
UNIVERSITAT DE BARCELONA

FUNDAMENTALS OF DATA SCIENCE MASTER’S THESIS

GuruFinder

Author:
Marc CARDÚS GARCIA

Supervisor:
José MENA, Jordi VITRIÀ

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamentals of Data Science

in the

Facultat de Matemàtiques i Informàtica

September 26, 2018

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

GuruFinder

by Marc CARDÚS GARCIA

Imagine you are reading a newspaper, a blog, a scientific publication or a forum
and you have become interested in a certain topic. After reading that site you may
want to know more about it, so you click in a button and GuruFinder propose you
a list of Twitter users to follow experts on that topic. The concept may be easy but
the technology required underneath implies the combination of different disciplines
including natural language processing, recommender systems, text mining, knowl-
edge management systems and big data processing. GuruFinders pretends to ex-
plore state of the art techniques to build a prototype able to handle and process big
volumes of tweets and offer real-time responses to the users.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
To my friend and family who support me during this hard months, to my advisor
for all what I have learned during this project and to Eurecat for providing me with
their infrastructure.

1

Chapter 1

Introduction

1.1 Problem context

The Digital Revolution is changing every single aspect of our lives these days. The
way we communicate, shop or perform mundane actions such as planning our va-
cations has been drastically changed last years due to the rise of the Digital Rev-
olution. Nowadays anyone can easily publish on the internet its thoughts, expe-
riences, dreams, pictures, ideas, technical doubts or professional profile. Different
channels support this behaviour such as blogs (i.e. Blogger, Wordpress), microblogs
(i.e. Twitter, Tumblr, Tecent Wibo), forums (i.e. Reddit, 4chan, ForoCoches), image-
based social media (i.e. Flickr, Instagram), Q&A sites (i.e. Quora, Stackoverflow),
employment-oriented social media (i.e. Linkedin, Indeed) and many others. In term
of volume, Internet, smartphones, sensors, social media or multimedia content are
contributing to an exponential growth of the accessible digital information (Hashem
et al., 2015).

A possible use case for GuruFinder would be a user, let’s say for example a Ph.D.
student, that is reading a paper related to her thesis. After reading a section about
Convolutional Neuronal Networks (CNN), she decides that is something worth to
try in her research and wants to learn more about it, so she selects the section, clicks
on the GuruFinder button and the tool proposes her a list of Twitter users to follow.
Thus, she can access people that are publishing relevant information about CNNs:
new papers, conferences, etc. Imagine now that you are reading an online newspa-
per. After reading an article about the Rohingya Refugee Crisis, you want to know
more about the conflict, so you select the text and ask the tool to tell you which users
to follow on Twitter: the opinion of different experts on the matter will provide you
with different points of view.

1.2 Project method and outcomes

Last section mentioned channels hide useful information, but there is also non-
relevant or non-related information to our interests. Being able to discern informa-
tion by theme and relevance has become an important topic these days. To address
this issue researchers in the field of Information Retrieval (Singhal, 2001) have been
working to solve this challenge by applying state-of-the-art methods such as Latent-
Dirichlet-Allocation (Blei, Ng, and Jordan, 2003) model or doc2vec neural network
(Le and Mikolov, 2014), which over-perform classic methods like Tf-idf (TF/IDF) or
vector-space-model (Singhal, 2001).

GuruFinder project address the problem with a specific approach. It does not
assist sith searching and filtering of information but suggest you who has the rele-
vant information (GuruFinder let you know who is the expert, also called Guru in a

2 Chapter 1. Introduction

certain topic). Those people, that we call Gurus, have knowledge enough about the
topic to detect, filter and curate the contents that are worthy to share. The outcome
of this project is to create a prototype tool able to take a piece of text that is relevant
for the user and recommend expert Twitter users (gurus) to follow.

1.3 Problem constraints

This thesis has two different constraints in order to have an accomplishable scope
of work. On one side, the master’s thesis focus in retrieving Gurus from an already
defined list of expert users given a user input text (matching input texts topic with
equivalent Gurus topic). There is no work thought on detecting new Gurus from
Twitter (detecting whether a user is a Guru or it is not). On another side, Gu-
ruFinder uses an unsupervised (Unsupervised learning intuition) strategy as it is stated
in chapter 3, so it is not bounded by topic, this means GuruFinder theoretically could
work on any topic (any text), but this suppose a too open scope, so the training set
(tweets) and the possible list of topics has been reduced to three different possibil-
ities: feminism, cooking and technology. I selected these possible topics for being
quite different between them and also to be popular topics on Twitter nowadays.

1.4 Motivations

For these reasons, GuruFinder is a challenging project which addresses a noble prob-
lem combining different state of the art techniques. Creating representations of texts
using cutting-edge text models, indexing Twitter timelines and perform searches
based on the selected texts in real time using big volumes of data, suppose an ap-
pealing challenge for anyone interested in a multidisciplinary project. GuruFinder is
then an appealing idea where to apply obtained knowledge during master studies,
combining all these mentioned fields and applying them to a real-life project with
the collaboration of Eurecat.

3

Chapter 2

State of the Art Review

The GuruFinder main challenge consists of identifying topics from Twitter users
timelines. This is relevant to accomplish the ultimate GuruFinder goal: to recom-
mend a relevant list of Twitter users given an input text. To do so, GuruFinder
establishes relations between a given input text and explored Twitter users.

To address this problem, the literature explores different strategies explained in
the following lines.

One approach to tackle this problem concerns the extraction of named entities
using the Named Entity Recognizer technique (NER) (Locke, 2009). This technique
has been used in Twitter domain (Cooper, 2017) to obtain occurrences of specific
objects. These objects are then classified into a predefined set of categories such as
persons, locations, political organizations, facilities etc. For example, the sentence:
“Gaudi planned the Sagrada Familia to be as tall as Collserola” would classify Gaudi
as a person, and Sagrada Familia and Collserola as locations. Through the obtention
of these entities, one can establish connections between different texts.

NER technique needs to be trained using a labelled set of data containing a label
of each entity object. These labels may be obtained by hand using labelling services
such as Amazon’s Mechanical Turk (Finin et al., 2010) (Human intelligence through
an API). Another possible approach to obtain these labels consist of using external
sources of knowledge like Wikipedia. In the literature, there are examples of how to
use these external sources of information to enhance the NER technique in Twitter
(Yamada, Takeda, and Takefuji, 2015).

The literature also proposes a different approach rather than finding entities in
a text, which consists of the creation of numerical representations from texts. There
are different types of models capable to represent texts as vectors such as the vector
space model (Singhal, 2001), also known as bag of words which is shortly explained
in next paragraphs.

Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan, 2003) model is also com-
mon in the literature (Duan and Ai, 2015) (Campr and Ježek, 2015) (Ramage et al.,
2009) to generate numerical representations. LDA represents documents as a mix-
ture of unobserved groups (topics) with a prior Dirichlet distribution. The topics are
represented as a mixture of words with a probability representing the importance of
the word for each topic.

Different types of embeddings are also used to represent texts as vectors spe-
cially doc2vec (Le and Mikolov, 2014), word2vec (Mikolov et al., 2013), glove (Pen-
nington, Socher, and Manning, 2014) and fast text (Bojanowski et al., 2016). These
embeddings are neural networks that overcome classical bag of words by taking
consideration of the semantics and order of words.

The literature also proposes the usage of the singular-value decomposition, which
is a matrix factorization technique. As can be read in the literature (“Text Summa-
rization and Singular Value Decomposition”) (Campr and Ježek, 2015), it is used

4 Chapter 2. State of the Art Review

over the bag-og-words matrix generating a vector representation though its singu-
lar vectors.

The creation of numerical text representations then it is a core idea in GuruFinder.
To explain the intuitions behind it one may first understand the famous vector space
model, where texts are transformed into vectors in the vector space. In the vector
space model, a text is represented by a vector of terms where terms are typically
words. Every term in the vocabulary (the total list of possible terms) represents an
independent dimension in the vector space, so any text can be represented into this
vector space (with length equal to the vocabulary size). If a text term exists in the
vocabulary it gets a non zero value and not all terms are chosen to be part of the
vocabulary since a tokenization process (which is explained later on) is applied to
filter text terms.

