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Abstract 

 

Using a Monte Carlo simulation and the Kenward-Roger (KR) correction for degrees of 

freedom this paper analyzes the application of the linear mixed model (LMM) to a mixed 

repeated measures design. The LMM was first used to select the covariance structure with 

three types of data distribution: normal, exponential and log-normal. This showed that with 

homogeneous between-groups covariance, and when the distribution was normal, the 

covariance structure with the best fit was the unstructured population matrix. With 

heterogeneous between-groups covariance and when the pairing between covariance matrices 

and group sizes was null the best fit was shown by the between-subjects heterogeneous 

unstructured population matrix, this being the case for all the distributions analyzed. By 

contrast, with positive or negative pairing the within-subjects and between-subjects 

heterogeneous first-order autoregressive structure produced the best fit. In the second stage of 

the study, the robustness of the LMM was tested. This showed that the KR method provided 

adequate control of Type I error rates for the time effect with normally distributed data. 

However, as skewness increased, as occurs, for example, in the log-normal distribution, 

robustness was null, especially when the assumption of sphericity was violated. As regards 

the influence of kurtosis the analysis showed that the degree of robustness increased in line 

with the amount of kurtosis. 

 

Keywords: Longitudinal data; Linear mixed model; Kenward-Roger method; Robustness; 

Non-normal distributions. 
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Over the last three decades the analysis of repeated measures data has been centered round 

linear mixed modeling. Laird and Ware (1982) established the basis of the LMM with the 

incorporation of the within-subjects error correlation. Their work was subsequently extended 

by Cnaan, Laird, and Slasor (1997) and Verbeke and Molenberghs (2000), who applied the 

LMM to longitudinal data. In contrast to analyses that are based on variances (ANOVA and 

MANOVA) the LMM models the structure of the covariance matrix. This enables a more 

efficient estimation of the fixed effects and, consequently, yields more robust statistical tests. 

However, when the covariance structures are not properly fitted and the sample sizes are 

small, the Type I error rate tends to rise (Wright & Wolfinger, 1996).  

 With respect to the covariance structure Keselman, Algina, Kowalchuck, and 

Wolfinger (1999) demonstrated that when the covariance matrix is not spherical the degrees 

of freedom associated with the conventional F test are too large. One way of controlling this 

bias is to apply the procedure developed by Kenward and Roger (1977) to correct the degrees 

of freedom. Studies by Kowalchuk, Keselman, Algina, and Wolfinger (2004) and Vallejo and 

Ato (2006) showed that with an adequate covariance structure the KR method is able, in many 

cases, to control Type I error rates with small sample sizes and when the assumption of 

sphericity is violated. Thus, by applying the KR correction one can obtain more efficient 

estimates of the fixed effects associated with repeated measures (Arnau, Bono, & Vallejo, 

2009; Kowalchuk et al., 2004; Schaalje, McBride, & Fellingham, 2001). 

 Generally speaking, studies based on the LMM assume that the data are normal. 

However, in applied contexts, data distributions tend to depart from normality. For example, 

in a study of 440 distributions corresponding to a range of achievement and psychometric 

data, Micceri (1989) found that only 28.4% of the distributions were relatively symmetrical, 

while 40.7% were moderately asymmetrical, 19.5% were extremely asymmetrical and 11.4% 

showed exponential asymmetry. As regards kurtosis, only 15.2% of the distributions 
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approached normality, whereas 49.1% of the distributions could be considered to show 

extreme kurtosis. According to Micceri (1989) the most common distributions within the 

psychometric, educational and psychological contexts are moderately asymmetrical and show 

kurtosis that deviates considerably from normal. These results are supported by research 

showing that in the social and health sciences many variables follow a log-normal distribution 

(Limpert, Stahel, & Abbt, 2001). Examples in the field of medicine include the latency period 

of infectious diseases (Kondo, 1977), survival times for certain types of cancer (Claret et al., 

2009; Qazi, DuMez, & Uckun, 2007), and the age of onset of Alzheimer’s disease (Horner, 

1987). In the social sciences an example would be the age at which people first get married 

(Preston, 1981), while in psychology the log-normal distribution provides a good fit to data on 

reaction times or response latency (Shang-wen & Ming-hua, 2010; Ulrich & Miller, 1993; 

Van der Linden, 2006), as well as to data on attentional skills (Brown, Weatherholt, & Burns, 

2010). With survival data a good fit is provided not only by the log-normal distribution but 

also by the exponential distribution and its extensions (Weibull, gamma and Gompertz), as 

well as by the generalized gamma and log-logistic distributions (Lee & Wang, 2003). 

Given that the log-normal distribution is common with applied data, particularly in the 

behavioral sciences (Micceri, 1989; Wilcox, 1994), some authors have based their simulation 

studies on this distribution (Keselman et al., 1999; Keselman, Algina, Wilcox, & Kowalchuk, 

2000). In this context Sawilowsky and Blair (1992) obtained non-robust results from the t test 

when the distributions showed extreme skewness (for example, γ1 = 1.64). Algina and Oshima 

(1995) found that tests for the equivalence of means are affected when the distribution is log-

normal and the assumption of homogeneity is not fulfilled. As regards the effect of kurtosis, 

research has shown that the Type I error rate tends to decrease as kurtosis increases (Wilcox, 

1993). In light of these findings the present study considers the log-normal distribution as 

well as distributions involving slight skewness combined with different levels of kurtosis. 
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 The aim of this research was to analyze longitudinal data by means of the LMM, 

comparing normal and non-normal distribution. Specifically, the study seeks to examine the 

robustness of the LMM when applied to data whose distribution is closer to that found in real 

life, i.e. the log-normal distribution and other non-normal distributions with slight skewness 

and extreme kurtosis according to the values described by Lei and Lomax (2005). According 

to these authors, when the absolute values of skewness and kurtosis are less than 1.0 the 

distribution deviates slightly from normality, values between 1.0 and 2.3 correspond to 

moderate deviation, and values above 2.3 indicate extreme deviation from normality. 

 

The linear mixed model and longitudinal data 

 

Application of the LMM to longitudinal data involves adapting the hierarchical structure to a 

repeated measures design. Thus, the observations or repeated measures are located on the first 

level and the subjects on the second level (Cnaan et al., 1997; Van der Leeden, Vrijburg, & 

De Leeuw, 1996; Van der Leeden, 1998; Wu, Clopper, & Wooldridge, 1999). Both levels are 

clearly represented by the LMM. This kind of model, in which repeated measures are nested 

within individuals, constitutes an extension of the multilevel methodology that is widely used 

to analyze longitudinal data. An illustration of the LMM as applied to longitudinal data can be 

found in Arnau, Balluerka, Bono, and Gorostiaga (2010).  

This section examines, firstly, the regression model on two levels and, secondly, the 

integration of the two levels within the LMM.  

