theory for martingales and making exten-
sions of Itô’s and Stratonovich’s integrals for even more kind of functions, to exhaustly
examining the properties of the solutions of SDEs or studying in more detail their applica-
tions to Finance or the field of Partial Differential Equations. Analyzing the convergence
of the used numerical method as well as developing other (for instance, Milstein algorithm)
would have been interesting too. Particularly, I would have liked to deeply understand
issues related with multiplicative noise and filtering problems, as they have to be with the
choice of the integral we have discussed here.



Appendix A

Basic Notions

Here we present some propositions and theorems that are assumed to be known dur-
ing the work, usually used to prove the main results. We do not show the demonstrations
but they can be easily found in any classical book of its respective field.

A.1 Tools of probability theory

Properties of the conditional expectation

If X, Y are random variables in a probability space (Ω, F, P), and G is a sub-σ-field of F ,
then it holds,

(a) Linearity: ∀c1, c2 ∈ R, E (c1X + c2Y|G ) = c1E (X|G ) + c2E (Y|G ).

(b) Monotony: E (X|G ) ≤ E (X|G ) when X ≤ Y.

(c) E (E (X|G )) = E (X).

(d) If X is G -measurable, E (X|G ) = X.

(e) Assuming (d) and also that X is bounded, it is true E (XY|G )=XE (Y|G ).

(f) If G1, G2 are σ-fields and G1 ⊂ G2, E (E (X|G1) |G2) = E (E (X|G2) |G1) = E (X|G1).

First lemma of Borel-Cantelli

Let {An}∞
n=1 be a sequence of events in some probability space. Then,

∞

∑
n=1

P(An) < ∞⇒ P
(

lim sup
n→∞

An

)
= 0.
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Conditional Jensen’s inequality

Suppose that f : R → R is a convex function and X an integrable random variable on
(Ω, F , P) with f (X) also integrable. Then it holds a.s.,

f (E (X|G )) ≤ E ( f (X)|G ) ,

for any σ-field G on Ω contained in F .

Chebyshev’s inequality

For any random variable X with finite moment of order p, we have

P (|X| ≥ λ) ≤ 1
λp E

(
|X|p

)
,

with p ∈ [1, ∞) and λ > 0.

Strong Law of Large Numbers

Let {Xn}n≥1 be a sequence of independent and identically distributed random variables.
If E |Xi| < ∞, ∀i, then a.s.,

1
n

n

∑
i=1

Xi → E (Xi) , as n→ ∞.

A.2 Tools of analysis and measure theory

Ratio Test

Given a series of the form ∑n≥1 an where each an is a real number, we consider the limit

A = limn→∞

∣∣∣ an+1
an

∣∣∣. Ratio test states the following:

• If A > 1, then the series is divergent.

• If A < 1, then the series converges uniformly.

• If A = 1, this test is inconclusive.

Real Weierstrass M-test

Consider a sequence of real functions { fn}n≥1 defined on R. If there exists another se-
quence of positive numbers {Mn}n≥1 with

| fn(x)| ≤ Mn, ∀n ≥ 1, ∀x ∈ R, with ∑
n≥1

Mn < ∞,

then ∑n≥1 fn converges absolutely and uniformly on R.
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Results on a.e. differentiabilty of functions of bounded variation

Given a function f : [a, b]→ R, it holds,

• If f is of bounded variation, then it can be written as the difference of two monotone
functions real-valued functions defined on [a, b] (the reciprocal implication is also
true).

• If f is an increasing function, then f is differentiable a.e.

As a consequence, any function of bounded variation on [a, b] is a.e. differentiable there.

Hölder’s inequality

Given a measure space (X, A , µ), if 1 ≤ p, q ≤ ∞ and p−1 + q−1 = 1, it holds,∫
X
| f (x)g(x)| dµ(x) ≤

(∫
X
| f (x)|p dµ(x)

)1/p (∫
X
|g(x)|q dµ(x)

)1/q

for any f , g measurable functions taking real values. When p = q = 2, this is called
Cauchy-Schwarz inequality.

Dominated Convergence Theorem

Given a measure space (X, A , µ), we consider a sequence of A -measurable functions ( fn)n
defined on X and taking real values. If limn fn (x) = f (x) a.e. x and exists g ∈ L1 (µ)

satisfying | fn (x)| ≤ g (x) a.e. x for all n, then:

lim
n

∫
X

fn(x)dµ(x) =
∫

X
f (x)dµ(x). (A.1)

In particular, if we consider a succession of random variables (Xn)n → X with |Xn| ≤
Y a.s. ∀n, for some Y integrable random variable, we will have,

E (Xn)→ E (X) , as n→ ∞. (A.2)

Derivation under the integral sign

Given a measure space (X, A , µ), we take 0 ≤ g ∈ L1 (µ) and f (·, t) an integrable function
∀t in an interval of R. Consider also

Φ (t) =
∫

f (x, t) dµ(x).