So, given a numerical representation from a text, one may compute nearest vec-
tors using, for example, K-Nearest-Neighbors (KNN) (Soni, 2018). KNN may use
different ways to compute distances between vectors such as Euclidean distance,
cosine similarity or Manhattan distance (Soni, 2018). Normally also more sophisti-
cated models use the vector space model as input data to generate further numerical
representations.

Another important GuruFinder challenge is the recommendation process in the
Big Data context since GuruFinder pretends to be a tool able to work at scale. Work-
ing with large amounts of data requires distributed technologies (they provide hori-
zontal scalability achieved by using clusters of machines) since single machine pro-
cesses are strictly bounded by the single machine hardware resources.

The Big data technologies landscape (2018) has grown recently fueled by the in-
terest of processing big sources of data, so many technologies have appeared within
the last years. Elasticsearch (Elasticsearch), for example, is a distributed search engine
commonly used to build recommendation systems due to its capabilities of process-
ing text content at scale. Another state-of-the-art distributed tool is Spark () which is
used to perform distributed computations. It may be a useful tool to deal with rec-
ommendation matrices and vectors. Spark has an API (MLlib | Apache Spark) with
different recommendation models which may also found useful for implementing a
distributed recommendation system. Actually, scalability is such an important piece
of a recommender system since many times recommender systems have to deal with
huge users and products matrices. For this reason, there is great literature about how
to create a state-of-the-art recommender working at scale (Covington, Adams, and
Sargin, 2016).

Another state-of-the-art technique to build a scalable system consists of build-
ing a microservices architecture. This idea is based into having a highly modular
code, where each component runs a specific small isolated service. The microservice
paradigm provides a decentralized approach to building software, which is opposed
to classic monolithic services where all of the code is in one principal executable file.
A microservices architecture allows running multiple instances of the required ser-
vice when needed in one or multiple machines without the overhead of running the
entire system.

Tokenization (Tokenization) is also an important task when working using text.
Most common natural language processing models in multiple fields like topic mod-
elling models, text summarization or automatic labelling need to pre-process text to
extract tokens, where tokens are pre-processed words. Common tokenization pre-
processing includes filtering most and less frequent words, removing stop-words
(most common words in a language providing no meaning) or removing punctua-
tion. More advanced tokenization processes include for instance the elimination of

Chapter 2. State of the Art Review 5

words prefixes or suffixes, cleaning words to their root. This technique it is called
stemming.

7

Chapter 3

GuruFinder approach

3.1 Specific goals

After some research of the state of the art described in Chapter 2, a specific list of
goals has been created in order to produce a successful prototype able to accomplish
GuruFinder ideas, next to these goals are listed:

• GuruFinder should be able to generate and index Twitter timelines numerical
representations using the following list of methods: Latent-Dirichlet-Allocation
(LDA) and two different embeddings, Word2Vec and Doc2Vec. I decided to se-
lect the previous list of methods to be the most commonly used in the literature
(Campr and Ježek, 2015) (Duan and Ai, 2015) (Thanda et al., 2016) (Gupta and
Varma, 2017).

• In an analogous way, GuruFinder should be able to generate numerical rep-
resentations of a user’s given texts (user texts received from the API) using
the following methods: Latent-Dirichlet-Allocation (LDA) and two different
embeddings, Word2Vec and Doc2Vec.

• GuruFinder should be able to crawl and index Twitter users timelines.

• GuruFinder should be able to provide its service through a REST API.

• Given an input text about feminism, technology or cooking (introduced through
the API), GuruFinder should be able to generate a list of recommended Gurus
to follow. Recommended Guru’s topic must be correlated with the topic of the
given user input text.

• GuruFinder should be able to handle and process big volumes of tweets and
offer real-time responses to the users.

• GuruFinder should be easily deployable in order to replicate it in different
hosting providers.

3.2 GuruFinder first approach

GuruFinder has three different possible approaches in order to solve the problem
main goal, to recommend a relevant list of Twitter users given an input text.

• Supervised approach: Supervised models are simple to understand and eval-
uate but rely heavily on a source of labelled information since they need a
labelled dataset for training. These models also lack the unsupervised model’s
extendability since supervised models can only learn what it has been labelled,

8 Chapter 3. GuruFinder approach

not being able to learn for instance new labels. In GuruFinder context, super-
vised models are not able to learn new topics without adding new labels. Some
labelling services like Amazon Mechanical Turk (Finin et al., 2010) (Human in-
telligence through an API) may help to label data.

• Weak supervised approach: Weak supervised or also called semi-supervised
models share supervised model benefits as they are also easy to evaluate and
understand. The difference between these models and regular supervised ones
consists of the source of information for obtaining labelled datasets. Semi-
supervised models are attached to an external online and independent source
of labelled data which is automatically generating new labelled samples, so
there is no need to manually label training data. To depict the previous idea,
let’s imagine a classifier model to identify dogs within images. Since Instagram
is a source of information offering thousands of dogs photographies containing
hashtags, one may use these hashtags as labels to overcome supervision issues.
Instagram is constantly adding new photographies containing dogs and new
labels made by humans, so the dog’s classifiers may keep learning without
manually adding new training data. The drawback of this technique is the
dependency of the external source of information.

In the literature, semi-supervised models regarding the natural language pro-
cessing field (NLP) usually rely on Wikipedia to obtain training data (Yamada,
Takeda, and Takefuji, 2015)

• Unsupervised approach: Unsupervised models have no need for a source of
labelled data. These models learn from data inherent properties like data dis-
tribution, elements order or elements co-occurrences. Unsupervised models
then are more extendible than supervised ones since they may keep learning
without human intervention (new training labels). These models are also more
independent than weakly supervised models since they don’t rely on any ex-
ternal service (such as Wikipedia or Instagram). The drawback of unsuper-
vised models consists on one side to understand the models since they tend to
be complex. On the other side, evaluate unsupervised models results may be
difficult since each unsupervised model may have a different type of evalua-
tion (supervised models mostly use same evaluation metrics such as accuracy,
F1-Score, precision or recall). Sometimes unsupervised algorithms build a su-
pervised layer on top of them in order to use simpler evaluation metrics.

After analyzing the different options I decided to use the unsupervised approach
for GuruFinder. The main reason behind this decision has been the extendability.
I consider GuruFinder have to be a "live" tool capable to change and learn from
Twitter without any human intervention. This is especially relevant if one plan Gu-
ruFinder as a tool capable of detecting new trends. Another point in favour of the
unsupervised approach is to find topics that may either not be in Wikipedia yet or
are too colloquial to be in Wikipedia (which may be ignored in a weak supervised
approach). In a constant growing digital world, unsupervised algorithms may easily
capture tendencies and obtain new knowledge. Furthermore, as it is detailed later on
in chapter 5, GuruFinder uses a simple supervised layer on top of the unsupervised
layer in order to evaluate GuruFinder recommendations, so evaluating GuruFinder
results becomes much easier.

3.3. GuruFinder text representations 9

3.3 GuruFinder text representations

As it has been stated in the state-of-the-art chapter, there are several algorithms able
to generate numerical representations from a text. GuruFinder prototype imple-
ments Latent-Dirichlet-Allocation, Doc2Vec and Word2vec. Following, these models
are introduced.

3.3.1 LDA

As was described by its authors, M.Blei, Y.Ng and I.Jordan, Latent-Dirichlet-Allocation
(LDA) (Blei, Ng, and Jordan, 2003) is a generative probabilistic model for collections
of discrete data such as corpora. LDA is an unsupervised learning algorithm that
describes a set of observations as a mixture of distinct categories following a Dirich-
let prior distribution. LDA categories (typically refered as topics) are represented as
a mixture of data elements (typically words) with a probability representing the im-
portance of the element for each category. LDA is most commonly used to discover
a user-specified number of topics shared by documents within a text corpus.