 

First level: within-subjects model 

With longitudinal data, and in accordance with the model proposed, the direct 

observations or repeated measurements that make up the first level are nested within subjects 
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or the second level. Since growth curves are processes over time they can be modeled as 

polynomial functions. On a first level (within-subjects model) the equation can be fitted to a 

polynomial function of order p, expressed by  

ti
p

tipitiitiiiti eTTTy +++++= ββββ ...2
210         ),0( 2

eti Ne σ≅                   (1) 

where yti is the measurement of the dependent variable for subject i on occasion t, βpis are the 

coefficients of the polynomial function of degree p, which represent the growth trajectory of 

the subject, and eti is the random error. It is assumed that eti has a normal and independent 

distribution with mean zero and constant variance. The Ttis are the explanatory variables of 

subject i on occasion t. Note that the parameters βpi and the residual variance σe
2 are specific 

to subject i. Thus, with the level-1 model the repeated measurements of a growth process are 

described as a polynomial function. In this model both the number of observations and the 

interval between observations may vary between subjects.  

Applying compact matrix notation the level-1 model for longitudinal data can be 

represented by:  

yi = Ti β i + ei    ei ≅ N (0, R)                    (2) 

where y i is the t x 1 repeated measure vector of the subject i, β i is a p x 1 individual 

parameter vector that specifies the shape of the growth curve for subject i, and Ti is the t x p 

matrix of known variables and their polynomial transformations. Let us suppose that the 

response of the subject follows a quadratic function. Ti is then a t x 3 matrix, in which the 

first column is formed by ones, the second corresponds to the observation occasions, and the 

third to the occasions squared. The vector ei is a t x 1 random error vector, and it is assumed 

that the errors are independent with normal multivariate distribution N (0, R). Thus, R = var 

(ei) is a positively defined covariance matrix. However, when the observations have a given 
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order or a specific structure it should be assumed that the between-error correlation is distinct 

from zero and that it varies systematically.  

 

Second level: between-subjects model 

 

In the longitudinal context the between-subjects model takes the individual growth 

parameters (βpis) to be random dependent variables which, in the simplest case, are expressed 

by the following equations,   

β0i = γ00 + u0i           (3) 

β1i = γ10 + u1i                                                    (4) 

β2i = γ20 + u2i                                                    (5) 

… 

βpi = γp0 + upi                                                    (6) 

In equations (3), (4), (5) and (6) the between-subjects variation in the parameters that 

express the individual growth trajectories is modeled as a function of population averages and 

the deviations from these averages which subjects show.  

If there is a predictive variable Z the level-2 model with p+1 parameters is expressed 

by 

βpi  = γp0  + 
1

pQ

pq
q

β
=
∑ Zqi  + upi              upi   ≅ N (0, G)                              (7) 

where γp0 is the average intercept of the subjects, Zqi represents a given level-2 predictive 

variable, βpq expresses the effect of Zqi on the growth variable p, and upi represents the 

random error term. The random effects p+1 associated with subject i are assumed to follow a 

normal multivariate distribution. 

In matrix notation the level-2 model for longitudinal data would be 
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      β i = Ziγ + ui                  ui  ≅ N (0, G)                                  (8)  

where Zi is the p x q between-subjects design matrix with known and fixed items. When only 

the random variation in individual growth parameters is modeled, Zi takes the form of an 

identity matrix. More elaborate models can be formulated if Zi contains dummy variables 

which codify subgroups of subjects or level-2 explanatory variables that enable the reasons 

for variability between growth parameters β i to be examined. The covariables can be fixed or 

may vary over time. In equation (8), γ is a q x 1 fixed coefficient vector and ui is a p x 1 

random error vector with zero mean and variance G.  

 

Integrating the two levels in the linear mixed model 

 

The LMM corresponds to the integration of the two levels described above. It can be 

used to analyze a wide variety of data structures which are commonly found in psychological, 

social, and health research and whose analysis with the classic linear model is problematic. 

The complete LMM is obtained by inserting equation (8) into equation (2), as follows:  

Yi = TZiγ  + Tui + ei                         (9) 

It is assumed that the elements of ei are distributed independently and normally with 

constant variance, ei ≅ N (0, R), where R = σe
2I, that the level-2 random terms are distributed 

normally, i.e. ui ≅ N (0, G), and that the level-1 error terms (ei) are distributed independently 

of the level-2 ones (ui). In the complete model the term TZiγ is the fixed part and the term 

Tui + e i is the random part. The fixed effects define the expected values of the observations, 

while the random effects are variances and covariances. The covariance between the elements 

of Yi or the longitudinal data consists of two parts, i.e. the between-subjects part and the 

within-subjects part, such that 
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   Var (Yi) = Var (Tui + ei) = TGT’ + σe
2I                     (10) 

Note that in equation (10) the assumptions relating to errors, and especially to the 

term ei, lead to very simple covariance structures at the individual level of the model 

(constant and non-correlated errors across points in time). However, when there are many 

time points per subject the residual components often show a pattern of autocorrelation 

(Ware, 1985). With multilevel models a covariance matrix that reflects dependence between 

observations can be chosen. Thus, modeling the within-subjects covariance structure is 

particularly relevant, since the accuracy of the regression parameter estimates depends on the 

right choice (Littell, Pendergast, & Natarajan, 2000; Park & Lee, 2002). 

One of the key advantages of the LMM is that it enables a choice to be made among 

the various covariance structures that could be used to model the data. This is of considerable 

importance because the better the fit of the covariance structure the greater the accuracy of 

the regression estimates. 

 

KR method for correcting the degrees of freedom 

 

In this study the degrees of freedom are corrected using the KR method, which yields more 

precise and efficient estimates of the fixed effects with small samples (Arnau et al., 2009; 

Kowalchuk et al., 2004; Schaalje et al., 2001). 

If C is a contrast matrix with range q, the Wald F for the hypothesis H0: Cβ = 0 is F = 

W /q, where  

W = )ˆ()')ˆ'((')ˆ( 111 ββ CCXVXCC −−−      (11) 

If we calculate a scale factor δ and an approximate value for the degrees of freedom ν, then 

the F statistic for the KR method is given by 
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F* =    δFKR = 
q
δ   )C()C)XVX(C()C( ββ ˆ'ˆ''ˆ 111 −−−     (12) 

The moments of F* are generated and matched to the moments of the distribution F so as to 

solve δ and ν. Under the null hypothesis it is assumed that F* is approximately distributed in 

the same way as F, with q degrees of freedom in the numerator and ν degrees of freedom in 

the denominator. Therefore, it is necessary to calculate two values from the data: the degrees 

of freedom in the denominator ν and a scale factor δ. Hence, 

 
1
24
−
+

+=
qy
qν        (13) 

where 
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V

F
Fy =        (14) 

and 

 [ ]( )2-E KR νF
νδ =        (15) 