Then,

1. If f (x, ·) is contunous in t0 and | f (x, t)| ≤ g(x) for all x ∈ X and for all t ∈ I, then
Φ is continuous in t0.

2. If for all x ∈ X, f (x, ·) is derivable for all t ∈ I and
∣∣∣ ∂ f (x,t)

∂x

∣∣∣ ≤ g(x) for all x ∈ X, it
holds

Φ′(t) =
∫

∂ f (x, t)
∂x

dµ(x).



Appendix B

Matlab Script of Simulations

c l e a r a l l
c l o s e a l l

% P a r a m e t e r s
T = 1 ; % F i n a l t ime
n = 10000 ; % S t e p s in t ime
dt = T/n ; % Time i n c r e m e n t
time = [ 0 : dt : T ] ; % Time v e c t o r

% I n i t i a l i z e a r r a y s t o z e r o t o improve e f i c i e n c y
dW = zeros ( 1 , n ) ;
W = zeros ( 1 , n ) ;
i t o = zeros ( 1 , n ) ;
s t r a t = zeros ( 1 , n ) ;
I = zeros ( 1 , n ) ;
ito_num = zeros ( 1 , numel ( time ) ) ;
strat_num = zeros ( 1 , numel ( time ) ) ;

% S i m u l a t i o n o f a brownian sample pa th
dW = s q r t ( dt )∗ randn ( 1 , n ) ; % I n c r e m e n t s
W = cumsum(dW) ; % Cumulat ive sum

%{
% P l o t t i n g t h e t r a j e c t o r y o f Brownian Motion
f i g u r e ( 1 )
p l o t ( time , [ 0 ,W] ) ;
x l a b e l ( ’ t ’ , ’ FontSize ’ , 16)
y l a b e l ( ’W( t ) ’ , ’ FontSize ’ , 16 , ’ Rotat ion ’ , 0 )

%}

% SIMULATION OF THE STOCHASTIC INTEGRAL INT (W ∗ / o dW)

i t o = cumsum ( [ 0 ,W( 1 : end−1) ] .∗dW) ; % I t o ’ s i n t e g r a l
s t r a t = cumsum ( ( 0 . 5 ∗ ( [ 0 ,W( 1 : end− 1 ) ] + . . . % S t r a t o n o v i c h ’ s i n t e g r a l

[ 0 ,W( 2 : end ) ] ) ) . ∗dW) ;

%{
% P l o t t i n g I t o and S t r a t o n o v i c h i n t e g r a l s

54



55

f i g u r e ( 2 )
p l o t ( time , [ 0 , i t o ] ) ;
hold on
p l o t ( time , [ 0 , s t r a t ] ) ;
x l a b e l ( ’ t ’ , ’ FontSize ’ , 16)
y l a b e l ( ’W_t ’ , ’ FontSize ’ , 16 , ’ Rotat ion ’ , 0 )

% Proving t h e c o n v e r s i o n f o r m u l a be tween b o t h i n t e g r a l s
f i g u r e ( 3 )
p l o t ( time , [ 0 , s t r a t ] ) ;
hold on
p l o t ( time , [ 0 , i t o ] + 0 . 5 .∗ time )

%}

% S i m u l a t i n g t h e a p p r o x i m a t i n g s e q u e n c e o f d e t e r m i n i s t i c i n t e g r a l s
f o r num = 1 0 0 : 2 0 0 : 5 0 0 % num i s t h e number o f i n t e r m e d i a t e p o i n t s

t = l i n s p a c e ( 0 , T ,num ) ;

jump = n/num;
f o r i =1:num

y ( i )=W( f l o o r ( i ∗jump ) ) ;
end

% S p l i n e i n t e r p o l a t i o n
pp = i n t e r p 1 ( t , y , [ 0 : dt : T ] , ’ s p l i n e ’ ) ;

% Numerica l d e r i v a t i o n
pp_der = f s t d e r i v a t i v e ( pp , dt , n + 1 ) ;
f = pp .∗ pp_der ;

% Comtuping t h e i n t e g r a l us ing Simpson 1 / 3
f o r i =2:n+1

I ( i −1)= dt /3∗( f (1 )+2∗sum( f ( 2 : 2 : i −2))+4∗sum( f ( 1 : 2 : i −1))+ f ( i ) ) ;
end