3.3.2 Doc2Vec

As introduced for the first time in (Le and Mikolov, 2014), Doc2Vec is an unsuper-
vised algorithm that learns fixed-length pieces of texts like paragraphs or documents
from a collection of documents. Internally it implements a neuronal network. It has
gained popularity for generating text numerical representation for many purposes
as document retrieval, web search or spam filtering. It gained popularity to over-
come well-known bag of words (BOW). One possible way of evaluating the model
is to compare numerical representations of similar documents.

As most neural networks, Doc2Vec needs big amounts of data to perform well.

3.3.3 Word2Vec

Word2vec (Le and Mikolov, 2014) is a method similar to Doc2Vec, also an ensemble,
it represents words as high dimensional vectors, so that words that are semantically
similar will have similar vectors. Internally learns to encode of words from their
co-occurrence information. The more they appear together in large text corpora, the
more they have a similar encoding.

Since it encodes words and not documents, in this project it will be tested to use
Word2Vec to encode complete set tweets calculating the vector mean of the vectors
forming the words of the document.

Similarly to Doc2Vec, it may be evaluated by comparing the numerical represen-
tation of similar words.

3.4 Text cleaning

Before using the above mentioned models it is needed to clean the given input text.
This is a crucial step since I’ll affect vocabulary size and quality. In this project next
text cleaning techniques have been used:

• Lower case transformation: Simple but mandatory, otherwise same word could
be two times in the vocabulary.

10 Chapter 3. GuruFinder approach

• Frequency filters: Words appearing too much or only a few times may be not
representatives for the text and add noise to the model.

• Literals filter stop words filtering: Removing punctuation and stop words will
increase the quality of our vocabulary.

• Stem filter: Useful to remove morphological affixes and compact the vocabu-
lary.

11

Chapter 4

GuruFinder architecture

This chapter focus on the design and implementation of an architecture to match
GuruFinder goals defined in chapter 3. To do so, first, a list of requirements has been
collected from GuruFinder goals. After obtaining these requirements a conceptual
view of the architecture is presented followed by the implementation view of the
final architecture. Finally, a short guide explaining how to deploy the architecture is
given.

4.1 Architecture requirements

The following list of requirements defines the aspects to be fulfilled by the solution
architecture in order to match GuruFinder goals defined chapter 3.

• Scalability: GuruFinder architecture should be highly scalable capable to pro-
cess big amounts of data in near real-time. This is an important criterion for
extending the prototype to a product able to crawl, store and process large size
of tweets.

• Easy deployment: GuruFinder architecture needs to have a simple deploy-
ment since Eurecat may want to deploy it into different host providers.

• Extendability: GuruFinder implements different text models depicted in sec-
tion 3.3, the number of models may increase in the future in case new models
want to be tested, then an easy extendability is expected from the delivered
code.

• Security: Since Eurecat may want to deploy GuruFinder in different hosts
providers and environments, it is important to assert a certain level of secu-
rity to avoid possible exploitable vulnerabilities. Delivering a small document
of security best practices would be encouraged.

4.2 Logical view

The following section presents a conceptual view of the solution architecture. This
type of view pretends to map every single process and data source involving the
final solution without deepening into the implementation detail.

4.2.1 Logical view diagram

Next diagram represents an overview of the main logical entities regarding the solu-
tion architecture. For a detailed explanation of each logical entity consult following
chapter sub section.

12 Chapter 4. GuruFinder architecture

FIGURE 4.1: Main entities involving the architecture logical view.

4.2.2 GuruFinder ingestion

• Gurus timelines ingestion: This entity should access Twitter API and down-
load specific selected users (users considered gurus) timeline. This data then
is indexed into the search engine.

• Tweets ingestion: This entity should download real-time published tweets re-
garding the three GuruFinder topics: feminism, cooking and technology. To
do so, it uses the Twitter API waiting for tweets containing a given list of key-
words. The list of selected keywords is described in chapter 5. This data then
is indexed into the search engine.

4.2.3 Search engine

The search engine plays a core role in this architecture. On one side it is responsible
for storing every single document:

• Gurus tweets: complete gurus timelines

• Keywords tweets: Non Guru tweets. These tweets simulate the non Gurus
users, which also help to train each text model.

• Guru codes: gurus timelines numerical representations

• Exceptions: Exception logs from all entities

On other side, it is also responsible to provide search functionalities to other entities.
There are two search use cases:

• To provide documents: Provides stored documents to other entities (i.e. text
models, recommender) applying different filters (dates, user id etc).

4.2. Logical view 13

• First recommendation layer: Search engines are able to efficiently select simi-
lar documents. This utility may work as first recommendation layer, so a gen-
eration of preselected candidates in order to reduce the recommender (second
recommendation layer) total search spectrum. The idea of having a first recom-
mendation filter (two stages recommender) may be found in the literature for
Big Data recommender systems (Covington, Adams, and Sargin, 2016) (Cheng
et al., 2016).

Search engines uses different algorithms to select similar documents, for instance
Elasticsearch uses vector space model and TF/IDF (Theory Behind Relevance Scoring -
Elasticsearch) (Cutting and Pedersen, 1997) (TF/IDF) to find similar documents. Some
Search engines are ElasticSearch, Solr or Azure search.

4.2.4 Text models

The text models entity implements the algorithms able to generate numerical repre-
sentations from a text. This entity is in charge to fit and predict processes:

• Fit process: GuruFinder text models (LDA, Doc2Vec, Word2Vec and LDA)
generate numerical representations (vectors) from a text. To fit GuruFinder text
models from search engine data (tweets) is a crucial process since GuruFinder
recommendation is based on numerical vectors representations similarity.

• Predict process: Predict process is in charge of loading already trained text
models and use them to generate numerical representations of given texts.
This process then is the one which generates numerical representations (one
per text model) for each guru and also for input texts. Once the prediction
process is finished, the recommender entity can look for nearest gurus respect
to the input text.

4.2.5 Recommender

On one side, the recommender entity acts as the system orchestrator calling fit and
predict processes when it is needed. It also uses the search engine to query data in
order to feed the fit process from the text models entity.

On the other side, the recommendation process in GuruFinder is composed of
two different layers (two stages). The reason behind this decision is to be able to
run the recommender at scale. Since GuruFinder could potentially have thousands
of millions of Twitter timelines, compute the nearest vectors for all of the numerical
text representations may be too challenging, especially considering that one of Gu-
ruFinder’s goals is to have a real-time recommendation response. This decision has
been motivated by the literature where it is becoming popular to use a two stages
recommender system in order to tackle Big Data scenarios (Covington, Adams, and
Sargin, 2016) (Cheng et al., 2016).

Next, both first and seconds recommendation layers are described:

• First recommendation layer: This layer is applied by the search engine entity
computing a list of similar gurus in respect of the input text vector. Search en-
gines compute texts similarities to find near documents efficiently. One exam-
ple is the Netflix pipeline, which uses Elasticsearch (a search engine) to query
large amounts of logs at near real-time (less than a minute)(Blog, 2016).

14 Chapter 4. GuruFinder architecture

• Second recommendation laye: This layer computes near gurus in respect of
the user input text, considering only gurus filtered by the first recommenda-
tion layer. To do so, this layer generates numerical text representations of both
gurus timelines and a user given text. Once the numerical text representations
have been computed, it applies K-Nearest-neighbors (KNN) with the cosine
similarity as the distance metric since it is the most common metric in the liter-
ature for GuruFinder domain (Soni, 2018) (Singhal, 2001). The second recom-
mendation layer is expected to be much more accurate than the first one, but
also slower to be computed.

4.2.6 REST API

The REST API is responsible to provide an interface to access to GuruFinder’s
services. It may be exposed to internet or may provide only local area network
service for testing purposes.