The inferences derived from simulation studies that use the KR method are usually 

more accurate, even with complex covariance structures (Arnau et al., 2009; Keselman, 

Algina, Kowalchuck, & Wolfinger, 1998; Schaalje, McBride, & Fellingham, 2002). It has 

been shown that under a normal distribution and with heterogeneous within-group covariance 

structures the KR procedure satisfies the criterion of robustness (Livacic-Rojas, Vallejo, & 

Fernández, 2006). Furthermore, Arnau et al. (2009) concluded that, compared with the 

Satterthwaite procedure (Satterthwaite, 1941), the KR correction offered better control of 

Type I error rates under most of the normal distribution conditions they studied, and 

particularly with unstructured and non-spherical covariance structures. A recent simulation 

study also showed that the KR method is better than the Satterthwaite approach when 

applying the multilevel model to data from multiple-baseline designs (Ferron, Farmer, & 

Owens, 2010). 
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The present study focuses on analyzing the performance of the KR method with non-

normal as opposed to normal distributions. To this end, the KR procedure is used to estimate 

the fixed effects associated with time and with the interaction time x group in small samples 

corresponding to normal, exponential and log-normal distributions. In addition, the Akaike 

information criterion (AIC; Akaike, 1974) is used to select the covariance structure that shows 

the best fit among eleven possible structures. These structures were: a) compound symmetry 

(CS); b) unstructured (UN); c) first-order autoregressive (AR); d) Huynh-Feldt spherical 

(HF); e) within-subjects heterogeneous compound symmetry (CSH); f) within-subjects 

heterogeneous first-order autoregressive (ARH); g) random coefficients (RC); h) between-

subjects heterogeneous unstructured (UNj); i) between-subjects heterogeneous Huynh-Feldt 

spherical (HFj); j) within-subjects and between-subjects heterogeneous first-order 

autoregressive (ARH j); and k) between-subjects heterogeneous random coefficients (RCj). 

The subscript j indicates that the covariance matrices are not equal between the groups. 

  

A Monte Carlo study 

 

The data for the simulations were generated using a series of macros created ad hoc in SAS 

9.2 (SAS Institute, 2008). The first step involved generating the covariance matrices from 

variances and correlations with sphericity values of ε = 0.57 and ε = 0.75. The RANNOR 

generator was then used to obtain normally distributed pseudorandom observations by 

applying the Cholesky factor of the covariance matrix R. The non-normal data distributions 

were generated through the same procedure but were transformed by the Fleishman 

coefficients (Fleishman, 1978) corresponding to each of the distributions studied. The 

Fleishman method calculates the coefficients a, b, c and d by means of a polynomial 
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transformation based on different values of skewness (γ1) and kurtosis (γ2). The restriction 

imposed on these four coefficients was mean zero and variance 1, such that: 

γ1 = 2c(b2 + 24bd + 105d2 + 2)    (16) 

and 

 γ2 = 24(bd + c2 [1 + b2 + 28bd] + d2 [12 + 48bd + 141c2 + 225d2])  

 (17) 

where the constant a is equal to –c.  

Appendix 1 shows how the non-normal data matrices were generated by means of 

Fleishman coefficients, yielding both exponential distributions, with fixed skewness (γ1 = 0.8) 

and two values of kurtosis (γ2 = 2.4 and γ2 = 5.4), and log-normal distributions (γ1 = 1.75 and 

γ2 = 5.9). These values are well within the range of skew and kurtosis that represent the real-

world situation (Lei & Lomax, 2005). 

 

Study variables 

 

The robustness of the KR approximation with normal and non-normal distributions was 

examined by conducting a simulation study with split-plot designs. This study used three 

groups for the between-subjects factor (J = 3) and three levels for the within-subjects factor 

(K = 4, 6 and 8). The decision to investigate these levels was based on a review of 61 

simulation studies of repeated measures designs that were published between 1967 and 2010. 

Of these 61 studies 62.3% used J = 3, 72.1% used K = 4 and 26.2% used K = 8. In the present 

study we decided to include an intermediate value (K = 6) as well (Arnau et al., 2009; Padilla 

& Algina, 2007). It should also be noted that the levels of J and K used in the present 

simulation study are the ones most commonly found in educational and psychological 

research.  For each value of K, combinations of four variables were selected: a) homogeneous 
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and heterogeneous between-groups covariance structures; b) total sample size; c) equal and 

unequal group sizes; and d) pairings of the covariance matrices and group sizes. The indices 

of sphericity used were ε = 0.57 and 0.75. The latter value (0.75) was taken to be a good 

approximation to sphericity, while the former (0.57) represented non-sphericity. 

 The data were generated using the unstructured (UN) covariance structure, as this is 

the most typical with longitudinal data. The UN covariance matrix requires no assumptions as 

regards the error terms and allows any pattern of correlation between the observations. With 

this matrix the variances and correlations are assumed to be non-stationary, i.e. all the 

variances and covariances are different. Appendix 2 shows the values of the covariance 

matrices for the corresponding sphericity indices and levels of repeated measures. 

From the set of UN covariance structures obtained, both the equal and unequal 

between-groups covariance matrices were analyzed. With heterogeneous matrices the 

inequality of groups was adjusted to the ratio 1:3:5. The analysis considered small total 

sample sizes of N = 30, 36 and 42, as well as equal and unequal group sizes. With unbalanced 

groups the variance coefficient of the group size, Δnj, was 0.41, while for balanced groups 

Δnj = 0. With Δnj = 0.41 the group sizes were: a) 5, 10, 15 (N = 30); b) 6, 12, 18 (N = 36); and 

c) 7, 14, 21 (N = 42). With Δnj = 0 the group sizes were: a) 10, 10, 10 (N = 30); b) 12, 12, 12 

(N = 36); and c) 14, 14, 14 (N = 42). Finally, the type of pairing between group sizes and 

covariance matrices was defined as one of the following: null, positive or negative. In positive 

pairings the largest group is associated with the covariance matrix whose values are largest. 

Conversely, negative pairing associates the largest group with the covariance matrix 

containing the smallest element values. Pairing is null in the case of balanced groups. 

 Table 1 shows the different combinations of variables examined in this study. For each 

combination, 1000 replications were performed at a significance level of 0.05, for both 

normal and non-normal distributions. 
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[INSERT TABLE 1 ABOUT HERE] 

 

Results 

 

As indicated above, the first stage of this study consisted in generating the UN population 

covariance matrices for ε = 0.57 and ε = 0.75. In a second stage these matrices were then used 

to obtain normal and non-normal data distributions. In a third stage, 11 covariance structures 

were fitted to each data set by means of Proc Mixed from SAS, and according to the AIC. 

Finally, Proc Mixed was again used to calculate the Type I error rates for the effects of time 

and the interaction time x group. The next two sections report the fit percentages of the 

covariance matrices selected by means of the AIC, as well as the Type I error rates, specifying 

the covariance structure selected by the AIC. 