%{
% P l o t t i n g t h e a p p r o m i t i n g s e q u e n c e s o f d e t e r m i n i s t i c i n t r a g r a l
f i g u r e ( 4 )
p l o t ( time , [ 0 , I ] ) ;
hold on
%}

end

% P l o t t i n g I t o , S t r a t o n o v i c h and t h e i n t e g r a l o f t h e a p p r o x i m a t i n g s e q u e n c e
f i g u r e ( 5 )
p l o t ( time , [ 0 , i t o ] , ’ b ’ , ’ Linewidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , [ 0 , s t r a t ] , ’ r ’ , ’ Linewidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , [ 0 , I ] , ’k−− ’ , ’ Linewidth ’ , 1 . 5 ) ;
hold on
x l a b e l ( ’ t ( s ) ’ , ’ Fonts ize ’ , 24)
y l a b e l ( ’ I n t e g r a l value ’ , ’ Fonts ize ’ , 24)
s e t ( gca , ’ LineWidth ’ , 1 . 7 )
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t i t l e ( ’ I n i t i a l condi t ion ’ , ’ Fonts ize ’ , 30)
legend ( { ’ I t o ’ ’ s i n t e g r a l ’ , ’ S t ra tonovich ’ ’ s i n t e g r a l ’ , . . .

’ I n t e g r a l of the approximating sequence ’ } , ’ FontSize ’ , . . .
15 , ’ Locat ion ’ , ’ northwest ’ )

% SIMULATION FOR THE SOLUTIONS OF SDE AND ODE, EXAMPLE OF GROWTH POPULATION

c_alpha = 6 ; % Average growth c o n s t a n t
c_beta = 2 ; % Noise i n t e n s i t y
in i t_pop = 1 ; % I n i t i a l p o p u l a t i o n

%{
% P l o t t i n g t h e a n a l y t i c a l s o l u t i o n deduced in t h e example
f i g u r e ( 9 )
i t o _ t h e o = ini t_pop∗exp ( ( c_alpha −0.5∗ c_beta∗ c_beta )∗ time+c_beta ∗ [ 0 ,W] ) ;
s t r a t _ t h e o = ini t_pop∗exp ( c_alpha∗ time+c_beta ∗ [ 0 ,W] ) ;
p l o t ( time , i t o _ t h e o ) ;
hold on
p l o t ( time , s t r a t _ t h e o ) ;

%}

% S o l v i n g I t o ’ s SDE with Euler−Maruyama method
ito_num ( 1) = in i t_pop ;
f o r i =2:n+1

ito_num ( i ) = ito_num ( i −1)+ito_num ( i − 1 )∗ . . .
c_alpha∗dt+c_beta∗ ito_num ( i −1)∗dW( i −1);

end

%{
% Comparing t h e o r i c a l and n u m e r i c a l s o l u t i o n o f I t o ’ s SDE
f i g u r e ( 1 0 )
p l o t ( time , ito_num )
hold on
p l o t ( time , i t o _ t h e o )

%}

% S o l v i n g S t r a t o n o v i c h ’ s SDE with Euler−Maruyama method
strat_num (1 )= in i t_pop ;
f o r i =2:n+1

strat_num ( i ) = strat_num ( i −1)+strat_num ( i − 1 )∗ . . .
( c_alpha +0.5∗ c_beta∗ c_beta )∗ dt+c_beta∗strat_num ( i −1)∗dW( i −1);

end

%{
% Comparing t h e o r i c a l and n u m e r i c a l s o l u t i o n o f I t o ’ s SDE
f i g u r e ( 1 1 )
p l o t ( time , strat_num )
hold on
p l o t ( time , s t r a t _ t h e o )

%}

f o r num = 1 0 0 : 2 0 0 : 5 0 0 % num i s t h e number o f i n t e r m e d i a t e p o i n t s

s = [ ] ;
y = [ ] ;
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t = l i n s p a c e ( 0 , T ,num ) ;

jump = n/num;
f o r i =1:num

y ( i )=W( f l o o r ( i ∗jump ) ) ;
end

% S p l i n e i n t e r p o l a t i o n
pp = i n t e r p 1 ( t , y , time , ’ s p l i n e ’ ) ;
% Numerica l d e r i v a t i o n
pp_der = f s t d e r i v a t i v e ( pp , dt , n + 1 ) ;

s (1 )= in i t_pop ;
f o r i =2:n+1

s ( i ) = s ( i −1)+( s ( i −1)∗( c_alpha +( c_beta∗pp_der ( i −1)))∗ dt ) ;
end

%{
% P l o t t i n g t h e s o l u t i o n o f t h e ODE f o r t h e a p p r o x i m a t i n g s e q u e n c e s
f i g u r e ( 1 2 )
p l o t ( time , s ) ;
hold on
%}