4.2.7 Scalability by design

As it has been stated in the architecture requirements section, the resultant so-
lution should be scalable in order to be deployed and extended as a product.
To achieve this goal all entities should follow software engineering principles
described in the state of the art review chapter, micro-services architecture and
distributed architectures. These principles will lead to a high scalability, reli-
ability and flexibility. Design the code following micro-services principle pro-
vides extra modularity and what is most important for GuruFinder, provides
a simple way to distribute code in multiple machines deploying multiple in-
stances of each entity (each service).

4.2.8 Security by design

To provide a certain degree of security should be guaranteed when deploying
GuruFinder. To achieve this goal without going to deep into the cybersecurity
domain, a three levels security layer may be a good solution:

– Firewall: Minimum possible ports should be exposed to the internet since
each port may represent a vulnerability. In this context, a firewall block-
ing incoming petitions to ports not being used by GuruFinder performs
an important job. Eurecat server (OpenStack) already provides a firewall,
so this is already work done.

– VPN: To hide GuruFinder services under a VPN provides an extra level of
security since a VPN user is needed in order to establish a connection with
GuruFinder API. Eurecat TI also provides VPN for connecting Eurecat
machines.

– Access token: Requiring an access token in order to access the GuruFinder
API it is also an important security measure since it blocks petitions from
not authenticated users.

4.3. Implementation view 15

4.3 Implementation view

Following section presents an implementation view of the solution architec-
ture. This view depicts precisely which are the components and its technolo-
gies to be implemented and deployed into the final solution. In this section
one will also find further details about each architecture component and its
deployment.

4.3.1 Implementation diagram

Next diagram depicts the GuruFinder solution architecture. This diagram
specifies which technology has been chosen for each component. Further de-
tails are exposed in following subsections.

FIGURE 4.2: Main components and technologies involving the archi-
tecture implementation view.

16 Chapter 4. GuruFinder architecture

4.3.2 Beats

Beats, also known as filebeats (Filebeat) it is a lightweight shipper for logs
within the Elasticsearch ecosystem. It allows to send logs to Elasticsearch
through Logstash, this helps the two Twitter ingestors to send their results
to Elasticsearch.

4.3.3 Elasticsearch

Elasticsearch (Elasticsearch) is an open-source, distributable enterprise-grade
search engine based on Apache Lucene (Apache Lucene). It is accessible through
an extensive HTTP API, which can power fast searches that data discovery
applications at near real-time. Big companies like Netflix (Blog, 2016) are using
Elasticsearch on their pipelines to process their events.

Elasticsearch is in charge to store, and query all application data running into
a multi-node fashion with a master node and a worker node, both deployed
within a Docker container.

4.3.4 Logstash

Logstash (Logstash) is a Elasticsearch ecosystem technology to pre-process and
transport data. It is in charge of ingesting and pre-process Gurus timelines
which later on are shipped to Elasticsearch.

4.3.5 Tweets ingestion

Python Tweetpy (tweepy) is an easy-to-use Python library for accessing the
Twitter API. It is used to ingests keywords (real time published) tweets.

4.3.6 Docker

All processes run within Docker (Docker) containers allowing simple deploy-
ments and isolation from internal and external dependencies. In future de-
velopments of GuruFinder, dockers could be orchestrated by a Kubernetes
(Production-Grade Container Orchestration) cluster in order to gain scalability
and control.

4.4 Deployment instructions

To deploy GuruFinder, use the folder called bin, which includes all the docker
commands needed to deploy, fit, predict and recommend. Running bin/de-
ploy.sh it’s enough to wake up the base infrastructure: elasticsrach, filebeats
and logstash.

4.5. API Acces 17

4.5 API Acces

GuruFinder API only has one service, recommend, which may be used to re-
ceive recommendations, only using LDA text model (the one performing better
as it is stated the chapter 5). GuruFinder API host IP is the 54.194.77.246. Next
a sample request to acces GuruFinder API recommendations:

c u r l −X POST \
ht tps : / / 5 4 . 1 9 4 . 7 7 . 2 4 6 : 8 8 3 7 / recommend \
−H ’ Accept : a p p l i c a t i o n /json ’ \
−H ’ Content−Type : a p p l i c a t i o n /json ’ \
−d ’ {

" i n p u t _ t e x t " : " Feminism i t i s about e q u a l l i t y " ,
" num_recommendations " : " 15 " ,
" token " : " 3<1kdjDy47&9;>3 "
} ’

4.6 Code repositories

All project code may be found in GitHub published by the user: @MCardus.
The code has been split into two different repositories in order to increase
reusability. On one side there is all the code regarding the text models, and
on the other side, one may find the rest of the code into the following link
GuruFinder.

https://github.com/MCardus
https://github.com/MCardus/text_models
https://github.com/MCardus/GuruFinder

19

Chapter 5

Results evaluation

5.1 GuruFinder evaluation

Selecting appropriated methods to evaluate an information retrieval system is
a crucial decision in order to have a correct evaluation of performance. This
section explores the GuruFinder evaluation pipeline and its different evalua-
tion methods including visual ones and not visual ones.

5.1.1 Evaluation pipeline

GuruFinder ultimate goal, consist of recommending a relevant set of gurus to
a user given an input text obtained through the GuruFinder API. A certain
guru will be relevant to a user if the user’s given input text topic is equal to the
recommended guru topic. For example, given an input text about feminism,
a recommended guru which is categorized as an expert in feminism will be
a relevant recommendation. In this case, a recommended guru which is an
expert in technology or cooking will be a non-relevant recommendation.

GuruFinder evaluation pipeline then it is about analyzing the relevance of the
retrieved gurus given a set of gurus and a set of input texts. This type of eval-
uation is indeed the traditional one in an information retrieval system (IR) as
shows the literature (Zuva and Zuva, 2012).

To analyze the GuruFinder performance one wants to observe how well Gu-
ruFinder retrieves gurus. To do so, an evaluation pipeline it has been built:

– Pre-evaluation process: The pre-evaluation process consist into all pro-
cesses required before being able to start measuring the GuruFinder per-
formance, this includes ingesting GuruFinder data (near two million tweets
have been ingested in this phase), training the different text models (train-
ing phase) and generating the numerical representation for each guru
(prediction phase).
In order to evaluate the GuruFinder performance and following the prob-
lem constraints defined in chapter 1, a specific list of gurus has been in-
gested. This specific list of gurus has been designed to have three different
topics: feminism, cooking and technology. This list of gurus it is explored
later on in this chapter.

– Evaluation process: Once GuruFinder pre-evaluation process has been
completed, it is time to start measuring GuruFinder performance. To do
so, it is important to highlight two different facts. On one side, the system

20 Chapter 5. Results evaluation

at this moment already contains a categorized list of gurus obtained dur-
ing the pre-evaluation process which is constrained by containing only
three different topics (gurus being experts either on feminism, technology
or cooking). On another side, the GuruFinder evaluation is performed
using a specific list of simulated user input texts which is explored and
presented later on in this chapter. The list of simulated user input texts
has been also designed to only contain three different topics: feminism,
technology and cooking. Having a clear idea about this two highlighted
facts, one can start measuring the GuruFinder performance.
To measure GuruFinder performance, an experiment has been realized
for each text model and each simulated user input text combination (each
text is about a specific topic from the list of possible topics). For instance,
one possible test could be about measuring the performance for LDA us-
ing a feminism simulated input text.
The evaluated text models include LDA, Doc2vec, word2vec and elastic-
search vector space model (Theory Behind Relevance Scoring - Elasticsearch)
(which corresponds to use the first recommendation layer only). As it
has been stated in the last paragraphs, each experiment uses a different
text model and simulated input text combination. An experiment con-
sists then into obtaining the top N recommendations for each text model
and simulated input text combination. Once the results are obtained,
the different evaluation methods are applied to analyze how well have
performed these N recommendations (these evaluation methods are de-
scribed later on in this chapter). The GuruFinder evaluation has used an
N value equal to 15, so 15 recommendations per experiment (15 gurus re-
trieved per experiment). The reason why I have selected N equal to 15 it
is explained in the "Gurus list" subsection in this chapter.