 

Selecting the covariance structure 

 

Given the presence of both within-subjects and between-subjects heterogeneity, 11 covariance 

structures were fitted according to the AIC of Proc Mixed. The present study used the AIC as 

it is more effective than the Bayesian information criterion (BIC; Schwarz, 1978). Keselman 

et al. (1998) demonstrated that the AIC selects the true population covariance structure on 

47% of occasions, whereas the BIC only does so 35% of the time. A similar study by Ferron, 

Dailey, and Yi (2002) reported correct selection rates of 79% for the AIC and 66% for the 

BIC. Subsequently, Vallejo and Livacic-Rojas (2005) showed that the test based on the AIC 

outperformed that based on the BIC when it came to controlling the Type I error rate, 

especially when used in conjunction with the KR method. These authors found that with the 
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BIC, Proc Mixed offered poor control of the estimated probabilities of Type I error. However, 

in a study of the KR procedure Gomez, Schaalje, and Fellingham (2005) concluded that the 

AIC only performs better with complex covariance structures, such as the UN covariance 

matrix. This is consistent with the findings of Keselman et al. (1998). Recently Vallejo, Ato, 

and Valdés (2008) demonstrated that with different group sizes the AIC provides a better 

estimate of standard errors. In light of these findings the present simulation study made use of 

the AIC. Note, however, that the AIC does not always select the true structure, as other 

structures may provide more adequate approximations. In this regard, Vaida and Blanchard 

(2005) proposed the conditional AIC (CAIC) as an effective and useful alternative for 

selecting mixed-effects models, arguing that it provided a good approximation that was 

adequate to the amount of data and the amount of information it contains. More recently, 

Vallejo, Fernández, Livacic-Rojas, and Tuero-Herrero (2011) found that the shape of the 

distribution did not affect the correct decision rates of the AIC and the BIC with UN 

covariance patterns, and also showed that the AIC performed better with both normal and 

non-normal distributions. 

 The results of the present study are presented in Tables 2 and 3, which show the 

percentage fit of the most common covariance matrices in relation to the UN population 

matrix, and for homogeneous and heterogeneous between-groups covariances, respectively. 

 It can be seen in Table 2 that with a normal distribution the structure with the best fit 

(66.7%) is the UN population matrix. With ε = 0.57 it shows a good fit in all cases (for K = 4, 

6 and 8). However, when ε = 0.75 it only shows the best fit for K = 4, and as the number of 

repeated measures increases (K = 6 and 8) it is the CSH matrix which offers the best fit 

(33.3%). When the distribution is exponential with γ1 = 0.8 and γ2 = 2.4 the best fit (33.4%) is 

provided by the UN population matrix when K = 4. As the value of K increases, the best fit is 

shown by other structures: CSH with ε = 0.75, and ARH and UN j with ε = 0.57. When 
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kurtosis increases to γ2 = 5.4 it is the UN j matrix which provides the best fit (66.6%) when K 

= 4 and 6. However, when the number of repeated measures increases to K = 8 the best fit is 

offered by the UN population matrix with ε = 0.57, and by the CSH matrix with ε = 0.75. In 

the case of the log-normal distribution the population matrix never provides the best fit, and it 

can be seen that here the UNj matrix has a fit percentage of 100. 

 

[INSERT TABLE 2 ABOUT HERE] 

 

 Table 3 shows the percentage fit for heterogeneous between-groups covariance 

matrices. As regards the type of pairing it can be seen that with normal distributions it is only 

in the case of null pairing that the best fit (22.2%) is shown by the UN j population matrix. 

This is also the case for exponential distributions (16.7% when γ2 = 2.4 and 22.2% when γ2 = 

5.4). With the log-normal distribution the UN j population matrix provides the best fit (33.4%) 

for all values of K. When the distribution is exponential with γ1 = 0.8 and γ2 = 2.4, the ARH j 

structure also shows a correct fit (16.7%), as it does, to a slightly lesser extent (11.2%), when 

the distribution is normal or exponential with γ1 = 0.8 and γ2 = 5.4. With positive and negative 

pairings the UN j population matrix only provides the best fit when K = 4, this being the case 

for both normal and non-normal distributions. As the number of repeated measures increases 

it is the ARH j matrix which shows the best fit for all the distributions, especially when ε = 

0.75. Note, however, that when ε = 0.57 and K = 6 the UN matrix offers a good fit for all 

distributions except the exponential distribution with γ1 = 0.8 and γ2 = 2.4. The reason why 

the ARH j matrix provides the best fit with positive and negative pairing is probably that the 

dependency structure of the data becomes more apparent as the number of repeated measures 

increases. 
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[INSERT TABLE 3 ABOUT HERE] 

 

Type I error rates 

 

The simulated data were then analyzed with Proc Mixed, specifying the covariance structure 

with the best fit according to the AIC (Tables 2 and 3). The analysis involved estimating the p 

values associated with the fixed effects, via the KR approximation, and the empirical Type I 

error rates for each combination of the different study variables (Table 1). 

 Robustness was determined according to Bradley’s criterion, whereby the effect 

estimate is robust when the empirical Type I error rate is between 0.025 and 0.075 for α = 

0.05. A test is considered to be liberal when the empirical Type I error rate is above the upper 

limit, and conservative when it is below the lower limit. 

 Table 4 shows the empirical Type I error rates for the time effect, as well as the 

percentages of robustness. With K = 4 and ε = 0.57 the KR method shows 66.7% robustness 

when the distribution is normal, and when it is exponential with γ1 = 0.8 and γ2 = 2.4. The 

percentage of robustness falls slightly to 58.3% when kurtosis increases to γ2 = 5.4, and the 

test is never robust when the distribution is log-normal (γ1 = 1.75 and γ2 = 5.9). With K = 4 

and ε = 0.75 the difference between normal and log-normal distributions is not so marked: 

when the distribution is normal the robustness percentage is the same as that for ε = 0.57, 

while with the log-normal distribution the test achieves 41.7% robustness. In this case, and in 

contrast to what occurs with the normal distribution, the test is liberal with homogeneous 

between-groups covariances. The highest robustness percentage for ε = 0.75 is the 75% 

corresponding to exponential distributions with γ1 = 0.8 and γ2 = 5.4, where the test is robust 

for both null and positive pairings. 
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 With K = 6 and ε = 0.57, robustness is 41.7% with the normal distribution, but only 

8.3% with the log-normal distribution. With ε = 0.75, robustness is 75% with the normal 

distribution and 25% with the log-normal distribution, where the test is liberal with null 

pairings. Note, however, that with positive pairings and ε = 0.57 the test is conservative for 

both normal and log-normal distributions. As regards the exponential distributions, robustness 

ranged between 50% and 83.3%, it being greater with ε = 0.75. When the distribution was 

exponential with γ1 = 0.8 and γ2 = 5.4 the test is robust even with negative pairings. 