end

% P l o t t i n g I t o ’ s and S t r a t o n o v i c h ’ s n u m e r i c a l s o l u t i o n s o l u t i o n t o g e t h e r
% with t h e s o l u t i o n f o r t h e a p p r o x i m a t i n g s e q u e n c e
f i g u r e ( 1 3 )
p l o t ( time , ito_num , ’ b ’ , ’ LineWidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , strat_num , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , s , ’k−− ’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ t ( s ) ’ , ’ Fonts ize ’ , 24)
y l a b e l ( ’ N_t ( population ) ’ , ’ Fonts ize ’ , 24)
s e t ( gca , ’ LineWidth ’ , 1 . 7 )
t i t l e ( ’ I n i t i a l condi t ion ’ , ’ Fonts ize ’ , 30)
legend ( { ’ I t o ’ ’ s s o l u t i o n ’ , ’ S t ra tonovich ’ ’ s s o l u t i o n ’ , . . .

’ So lut ion f o r an approximating sequence ’ } , ’ FontSize ’ , . . .
15 , ’ Locat ion ’ , ’ northwest ’ )

% SIMULATING STRONG LAW OF LARGE NUMBERS

nc = 5 0 ; % Number o f c u r v e s t o compute t h e a v e r a g e

% R e n i t i a l i z i n g a r r a y s
dW = zeros ( nc , n ) ;
W = zeros ( nc , n ) ;

f o r i =1 : nc

dW( i , : ) = s q r t ( dt )∗ randn ( 1 , n ) ;
W( i , : ) = cumsum(dW( i , : ) ) ;

i t o _ t h e o ( i , : ) = in i t_pop∗exp ( ( c_alpha −0.5∗ c_beta∗ c_beta ) ∗ . . .
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time+c_beta ∗ [ 0 ,W( i , : ) ] ) ;
s t r a t _ t h e o ( i , : ) = in i t_pop∗exp ( c_alpha∗ time+c_beta ∗ [ 0 ,W( i , : ) ] ) ;

end

% Computing t h e mean f o r nc t h e o r e t i c a l s o l u t i o n s o f t h e SDE
s _ i t o = mean( i t o _ t h e o ) ;
s _ s t r a t = mean( s t r a t _ t h e o ) ;

% P l o t t i n g t h e mean t o g e t h e r wi th t h e e x p e c t a t i o n deduced by t h e example
f i g u r e ( 1 6 )
p l o t ( time , s _ i t o , ’ b ’ , ’ LineWidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , in i t_pop∗exp ( time∗c_alpha ) , ’b−− ’ , ’ LineWidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , s _ s t r a t , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
hold on
p l o t ( time , in i t_pop∗exp ( time ∗ ( c_alpha +0.5∗ c_beta ^ 2 ) ) , ’ r−− ’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ t ( s ) ’ , ’ Fonts ize ’ , 24)
y l a b e l ( ’ N_t ( population ) ’ , ’ Fonts ize ’ , 24)
s e t ( gca , ’ LineWidth ’ , 1 . 7 )
t i t l e ( ’ I n i t i a l condi t ion ’ , ’ Fonts ize ’ , 30)
legend ( { ’Mean of I t o ’ ’ s s o l u t i o n s ’ , . . .

’ T h e o r e t i c a l e x p ec t a t i on of I t o ’ ’ s s o l u t i o n ’ , . . .
’Mean of St ra tonovich ’ ’ s s o l u t i o n s ’ , . . .
’ T h e o r e t i c a l e x p ec t a t i on of S t ra tonovich ’ ’ s s o l u t i o n ’ } , . . .
’ FontSize ’ , 15 , ’ Locat ion ’ , ’ northwest ’ )

% FUNCTION TO COMPUTE THE FIRST DERIVATIVE ( o f t ime ) USING CENTERED FINITE
% DIFERENCES ( e r r o r Oh^4)

func t ion fsdx = f s t d e r i v a t i v e ( f , h , t )

fsdx = zeros ( 1 , t ) ;

fsdx ( 1 ) = (−3∗ f (1 )+4∗ f (2)− f ( 3 ) ) / ( 2∗h ) ;
fsdx ( 2 ) = (−3∗ f (2 )+4∗ f (3)− f ( 4 ) ) / ( 2∗h ) ;

f o r i = 3 : ( t−2)
fsdx ( i ) = ( f ( i−2)−8∗ f ( i −1)+8∗ f ( i +1)− f ( i +2) )/(12∗h ) ;

end

fsdx ( t−1) = (3∗ f ( t−1)−4∗ f ( t−2)+ f ( t −3))/(2∗h ) ;
fsdx ( t ) = (3∗ f ( t )−4∗ f ( t−1)+ f ( t −2))/(2∗h ) ;

end
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