5.1.2 Evaluation methods

Before explaining GuruFinder evaluation methods it is convenient to recall
some basics about how to evaluate an information retrieval system.

Most frequently important basic measures for information retrieval effective-
ness are precision, recall, and fall-out (Zuva and Zuva, 2012):

– Precision: Within a retrieval information system context, precision can be
defined as the fraction of relevant retrieved items overall retrieved items.

– Recall: Also called sensitivity, it is the fraction of relevant items that have
been retrieved over the total amount of relevant items.

– Fall-out: The proportion of non-relevant documents that are retrieved,
out of all non-relevant documents available.

Figure 5.1 may help understanding above precision and recall definitions.

Precision, recall, and fall-out may also be defined as:

Precision =
relevantDocuments ∩ retrievedDocuments

retrievedDocuments
(5.1)

Recall =
relevantDocuments ∩ retrievedDocuments

relevantDocuments
(5.2)

5.1. GuruFinder evaluation 21

FIGURE 5.1: Information retrieval systems: relevant and retrieved
documents

FallOut =
nonRelevantDocuments ∩ retrievedDocuments

nonRelevantDocuments
(5.3)

As it has been explained before in this chapter, a relevant recommendation
(document) it is a recommendation which is relevant for the user, so the user
input text topic matches the guru topic.

Following list explains used evaluation techniques for evaluating GuruFinder:

– Visual evaluations methods :

∗ Precision-recall curve: Tradeoff between precision and recall for dif-
ferent threshold. A high area under the curve represents both high
recall and high precision.
∗ Roc-curve: This curve provides the retrieval performance at all thresh-

olds settings. Lowering the retrieval threshold classifies more docu-
ments as relevant, thus increasing both False Positives and True Pos-
itives
∗ Numerical representation plot:
· LDAvis: Visualization proposed in (Sievert and Shirley, 2014). It

visualize topics in a 2D plot, which detect possible overlap be-
tween topics.

– Scalar evaluation:

∗ Mean Average precision: Mean average precision for a set of queries
is the mean of the average precision scores for each query, where the
average precision is an evaluation method for systems returning a
ranked sequence of documents such as retrieval information systems
where the order in which documents are presented is a relevant fea-
ture (the recommendations are ordered by relevance).

22 Chapter 5. Results evaluation

Average precision computes the average value of p(r) over interval
[0, 1] where p(r) is the precision-recall curve, that is the area under de
precision-recall curve:

AveragePrecision =
∫ 1

0
p(r)dr (5.4)

Finally, the equation (5.4), lead us to the computation of MAP (Mean
average precision) which is represented by the next equation:

MAP =
∑Q

q=1 AveragePrecision(q)

Q
(5.5)

where Q is the number of queries.

The combination of visual and scalar evaluation methods gives a full picture
and a definite answer about the performance of the system being evaluated as
states (Zuva and Zuva, 2012). On one side scalar measures provide an over-
all value of performance of the system. On the other side, visual performance
measure preserves all performance-related information about a retrieval sys-
tem allowing to know whether system dominates the other system totally or
partially.

5.1.3 Evaluation data

Different sets of data play an important role in evaluating gurus recommenda-
tions such as the list of ingested gurus, the list of simulated static input texts
and the total numbers of tweets. Next, all these documents are listed in order
to clarify which data is being used for the evaluation process.

Gurus list:

As it has been stated in chapter 1, GuruFinder problem has been constrained
to three different topics: feminism, cooking and technology. To follow this
constraint, a list of gurus has been designed where each guru is categorized
belonging to one of the three possible topics.

The total amount of ingested gurus has been of 62 gurus. 30 feminism gurus,
15 technology gurus and 17 cooking gurus. Originally it was planned to have
an equal number of gurus for each topic, but elasticsearch lost some data dur-
ing the evaluation process, so the resultant dataset of gurus timelines is quite
unbalanced.

Next, the list of gurus is presented for each topic:

– Feminism: EvrydayFeminism, FeminismInIndia, artandfeminism, Who-
vianFeminism, IncFeminism, feminiscience, geekfeminism, WomAgain-
stFem, HoodFeminism, FlyoverFeminism, BFandFem, NoToFeminism, nico-
lettemason, transscribe, pollyn1, bigmamamontse, bonniegrrl, Reductress,
rossilynne, KristyPuchko, Ashadahya, naomirwolf, anitasarkeesian, pink-
ness, MeganMFinnerty, CTGreenParty, PrachiVidwans, CE_Zielinski, Ina_Steinbach,
gillianmsmith.

5.1. GuruFinder evaluation 23

– Cooking: CookingLight, CookingChannel, Wolfiesmom, cookingwith-
dog, CookingMatters, cookingvinyl, HonestCooking, SunnyAnderson, cook-
ingfever, SandraLee, lorrainepascale, CookingDomains, rkhooks, kraft-
canada, HairyBikers, rachelallen1, cookingdiary.

– Technology: techreview, technology, MIT, GIGABYTE_News, UTC , Huawei
, SlackHQ, ZebraTechnology, LithiumTech, mapr , BBCTech, Akamai, CAinc,
CenDemTech, DXCTechnology, NASA_Technology.

Since the minimum amount of gurus in a topic is 15, which is the total number
of technology related gurus, the total number of experiments per text model
and simulated input text has been set to also 15, otherwise, the experiment
using the technology simulated input text will obtain for sure wrong recom-
mendations.

As could be noticed, labelled texts do not contain their topic word in order to
make tests a bit more realistic.

Simulated user input texts

The evaluation process ultimate goal consists of analyzing how well GuruFinder
retrieves gurus given a user input text. When a retrieved guru belongs to a
topic that matches the user input text topic (text introduced through the API
by the user) the recommendation is considered a relevant one. Considering
this scenario, a categorized list of gurus and a categorized list of simulated
user input texts are needed. There are three simulated user input texts and
each of these texts belongs to exactly one topic. These texts have been ob-
tained from specialized web pages following two different criteria. One one
side, I have look for texts not containing the topic keyword (for example, a
feminism text not containing the ’feminism’ word) in order to have a more re-
alistic user text (a user looking for a feminism gurus may introduce a text about
feminism which is not containing the word feminism itself). On the other side,
I have tried to select texts which have a clear inclination for a topic in order to
avoid an overlap of gurus. Following, the three simulated user input texts are
presented:

– Feminism: They are not angry lesbians who hate men. They do not be-
lieve women are better than men, or that women deserve special privi-
leges. They do not believe women are victims. In order to be considered
as one, you only need to be on board with one idea: All humans, male and
female, should have equal political, economic and social rights. Although
more and more people are beginning to understand the true definition of
this philosophy and openly identifying with it, there has always been a
negative stigma attached to it. Part of this problem is the way our media
sensationalizes things, trying to pass the most radical and extreme ver-
sions as the standard which, in this case, depicts it as a man-hater who
hates lipstick, crinkles her nose at stay-at-home moms, and unapologeti-
cally supports abortions on demand.

– Technology: On 6 February 2018, Elon Musk’s SpaceX successfully launched
its Heavy Falcon rocket from the same Kennedy Space Center launch pad
used for the Apollo missions. Atop the Falcon was Musk’s own Tesla elec-
tric roadster, piloted by a mannequin named Starman who is seen lifting
off to the tune of David Bowie’s “Life on Mars.” What would Nikola Tesla,
the famous inventor, have thought about this? As a showman who took

24 Chapter 5. Results evaluation

250,000 volt shocks to demonstrate the safety of his alternating current AC
inventions, Tesla would have been thrilled to see the car named after him
orbiting in space. Such gestures, Tesla believed, wake people up and help
them imagine on science in new ways. He would have wholeheartedly
agreed with Musk who admitted that launching the car into space was
“kind of silly and fun, but I think that silly and fun things are important.”