 With K = 8 and ε = 0.57 robustness is 50% with the normal distribution, but 0% for 

the log-normal distribution. An even greater difference can be seen with ε = 0.75, where 

robustness was again 0% with the log-normal distribution but 75% in the case of the normal 

distribution. As regards exponential distributions, the performance is similar when K = 6, 

although the test is slightly less robust. 

 

[INSERT TABLE 4 ABOUT HERE] 

 

Table 5 shows the empirical Type I error rates and percentages of robustness for the 

effect of the interaction time x group. It can be seen that with K = 4 there are hardly any 

differences between normal and non-normal (exponential and log-normal) distributions. 

When ε = 0.57, robustness is 58.3% with the normal distribution, 41.7% for the exponential 

distribution with γ1 = 0.8 and γ2 = 2.4, 58.3% for the exponential distribution with γ1 = 0.8 and 

γ2 = 5.4, and 50% with the log-normal distribution. These percentages are more or less 

maintained when ε = 0.75, where robustness is 41.7% for the normal distribution, for the 

exponential with γ1 = 0.8 and γ2 = 2.4 and for the log-normal distribution, and 66.7% for the 

exponential distribution with γ1 = 0.8 and γ2 = 5.4. Similarly, with K = 6 and ε = 0.75 there 

are no differences between the normal distribution, the exponential with γ1 = 0.8 and γ2 = 2.4 
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and the log-normal distribution. In these cases, robustness ranges between 41.7% and 50%, 

although it rises to 75% for the exponential distribution with γ1 = 0.8 and γ2 = 5.4, the test 

being robust with negative pairings. With ε = 0.57 the test is again more robust (41.7%) when 

the distribution is exponential with γ1 = 0.8 and γ2 = 5.4. When the distribution is log-normal 

and ε = 0.57, robustness reaches 33.3%, compared to 25% for the normal distribution. It can 

be seen that the normal distribution and the exponential with γ1 = 0.8 and γ2 = 2.4 have the 

same percentage of robustness for both sphericity indices. 

 With K = 8 the test is more robust when the distribution is exponential with γ1 = 0.8 

and γ2 = 5.4, followed by the log-normal and finally the normal distribution. The greatest 

difference between the normal and log-normal distributions is observed with positive pairings, 

where the test is robust with the log-normal distribution but not with normally distributed 

data. 

 

[INSERT TABLE 5 ABOUT HERE] 

 

Overall, Tables 4 and 5 show that Proc Mixed in combination with the KR method is 

unable to control the Type I error rate when pairing is negative. This finding is corroborated 

by previous analyses of UN and UN j population matrices. Vallejo and Ato (2006) concluded 

that Proc Mixed in conjunction with the KR procedure based on the AIC tends to inflate Type 

I error rates for the interaction effect when pairing is negative, this being the case for both 

normal and non-normal distributions. Moreover, this tendency of the test to be liberal 

increases as the sample size gets smaller. The present results also illustrate this. As regards 

the main time effect, Vallejo and Livacic-Rojas (2005) found that when the condition of 

sphericity was fulfilled the test was robust even with distributions that deviated slightly from 
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normality, and with small sample sizes and positive pairing. The present study reached the 

same conclusion with respect to exponential distributions. 

 

Discussion 

 

Moderate non-normality has a minimal effect on the standard errors of estimation methods. 

However, standard error bias tends to increase in line with the degree of non-normality (Lei & 

Lomax, 2005). Hence the focus of the present analysis of longitudinal data was to examine 

the extent to which non-normality influenced the estimation of fixed effects. Specifically, the 

aim of the study was to determine the robustness of the LMM in mixed longitudinal designs 

when the data are not normally distributed. A previous study with normally distributed data 

showed that the LMM in combination with the KR method is more robust than the between-

within and Satterthwaite approximations, particularly when the population covariance 

matrices are unstructured or heterogeneous first-order autoregressive (Arnau et al., 2009). The 

main contribution of this study by Arnau et al. (2009) was to demonstrate that the KR 

procedure corrects the liberal Type I error rates obtained through the between-within and 

Satterthwaite methods, especially when there are positive pairings between group sizes and 

covariance matrices. Vallejo and Ato (2006) concluded that in split-plot designs the KR 

correction may be a viable alternative for estimating the interaction effect. In their analysis of 

the estimation of time and interaction effects Vallejo and Livacic-Rojas (2005) found that the 

KR correction based on the AIC was able to control the Type I error rates in most of the 

distributions studied. Hence the present study examined the Type I error rates for time and 

interaction effects in order to determine the influence of skewness and kurtosis on the 

estimation of fixed effects when distributions are non-normal. 
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 An interesting result of this study, in relation to selecting the covariance structure with 

heterogeneous between-groups covariance matrices, is that the ARH j matrix showed the best 

fit, regardless of the type of distribution and with both positive and negative pairings. This 

ARH j structure of dependency in repeated measures data was previously reported by 

Keselman et al. (1998). In their simulation study they found that with normal distributions and 

ε = 0.75 the ARH j matrix showed the best fit to the UN j population matrix, this being the case 

for both positive and negative pairings. By contrast, with log-normal distributions and ε = 

0.75 there were no differences between the ARH j and UN j matrices, with both showing a 

correct fit to the UNj population matrix. 

 With respect to Type I error rates the present results show that for the time effect the 

test is more robust with normal as opposed to log-normal distributions. However, the 

difference was not so marked between normal and exponential distributions. With a log-

normal distribution and ε = 0.57 the test is not robust: the percentages are null or close to 

zero. With a normal distribution and ε = 0.75 the test is robust for all values of K. However, 

with a log-normal distribution and ε = 0.75 the test becomes less robust as the number of 

repeated measures increases, and ceases to be robust when K = 8. It should be noted, 

therefore, that the test is more robust with a normal as opposed to a log-normal distribution, 

whereas, overall, there are no significant differences between normal and exponential 

distributions. In addition, when the covariance matrix is spherical the test tends to become 

more robust with normal and exponential distributions, especially when the number of 

observations increases, this being contrary to what occurs with the log-normal distribution. 

Finally, comparison of the two exponential distributions shows that the test becomes more 

robust as kurtosis increases, regardless of whether the assumption of sphericity is fulfilled or 

not. 
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 As compared to the estimation of the time effect alone, the interaction between time 

and group leads to a considerable increase in the test’s robustness when the distribution is log-

normal. Indeed, with a log-normal distribution and ε = 0.57 the test has zero robustness in 

relation to the time effect, but is much better when estimating the interaction effect. 