– Cooking: In the East, you’ve got crunchy spring rolls, sushi, egg fried
rice, steamed prawns, soy sauce, nuoc mam (a type of fish sauce), Peking
duck, caramelised pork, chicken noodle soup, etc. In the West, you’re
more likely to find pasta, fondue, fish and chips, rack of lamb, etc. We’re
not going to argue which one is better since it all comes down to taste.
Nevertheless, it’s important to note the key ways in which Chinese, Viet-
namese, and Japanese one, for example, can differ to western dishes even
when the ingredients, like seafood, fish, chilli, and honey, are the same.
Culturally speaking, Asian one tends to use opposing flavours in dishes,
like mixing salty with sweet or sweet and sour together while a Western
dish often focuses on a particular type of flavour like savoury or sweet.

5.2 Results presentation

After the previous section introducing results evaluation set up, this section
plans to present and discuss obtained results.

5.2.1 Vocabulary

Final vocabulary has been formed by 500.371 keyword tweets and 1.174.113
Gurus tweets. Guru’s tweets though are reduced filtering by current year.
Since Gurus may change their main topics it is better to no consider old tweets,
so any tweet older than the current year is ignored.

5.2.2 Recommending through text model LDA

Following, this subsection describes the obtained text model LDA recommen-
dation results:

At this point, all needed flow has been completed and it is possible to start
querying the system.

As it has been explained in the evaluation methods section, evaluation visual
and scalar methods will be applied to evaluate and compare text models.

Appendix tables A.1, A.2 and A.3 depicts raw recommendation results using
LDA. As it could be appreciated there is only 7 failed recommendation over
45 Gurus which are at the last positions of the ranking (I have performed the
same test with more Gurus and results are the same, so I have preferred to
use a small amount of Gurus). Consequently, the precision-recall curve (figure
A.1) has a great are below the line.

Finally, scalar Mean average precision gives a score of 0,9344 out of 1.

5.2. Results presentation 25

5.2.3 Recommending through text model Doc2Vec

Current subsection presents Doc2Vec performance evaluation.

As can be seen in appendix tables A.4, A.5 and A.6 Doc2Vec did not have a
good performance, it actually got a 0,4084 over 1 in the Mean average precision
evaluation. After some study I have found five possible reasons why LDA
outperforms that much Doc2Vec:

– Unbalanced Gurus: As will be clear during the evaluation of the rest
of the models, there is an unbalance problem in the Gurus dataset. It
remained hidden, but most of the text models (all but LDA) have great
recommendation results with feminism topic (the one having more Gurus
or bigger Gurus) and quite bad results with topics technology or cooking.
Since Doc2Vec is an unsupervised algorithm by its nature it can not suffer
on an unbalancing problem, but since is it being used as a supervised
algorithm there may be problems regarding the unbalanced dataset.

– Trainning set size: Another feasible reason is that Doc2Vec, due to its
nature of the neural network, may need more data for being correctly
trained. At the moment it has been fit with 1 million tweets.

– Model implementation: GurFinder uses Gensim library for Doc2vec. Gen-
sim is a popular machine learning library so its models should work fine,
but may be interesting to test another library such as sklearn or tensor
flow.

– Hyperparameters tunning: Finally, during this project, I have spent more
time working on LDA, so maybe Dock2Vec could have a better hyperpa-
rameter tunning, which could improve performance. Currently, Doc2Vec
is being trained using 20 epochs, a space of 300 dimensions per vector,
alpha 0,025 and same tokens frequency filter as LDA.

– Finally, meanwhile, Doc2Vec focus on generating similar vectors for sim-
ilar docs, LDA pretends to describe the whole dataset as a mixture of
distinct categories. This fact may prevent LDA to have problems with
unbalanced datasets since has a more global perspective with the whole
dataset respect Doc2Vec.

In case I had more time I would have started to test Doc2Vec generating numer-
ical representations of similar texts in order to understand if Doc2Vec results
have a sense or not.

5.2.4 Recommending through text model Word2Vec

Word2Vec results in appendix tables A.7, A.8, A.9 are a bit similar to Doc2Vec
ones (similar behavior), but being worse. In this case, though it is not a surprise
since the usage of word2vec in this problem was a bit experimental. Let’s
remember that I have been using word2vec to generate 300 dimensions vector
for each word in a tweet, this is many vectors per tweet. Then, at predict time a
computation calculates a mean single vector of only 300 dimensions from each
of the words vector. I wanted to test this since due to the nature of tweets being
short documents.

Word2vec got a MAP score of 0.4117 out of 1.

26 Chapter 5. Results evaluation

5.2.5 Recommending through text model Elasticsearch firs recom-
mendation layer only

Elasticsearch filter alone (results in appendix tables A.10, A.11, A.12) achieved
a MAP score of 0,5257 , better than Doc2Vec and Word2Vec. This affirms the
initial theory that is worth it to have a more simple model as a first recommen-
dation layer. These simpler models run much quicker and reduce the search
spectrum for the heavier seconds recommendation layer. Also this is fully pro-
vided by Elasticsearch engine, to it does not require to be trained on our side,
neither a line of code.

5.3 Conclusion

Before concluding this project it is interesting to recall the initial objectives
stated in chapter 3 in order to have an objective conclusion. This thesis, Gu-
ruFinder, had as the ultimate goal the creation of a prototype tool able to rec-
ommend Twitter expert users (gurus) from input texts given by the user. In
order to accomplish this ultimate objective, a list of goals was created regard-
ing the different aspects of the solution: a numerical representation of Twitter
gurus and user’s input text, the ingestion of historical and real-time Twitter
data, the construction of a scalable architecture able to process big amounts of
data, the construction of an API, the usage of security best practises and the
integration of all these pieces into an scalable gurus recommender.

Considering the previous paragraph, I think that I have succeeded in the cre-
ation of a working prototype able to fulfil the GuruFinder ultimate goal. This
project, which is a result of many hours of work, have room for improvement
as it is stated in chapter 6, but nevertheless, the project succeeds in the con-
struction of a working GuruFinder prototype.

Stepping into the details and going objective by objective, it is possible to
find major and minor degrees of fulfilment, so the next subsections pretend
to state a conclusion for each of the differences pieces regarding the project
GuruFinder.

5.3.1 Gurus and input texts numerical representations

This project has implemented three different state-of-the-art models for gen-
erating numerical representations from a text. The obtained results are the
expected ones, where LDA is the most performant model. LDA is the most
common algorithm in the literature for solving this type of problem where we
want to represent a collection of text as a mixture of topics. Word2vec, for
instance, was initially not expected to perform well since it was made for rep-
resenting words and not pieces of texts. Finally, doc2vec could probably have
given better results with further work since it is a bit sensitive to the fine hy-
perparameters tunning.

In general, even having possibilities of improvement I think the numerical
text representations coverage is quite okay, especially considering LDA have a
good performance.

5.3. Conclusion 27

5.3.2 Twitter data ingestion

Twitter data ingestion, have been coded using two different technologies. On
one side there is logstash, a distributed ETL technology in charge of ingesting
real-time tweets and on the other side, there is Tweetpy, which has been used
for the ingestion of historical tweets following the micro-services principle (be-
ing modular, lightweight, concrete and a containerized service). I think these
two technologies provide a great tool of ingestion, capable to scale. A result
of this is the near two million ingested tweets counting gurus and real-time
tweets.

5.3.3 Architecture: scalability, replicability and security

In terms of architecture, this project offers a state-of-the-art solution, imple-
menting a containerized microservices approach and also using distributed
technologies such as elasticsearch, beats and logstash. This solution follows
the current trends in the industry where these technologies are being used by
leading companies such as Netflix.

In terms of replicability, thank docker-compose orchestration files, this project
is quite easy to be re-deployed, which is mandatory for having a proper engi-
neering solution.

Finally, about security, this project uses different security by design principles
including the usage of a firewall, a proxy and an access token protecting the
API and the entire system.

29

Chapter 6

Future work

6.1 Adding new text models

I had the idea of adding SVD as a possible model to generate numerical repre-
sentations of tweets but I run out of time before having any serious result.

6.2 Work with Doc2Vec

If I would have more time, I would like to deepen into Doc2Vec performance
problem. As has been explained in the previous chapter I have a different idea
about why is it underperforming. Also using a different doc2vec implementa-
tion rather than gensim, could be an interesting test.