Conversely, robustness decreases when the distribution is normal, particularly as the number 

of repeated measures increases. In this regard, Padilla and Algina (2007) showed that the 

Type I error rate tends to be higher as the value of K rises. When ε = 0.75 no differences are 

observed between the normal distribution, the exponential with γ1 = 0.8 and γ2 = 2.4, and the 

log-normal with K = 4 and 6. By contrast, with K = 8 the test is more robust with the log-

normal distribution. As occurs when estimating the time effect the highest percentage of 

robustness in relation to the interaction effect corresponds to the sphericity condition ε = 0.75 

and the exponential distribution with γ2 = 5.4. 

 To summarize, the KR approximation is least robust when the distribution is log-

normal, where robustness is null when estimating the time effect and with non-spherical 

covariance matrices (ε = 0.57). In our view this is largely due to the increase in skewness (γ1  

= 1.75), as this lack of robustness is not observed for exponential distributions with γ1 = 0.8. 

Robustness is high when the exponential distribution has a degree of kurtosis that is very 

similar to the log-normal distribution, i.e. γ2 = 5.4. Therefore, we conclude that the KR 

procedure is compromised with log-normal distributions, which show moderate skewness, 

especially as regards the estimation of the time effect. By contrast, when distributions are 

normal or have slight skewness (γ1 = 0.8) the test is robust even with extreme kurtosis (γ2 = 

2.4 and γ2 = 5.4). In fact, the percentage of robustness was high for the exponential 

distribution with γ1 = 0.8 and γ2 = 5.4, and when estimating both the time and interaction 

effects. 
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 In conclusion, two effects are revealed by the present results, one due to skewness and 

the other to kurtosis. The effect of skewness is detected when comparing exponential with 

log-normal distributions, where robustness decreases as skewness increases.  

On the other hand, the effect of kurtosis is revealed when comparing two exponential 

distributions, where robustness increases in line with the degree of kurtosis. 

 Two final reflections can be made. Firstly, while acknowledging that the results are 

limited to the conditions examined in this study we believe they could in fact be generalized 

to a wide variety of conditions. However, the results obtained are difficult to compare with 

other simulation studies, since the sample sizes and values of skewness and kurtosis differ 

from one study to another. Secondly, it would be interesting in future research to study the 

functioning of generalized linear mixed models. These techniques do not require the error 

terms to be normally distributed, and they are well-suited to most of the distributions found 

with real-life data. 
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Table 1. Group sizes for balanced and unbalanced designs with J = 3, K = 
4, 6 and 8, the UN population covariance matrix, and ε = 0.57 and ε = 0.75 

N N1 n2 n3 Δnj Between-groups 
covariance 

Pairing 

30 10 10 10 0 = Null 
36 12 12 12 0 = Null 
42 14 14 14 0 = Null 
30 10 10 10 0 ≠ Null 
36 12 12 12 0 ≠ Null 
42 14 14 14 0 ≠ Null 
30 5 10 15 0.41 ≠ + 
36 6 12 18 0.41 ≠ + 
42 7 14 21 0.41 ≠ + 
30 15 10 5 0.41 ≠ - 
36 18 12 6 0.41 ≠ - 
42 21 14 7 0.41 ≠ - 

Note. J: groups; K: number of repeated measures; ε: sphericity; N: total sample size; n1, n2 
and n3: group sizes; Δnj: variance coefficient of the group size; =/≠: 
homogeneity/heterogeneity of between-groups covariance matrices; +/-: positive/negative 
pairing of group sizes and covariance matrices.  
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Table 2. Percentage fit of the most common covariance structures (UN, CSH, ARH and 
UN j) in relation to the UN population covariance matrix. The percentages correspond to 
homogeneous between-groups covariance. 
 Covariance matrices that were fitted 

 UN CSH ARH UN j 

Distributions ε = 0.57 ε = 0.75 ε = 0.75 ε = 0.57 ε = 0.57 ε = 0.75 
Normal 

 
Totals 

K = 4, 6, 8 K = 4 K = 6, 8   
50 16.7  

33.3 
 

66.7 
Exponential  

( 1γ =0.8 2γ =2.4) 
Totals 

K = 4 K = 4 K = 6, 8 K = 6 K = 8  
16.7 16.7   

16.7 
 

16.7 33.4 33.3 
Exponential  

( 1γ =0.8 2γ =5.4) 
Totals 

K = 8  K = 8  K = 4, 6 K = 4, 6 
   

16.7 
 33.3 33.3 

16.7  66.6 
Log-normal 

(γ1=1.75 γ2=5.9) 
Totals 

    K = 4, 6, 8 K = 4, 6, 8 
  50 50 

 100 
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Table 3. Percentage fit of the most common covariance structures (UN, UNj and ARH j) in 
relation to the UN j population matrix. The percentages correspond to heterogeneous 
between-groups covariance.  

 Pairing 
 Null + - 
 ε=0.57 ε=0.75 ε=0.57 ε=0.75 ε=0.57 ε=0.75 

Distributions UN 

Normal 
 

  K=6  K=6  
  5.6  5.6  

Exponential ( 1γ =0.8 2γ =2.4)       
      

Exponential ( 1γ =0.8 2γ =5.4)   K=6  K=6  
  5.6  5.6  

Log-normal (γ1=1.75 γ2=5.9)   K=6  K=6  
  5.6  5.6  

 UN j 
Normal K=6,8 K=4,8 K=4 K=4 K=4 K=4 

 11.1 11.1 5.6 5.6 5.6 5.6 
Totals 22.2 11.2 11.2 

Exponential ( 1γ =0.8 2γ =2.4) 
 

Totals 

K=4 K=4,8 K=4 K=4 K=4 K=4 
5.6 11.1 5.6 5.6 5.6 5.6 

16.7 11.2 11.2 
Exponential ( 1γ =0.8 2γ =5.4) 

 
Totals 

K=4,6 K=4,6 K=4 K=4 K=4 K=4 
11.1 11.1 5.6 5.6 5.6 5.6 

22.2 11.2 11.2 
Log-normal (γ1=1.75 γ2=5.9) 

Totals 
K=4,6,8 K=4,6,8 K=4 K=4 K=4 K=4 

16.7 16.7 5.6 5.6 5.6 5.6 
33.4 11.2 11.2 

 ARH j 
Normal 

 
Totals 

K=4 K=6 K=8 K=6,8 K=8 K=6,8 
5.6 5.6 5.6 11.1 5.6 11.1 

11.2 16.7 16.7 
Exponential ( 1γ =0.8 2γ =2.4) 

 
Totals 

K=6,8 K=6 K=6,8 K=6,8 K=6,8 K=6,8 
11.1 5.6 11.1 11.1 11.1 11.1 

16.7 22.2 22.2 
Exponential ( 1γ =0.8 2γ =5.4) 

 
Totals 

K=8 K=8 K=8 K=6,8 K=8 K=6,8 
5.6 5.6 5.6 11.1 5.6 11.1 

11.2 16.7 16.7 
Log-normal (γ1=1.75 γ2=5.9) 

 
Totals 

  K=8 K=6,8 K=8 K=6,8 
  5.6 11.1 5.6 11.1 

 16.7 16.7 
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Table 4. Empirical rates of Type I error for the time effect (nominal value 0.05). 