6.3 GuruFinder Heuristics

I had no time to do research on heuristics to detect Gurus. Since I already have
the flow of incoming tweets from no gurus (keywords tweets), would have
been nice to start doing some research to further develop a tool to locate Gurus
from the keywords stream of tweets.

6.4 Chrome App

Creating a front end may be also a interesting step to go forward with Gu-
ruFinder increasing its usability.

6.5 Text models improved evaluation

A possible GuruFinder improvement may be to have better text models eval-
uations.

Implemented text model evaluations are good enough since they provide use-
ful information to discern which model performs better. There is though at list
two point that may be improved:

30 Chapter 6. Future work

– To have more balanced Gurus data set: As it could be appreciated into
the text models evaluation, there is no between Gurus for each different
topic. This is not a crucial issue since it affects all models, so balance
problem still allows to fairly compare models between each other. Still,
to have a more balanced Gurus data sets could help to increase extracted
insights.

– Numerical representation 3D plot: An interesting tool to analyze text
models would be to show numerical representations in a plot with only
three dimensions through PCA technique which reduce vectors dimen-
sionality. Three dimensions allow 3D plotting usage. This feature may be
an interesting utility to check whether vectors form 3D clusters or not.

31

Appendix A

GuruFinder results appendix

TABLE A.1: LDA Feminism topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 1 0.27 1 0
4 1 0.33 1 0
5 1 0.4 1 0
6 1 0.47 1 0
7 1 0.53 1 0
8 1 0.6 1 0
9 1 0.67 1 0
10 1 0.73 1 0
11 1 0.8 1 0
12 1 0.87 1 0
13 1 0.93 1 0
14 1 1 1 0

0 0.2 0.4 0.6 0.8 1

0.9

1

1.1

1.2

Recall

Pr
ec

is
io

n

FIGURE A.1: Precision-
recall curve

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fall-out

R
ec

al
l

FIGURE A.2:
Roc curve

32 Appendix A. GuruFinder results appendix

TABLE A.2: LDA Technology topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 1 0.27 1 0
4 1 0.33 1 0
5 1 0.4 1 0
6 1 0.47 1 0
7 1 0.53 1 0
8 1 0.53 0.89 3.000 · 10−2

9 1 0.6 0.9 3.000 · 10−2

10 0 0.6 0.82 7.000 · 10−2

11 0 0.6 0.75 0.1
12 0 0.6 0.69 0.13
13 0 0.6 0.64 0.17
14 0 0.6 0.6 0.2

0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

FIGURE A.3: Precision-
recall curve

0 5 · 10−2 0.1 0.15 0.2

0.2

0.4

0.6

Fall-out

R
ec

al
l

FIGURE A.4:
Roc curve

Appendix A. GuruFinder results appendix 33

TABLE A.3: LDA Cooking topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 1 0.27 1 0
4 1 0.33 1 0
5 1 0.4 1 0
6 1 0.47 1 0
7 1 0.53 1 0
8 1 0.6 1 0
9 1 0.67 1 0
10 1 0.73 1 0
11 1 0.8 1 0
12 1 0.87 1 0
13 0 0.87 0.93 3.000 · 10−2

14 0 0.87 0.87 7.000 · 10−2

0 0.2 0.4 0.6 0.8

0.9

0.95

1

Recall

Pr
ec

is
io

n

FIGURE A.5: Precision-
recall curve

0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8

Fall-out

R
ec

al
l

FIGURE A.6:
Roc curve

34 Appendix A. GuruFinder results appendix

TABLE A.4: Doc2vec Feminism topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 1 0.27 1 0
4 1 0.33 1 0
5 1 0.4 1 0
6 1 0.47 1 0
7 1 0.53 1 0
8 1 0.6 1 0
9 1 0.67 1 0

10 1 0.73 1 0
11 1 0.8 1 0
12 1 0.87 1 0
13 1 0.93 1 0
14 1 1 1 0

0 0.2 0.4 0.6 0.8 1

0.9

1

1.1

1.2

Recall

Pr
ec

is
io

n

FIGURE A.7: Precision-
recall curve

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fall-out

R
ec

al
l

FIGURE A.8:
Roc curve

Appendix A. GuruFinder results appendix 35

TABLE A.5: Doc2vec Technology topic experiment results

Experiment Relevant Recall Precision Fall-out

0 0 0 0 3.000 · 10−2

1 0 0 0 7.000 · 10−2

2 1 7.000 · 10−2 0.33 7.000 · 10−2

3 0 7.000 · 10−2 0.25 0.1
4 1 0.13 0.4 0.1
5 1 0.2 0.5 0.1
6 0 0.2 0.43 0.13
7 0 0.2 0.38 0.17
8 0 0.2 0.33 0.2
9 0 0.2 0.3 0.23
10 0 0.2 0.27 0.27
11 0 0.2 0.25 0.3
12 1 0.27 0.31 0.3
13 1 0.33 0.36 0.3
14 0 0.33 0.33 0.33

0 0.1 0.2 0.3

0

0.2

0.4

Recall

Pr
ec

is
io

n

FIGURE A.9: Precision-
recall curve

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35

0

0.1

0.2

0.3

Fall-out

R
ec

al
l

FIGURE A.10:
Roc curve

36 Appendix A. GuruFinder results appendix

TABLE A.6: Doc2vec Cooking topic experiment results

Experiment Relevant Recall Precision Fall-out

0 0 0 0 3.000 · 10−2

1 1 7.000 · 10−2 0.5 3.000 · 10−2

2 0 7.000 · 10−2 0.33 7.000 · 10−2

3 0 7.000 · 10−2 0.25 0.1
4 0 7.000 · 10−2 0.2 0.13
5 0 7.000 · 10−2 0.17 0.17
6 0 7.000 · 10−2 0.14 0.2
7 0 7.000 · 10−2 0.13 0.23
8 1 0.13 0.22 0.23
9 1 0.2 0.3 0.23
10 1 0.27 0.36 0.23
11 1 0.33 0.42 0.23
12 0 0.33 0.38 0.27
13 0 0.33 0.36 0.3
14 1 0.4 0.4 0.3

0 0.1 0.2 0.3 0.4

0

0.2

0.4

Recall

Pr
ec

is
io

n

FIGURE A.11:
Precision-recall curve

5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

Fall-out

R
ec

al
l

FIGURE A.12:
Roc curve

Appendix A. GuruFinder results appendix 37

TABLE A.7: Word2vec Feminism topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 1 0.27 1 0
4 1 0.33 1 0
5 1 0.4 1 0
6 1 0.47 1 0
7 1 0.53 1 0
8 1 0.6 1 0
9 1 0.67 1 0
10 1 0.73 1 0
11 1 0.8 1 0
12 1 0.87 1 0
13 1 0.93 1 0
14 1 1 1 0

0 0.2 0.4 0.6 0.8 1

0.9

1

1.1

1.2

Recall

Pr
ec

is
io

n

FIGURE A.13:
Precision-recall curve

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fall-out

R
ec

al
l

FIGURE A.14:
Roc curve

38 Appendix A. GuruFinder results appendix

TABLE A.8: Word2vec Technology topic experiment results

Experiment Relevant Recall Precision Fall-out

0 0 0 0 3.000 · 10−2

1 0 0 0 7.000 · 10−2

2 0 0 0 0.1
3 0 0 0 0.13
4 0 0 0 0.17
5 0 0 0 0.2
6 0 0 0 0.23
7 1 7.000 · 10−2 0.13 0.23
8 0 7.000 · 10−2 0.11 0.27
9 0 7.000 · 10−2 0.1 0.3
10 0 7.000 · 10−2 9.000 · 10−2 0.33
11 0 7.000 · 10−2 8.000 · 10−2 0.37
12 0 7.000 · 10−2 8.000 · 10−2 0.4
13 1 0.13 0.14 0.4
14 1 0.2 0.2 0.4