       Distributions 
 
 

N 

 
 

N1 

 
 

n2 

 
 

n3 

 
 

Δnj 

Btw. 
group 
cov. 

 
Pairing 

 
Normal 1γ  = 0.8 

2γ  = 2.4 
1γ  = 0.8 

  2γ  = 5.4 

 1γ  = 1.75 

2γ  = 5.9 

       Sphericity 
       0.57 0.75 0.57 0.75 0.57 0.75 0.57 0.75 

K = 4 
30 10 10 10 0.00 = Null 0.075 0.061 0.086 0.080 0.069 0.068 0.086 0.084 

36 12 12 12 0.00 = Null 0.061 0.061 0.071 0.077 0.070 0.064 0.085 0.087 

42 14 14 14 0.00 = Null 0.066 0.047 0.068 0.081 0.066 0.062 0.083 0.092 

30 10 10 10 0.00 ≠ Null 0.067 0.079 0.062 0.072 0.069 0.069 0.107 0.068 

36 12 12 12 0.00 ≠ Null 0.064 0.064 0.063 0.069 0.078 0.060 0.084 0.068 

42 14 14 14 0.00 ≠ Null 0.068 0.067 0.075 0.063 0.063 0.061 0.104 0.064 

30 5 10 15 0.41 ≠ + 0.079 0.074 0.068 0.077 0.072 0.073 0.091 0.078 

36 6 12 18 0.41 ≠ + 0.072 0.073 0.073 0.066 0.077 0.065 0.112 0.075 

42 7 14 21 0.41 ≠ + 0.063 0.068 0.067 0.069 0.060 0.068 0.107 0.065 

30 15 10 5 0.41 ≠ - 0.127 0.130 0.125 0.102 0.106 0.115 0.135 0.114 

36 18 12 6 0.41 ≠ - 0.092 0.096 0.106 0.097 0.088 0.082 0.126 0.090 

42 21 14 7 0.41 ≠ - 0.094 0.087 0.079 0.076 0.089 0.083 0.155 0.080 

Percentages of robustness 66.7 66.7 66.7 41.7 58.3 75.0 0.0 41.7 
K = 6 

30 10 10 10 0.00 = Null 0.075 0.070 0.087 0.083 0.069 0.070 0.100 0.103 

36 12 12 12 0.00 = Null 0.079 0.058 0.078 0.063 0.074 0.061 0.111 0.075 

42 14 14 14 0.00 = Null 0.064 0.073 0.066 0.073 0.062 0.059 0.090 0.102 

30 10 10 10 0.00 ≠ Null 0.054 0.065 0.074 0.071 0.082 0.088 0.103 0.104 

36 12 12 12 0.00 ≠ Null 0.054 0.070 0.075 0.068 0.067 0.078 0.109 0.102 

42 14 14 14 0.00 ≠ Null 0.068 0.060 0.081 0.063 0.073 0.072 0.090 0.107 

30 5 10 15 0.41 ≠ + 0.017 0.079 0.057 0.069 0.079 0.055 0.038 0.086 

36 6 12 18 0.41 ≠ + 0.011 0.062 0.073 0.066 0.079 0.058 0.021 0.067 

42 7 14 21 0.41 ≠ + 0.011 0.054 0.061 0.070 0.064 0.066 0.017 0.069 

30 15 10 5 0.41 ≠ - 0.319 0.083 0.085 0.092 0.071 0.071 0.345 0.113 

36 18 12 6 0.41 ≠ - 0.277 0.069 0.091 0.087 0.066 0.073 0.301 0.125 

42 21 14 7 0.41 ≠ - 0.272 0.088 0.080 0.082 0.082 0.070 0.320 0.076 

Percentages of robustness 41.7 75.0 50.0 66.7 66.7 83.3 8.3 25.0 
K = 8 

30 10 10 10 0.00 = Null 0.094 0.072 0.078 0.091 0.071 0.079 0.129 0.108 

36 12 12 12 0.00 = Null 0.073 0.059 0.079 0.067 0.092 0.069 0.111 0.102 

42 14 14 14 0.00 = Null 0.073 0.057 0.084 0.073 0.075 0.064 0.115 0.098 

30 10 10 10 0.00 ≠ Null 0.073 0.078 0.071 0.103 0.078 0.063 0.132 0.139 

36 12 12 12 0.00 ≠ Null 0.073 0.055 0.078 0.075 0.075 0.051 0.115 0.127 

42 14 14 14 0.00 ≠ Null 0.069 0.075 0.079 0.082 0.063 0.059 0.132 0.098 

30 5 10 15 0.41 ≠ + 0.085 0.081 0.081 0.074 0.067 0.068 0.081 0.090 

36 6 12 18 0.41 ≠ + 0.066 0.071 0.084 0.067 0.076 0.080 0.099 0.090 

42 7 14 21 0.41 ≠ + 0.087 0.071 0.069 0.064 0.060 0.053 0.080 0.079 

30 15 10 5 0.41 ≠ - 0.094 0.103 0.089 0.078 0.089 0.090 0.123 0.131 

36 18 12 6 0.41 ≠ - 0.092 0.072 0.088 0.085 0.083 0.073 0.124 0.119 

42 21 14 7 0.41 ≠ - 0.076 0.075 0.066 0.089 0.078 0.060 0.097 0.101 

Percentages of robustness 50.0 75.0 25.0 50.0 50.0 75.0 0.0 0.0 
Note. In bold = liberal; in italics = conservative 
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Table 5. Empirical rates of Type I error for the interaction effect (nominal value 0.05). 

       Distributions 
 
 

N 

 
 

N1 

 
 

n2 

 
 

n3 

 
 

Δnj 

Btw. 
group 
cov. 

 
Pairing 

 
Normal 1γ  = 0.8 

2γ  = 2.4 
1γ  = 0.8 

  2γ  = 5.4 

 1γ  = 1.75 

2γ  = 5.9 
       Sphericity 
       0.57 0.75 0.57 0.75 0.57 0.75 0.57 0.75 

K = 4 
30 10 10 10 0.00 = Null 0.077 0.083 0.077 0.081 0.057 0.050 0.063 0.065 

36 12 12 12 0.00 = Null 0.066 0.065 0.058 0.063 0.059 0.070 0.069 0.076 

42 14 14 14 0.00 = Null 0.073 0.066 0.064 0.065 0.068 0.051 0.071 0.075 

30 10 10 10 0.00 ≠ Null 0.073 0.086 0.063 0.088 0.077 0.072 0.088 0.089 

36 12 12 12 0.00 ≠ Null 0.063 0.080 0.084 0.076 0.059 0.062 0.075 0.075 

42 14 14 14 0.00 ≠ Null 0.064 0.069 0.068 0.072 0.055 0.058 0.089 0.072 

30 5 10 15 0.41 ≠ + 0.088 0.094 0.089 0.088 0.074 0.094 0.060 0.093 

36 6 12 18 0.41 ≠ + 0.072 0.069 0.061 0.068 0.064 0.069 0.079 0.074 

42 7 14 21 0.41 ≠ + 0.058 0.064 0.082 0.062 0.077 0.053 0.055 0.081 

30 15 10 5 0.41 ≠ - 0.171 0.198 0.170 0.153 0.161 0.147 0.189 0.187 

36 18 12 6 0.41 ≠ - 0.118 0.129 0.157 0.111 0.111 0.103 0.181 0.132 

42 21 14 7 0.41 ≠ - 0.111 0.111 0.106 0.105 0.106 0.105 0.191 0.121 

Percentages of robustness 58.3 41.7 41.7 41.7 58.3 66.7 50.0 41.7 
K = 6 

30 10 10 10 0.00 = Null 0.094 0.083 0.082 0.087 0.071 0.061 0.081 0.083 

36 12 12 12 0.00 = Null 0.082 0.066 0.081 0.067 0.082 0.063 0.069 0.075 

42 14 14 14 0.00 = Null 0.063 0.061 0.076 0.059 0.059 0.065 0.080 0.064 

30 10 10 10 0.00 ≠ Null 0.093 0.059 0.075 0.079 0.087 0.092 0.111 0.108 

36 12 12 12 0.00 ≠ Null 0.083 0.083 0.074 0.084 0.091 0.070 0.100 0.097 

42 14 14 14 0.00 ≠ Null 0.084 0.065 0.092 0.068 0.069 0.088 0.076 0.107 

30 5 10 15 0.41 ≠ + 0.028 0.092 0.077 0.072 0.080 0.057 0.029 0.062 

36 6 12 18 0.41 ≠ + 0.025 0.068 0.068 0.069 0.079 0.057 0.030 0.062 

42 7 14 21 0.41 ≠ + 0.020 0.059 0.076 0.062 0.068 0.062 0.031 0.060 

30 15 10 5 0.41 ≠ - 0.350 0.116 0.109 0.097 0.091 0.103 0.357 0.119 

36 18 12 6 0.41 ≠ - 0.306 0.096 0.090 0.083 0.079 0.073 0.306 0.114 

42 21 14 7 0.41 ≠ - 0.308 0.095 0.081 0.083 0.070 0.072 0.310 0.087 

Percentages of robustness 25.0 50.0 25.0 50.0 41.7 75.0 33.3 41.7 
K = 8 

30 10 10 10 0.00 = Null 0.093 0.076 0.094 0.079 0.080 0.083 0.075 0.089 

36 12 12 12 0.00 = Null 0.085 0.076 0.084 0.081 0.075 0.068 0.076 0.075 

42 14 14 14 0.00 = Null 0.068 0.071 0.068 0.077 0.073 0.080 0.078 0.080 

30 10 10 10 0.00 ≠ Null 0.083 0.119 0.082 0.105 0.065 0.075 0.115 0.103 

36 12 12 12 0.00 ≠ Null 0.103 0.082 0.084 0.097 0.077 0.066 0.095 0.123 

42 14 14 14 0.00 ≠ Null 0.086 0.080 0.080 0.100 0.066 0.063 0.096 0.105 

30 5 10 15 0.41 ≠ + 0.094 0.075 0.079 0.090 0.091 0.076 0.068 0.072 

36 6 12 18 0.41 ≠ + 0.085 0.093 0.074 0.070 0.076 0.069 0.068 0.051 

42 7 14 21 0.41 ≠ + 0.086 0.083 0.076 0.069 0.060 0.055 0.063 0.061 

30 15 10 5 0.41 ≠ - 0.104 0.116 0.116 0.120 0.104 0.086 0.128 0.130 

36 18 12 6 0.41 ≠ - 0.105 0.112 0.097 0.114 0.097 0.076 0.126 0.106 

42 21 14 7 0.41 ≠ - 0.082 0.105 0.091 0.096 0.089 0.084 0.108 0.096 

Percentages of robustness 8.3 16.7 16.7 16.7 41.7 50.0 33.3 33.3 
Note. In bold = liberal; in italics = conservative 
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Appendix 1: Generation of non-normal data matrices by means of Fleishman coefficients 

 

/*…*/ 
/*Distribution with skewness 0.8 and kurtosis 2.4*/ 
 
    b=0.848445836; 
    c=0.104049451; 
    d=0.044849610; 
    a=-c; 
 
 
 z1=j(n1,q,.); 
 do i=1 to n1; 
    do j=1 to q; 
 z1[i,j]=rannor(0); 
 z1[i,j]=a+b*z1[i,j]+c*z1[i,j]**2+d*z1[i,j]**3; 
 end;  
    end; 

/*…*/ 
 

/*…*/ 
/*Distribution with skewness 0.8 and kurtosis 5.4*/ 
 
    b=0.702207971; 
    c=0.082964688; 
    d=0.088904623; 
    a=-c; 
 
 z1=j(n1,q,.); 
 do i=1 to n1; 
    do j=1 to q; 
 z1[i,j]=rannor(0); 
 z1[i,j]=a+b*z1[i,j]+c*z1[i,j]**2+d*z1[i,j]**3; 
 end;  
    end; 
/*…*/ 
 
 
/*…*/ 
/*Distribution with skewness 1.75 and kurtosis 5.9*/ 
 
    b=0.774926306; 
    c=0.222093456; 
    d=0.054958336; 
    a=-c; 
  
 
 z1=j(n1,q,.); 
 do i=1 to n1; 
    do j=1 to q; 
 z1[i,j]=rannor(0); 
 z1[i,j]=a+b*z1[i,j]+c*z1[i,j]**2+d*z1[i,j]**3; 
 end;  
    end; 
/*…*/ 
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Appendix 2: UN population covariance matrices. 
 

ε = 0.57 ε = 0.75 
K = 4 



















15
18.99
83.474.44
91.187.158.11

 



















15
13.89
20.620.44
37.340.240.11

 

K = 6 



























12
93.810
88.529.78
09.565.465.56
16.479.339.399.34
08.290.170.150.163.11

 



























12
72.710
88.531.68
09.565.488.46
16.479.339.345.34
08.290.170.147.141.11

 

K = 8 

































16
85.1114
31.827.1012
59.710.768.810
79.635.688.508.78
88.550.509.565.449.56
80.449.416.479.339.388.34
40.224.208.290.170.147.158.11

 

































16
03.1014
31.868.812
59.710.734.710
79.635.688.599.58
88.550.509.565.464.46
80.449.416.479.339.328.34
40.224.208.290.170.147.134.11

 

 
Note: UN = unstructured model. 
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