0 5 · 10−2 0.1 0.15 0.2

0

5 · 10−2

0.1

0.15

0.2

Recall

Pr
ec

is
io

n

FIGURE A.15:
Precision-recall curve

0 0.1 0.2 0.3 0.4

0

5 · 10−2

0.1

0.15

0.2

Fall-out

R
ec

al
l

FIGURE A.16:
Roc curve

Appendix A. GuruFinder results appendix 39

TABLE A.9: Word2vec Cooking topic experiment results

Experiment Relevant Recall Precision Fall-out

0 0 0 0 3.000 · 10−2

1 1 7.000 · 10−2 0.5 3.000 · 10−2

2 0 7.000 · 10−2 0.33 7.000 · 10−2

3 0 7.000 · 10−2 0.25 0.1
4 0 7.000 · 10−2 0.2 0.13
5 0 7.000 · 10−2 0.17 0.17
6 0 7.000 · 10−2 0.14 0.2
7 0 7.000 · 10−2 0.13 0.23
8 1 0.13 0.22 0.23
9 1 0.2 0.3 0.23
10 1 0.27 0.36 0.23
11 1 0.33 0.42 0.23
12 0 0.33 0.38 0.27
13 0 0.33 0.36 0.3
14 1 0.4 0.4 0.3

0 0.1 0.2 0.3 0.4

0

0.2

0.4

Recall

Pr
ec

is
io

n

FIGURE A.17:
Precision-recall curve

5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

Fall-out

R
ec

al
l

FIGURE A.18:
Roc curve

40 Appendix A. GuruFinder results appendix

TABLE A.10: Elasticsearch Feminism topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 1 0.27 1 0
4 1 0.33 1 0
5 1 0.4 1 0
6 1 0.47 1 0
7 1 0.53 1 0
8 1 0.6 1 0
9 1 0.67 1 0

10 1 0.73 1 0
11 1 0.8 1 0
12 1 0.87 1 0
13 1 0.93 1 0
14 1 1 1 0

0 0.2 0.4 0.6 0.8 1

0.9

1

1.1

1.2

Recall

Pr
ec

is
io

n

FIGURE A.19:
Precision-recall curve

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fall-out

R
ec

al
l

FIGURE A.20:
Roc curve

Appendix A. GuruFinder results appendix 41

TABLE A.11: Elasticsearch Technology topic experiment results

Experiment Relevant Recall Precision Fall-out

0 1 7.000 · 10−2 1 0
1 1 0.13 1 0
2 1 0.2 1 0
3 0 0.2 0.75 3.000 · 10−2

4 0 0.2 0.6 7.000 · 10−2

5 1 0.27 0.67 7.000 · 10−2

6 1 0.33 0.71 7.000 · 10−2

7 0 0.33 0.63 0.1
8 0 0.33 0.56 0.13
9 0 0.33 0.5 0.17
10 1 0.4 0.55 0.17
11 0 0.4 0.5 0.2
12 0 0.4 0.46 0.23
13 1 0.47 0.5 0.23
14 1 0.53 0.53 0.23

0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

Recall

Pr
ec

is
io

n

FIGURE A.21:
Precision-recall curve

0 5 · 10−2 0.1 0.15 0.2 0.25

0.1

0.2

0.3

0.4

0.5

Fall-out

R
ec

al
l

FIGURE A.22:
Roc curve

42 Appendix A. GuruFinder results appendix

TABLE A.12: Elasticsearch Cooking topic experiment results

Experiment Relevant Recall Precision Fall-out

0 0 0 0 3.000 · 10−2

1 1 7.000 · 10−2 0.5 3.000 · 10−2

2 0 7.000 · 10−2 0.33 7.000 · 10−2

3 0 7.000 · 10−2 0.25 0.1
4 0 7.000 · 10−2 0.2 0.13
5 0 7.000 · 10−2 0.17 0.17
6 0 7.000 · 10−2 0.14 0.2
7 0 7.000 · 10−2 0.13 0.23
8 1 0.13 0.22 0.23
9 1 0.2 0.3 0.23
10 1 0.27 0.36 0.23
11 1 0.33 0.42 0.23
12 0 0.33 0.38 0.27
13 0 0.33 0.36 0.3
14 1 0.4 0.4 0.3

0 0.1 0.2 0.3 0.4

0

0.2

0.4

Recall

Pr
ec

is
io

n

FIGURE A.23:
Precision-recall curve

5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

Fall-out

R
ec

al
l

FIGURE A.24:
Roc curve

43

Bibliography

URL: https://spark.apache.org/.
(2018). URL: https://pkghosh.wordpress.com/2013/09/22/big-road-map-

for-big-data/.
Apache Lucene. URL: http://lucene.apache.org/.
Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent dirichlet

allocation”. In: Journal of machine Learning research 3.Jan, pp. 993–1022.
Blog, Netflix Technology (2016). Netflix Data Pipeline. URL: https://medium.

com/netflix-techblog/evolution-of-the-netflix-data-pipeline-
da246ca36905.

Bojanowski, Piotr et al. (2016). “Enriching word vectors with subword infor-
mation”. In: arXiv preprint arXiv:1607.04606.

Campr, Michal and Karel Ježek (2015). “Comparing semantic models for eval-
uating automatic document summarization”. In: International Conference on
Text, Speech, and Dialogue. Springer, pp. 252–260.

Cheng, Heng-Tze et al. (2016). “Wide & deep learning for recommender sys-
tems”. In: Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems. ACM, pp. 7–10.

Cooper, George (2017). George Cooper. URL: http://blog.thehumangeo.com/
twitter-ner.html.

Covington, Paul, Jay Adams, and Emre Sargin (2016). “Deep neural networks
for youtube recommendations”. In: Proceedings of the 10th ACM Conference
on Recommender Systems. ACM, pp. 191–198.

Cutting, Douglass R. and Jan O. Pedersen (1997). “Space Optimizations for To-
tal Ranking”. In: Computer-Assisted Information Searching on Internet. RIAO
’97. Montreal, Quebec, Canada: LE CENTRE DE HAUTES ETUDES IN-
TERNATIONALES D’INFORMATIQUE DOCUMENTAIRE, pp. 401–412.
URL: http://dl.acm.org/citation.cfm?id=2856695.2856731.

Docker. URL: https://www.docker.com/.
Duan, Jianyong, Yamin Ai, et al. (2015). “LDA topic model for microblog rec-

ommendation”. In: Asian Language Processing (IALP), 2015 International Con-
ference on. IEEE, pp. 185–188.

Elasticsearch. URL: https://www.elastic.co/products/elasticsearch.
Filebeat. URL: https://www.elastic.co/products/beats/filebeat.
Finin, Tim et al. (2010). “Annotating named entities in Twitter data with crowd-

sourcing”. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech
and Language Data with Amazon’s Mechanical Turk. Association for Compu-
tational Linguistics, pp. 80–88.

Gupta, Shashank and Vasudeva Varma (2017). “Scientific Article Recommen-
dation by using Distributed Representations of Text and Graph”. In: Pro-
ceedings of the 26th International Conference on World Wide Web Companion.
International World Wide Web Conferences Steering Committee, pp. 1267–
1268.

https://spark.apache.org/
https://pkghosh.wordpress.com/2013/09/22/big-road-map-for-big-data/
https://pkghosh.wordpress.com/2013/09/22/big-road-map-for-big-data/
http://lucene.apache.org/
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
http://blog.thehumangeo.com/twitter-ner.html
http://blog.thehumangeo.com/twitter-ner.html
http://dl.acm.org/citation.cfm?id=2856695.2856731
https://www.docker.com/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/beats/filebeat

44 BIBLIOGRAPHY

Hashem, Ibrahim Abaker Targio et al. (2015). “The rise of “big data” on cloud
computing: Review and open research issues”. In: Information Systems 47,
pp. 98 –115. ISSN: 0306-4379. DOI: https://doi.org/10.1016/j.is.2014.
07.006. URL: http://www.sciencedirect.com/science/article/pii/
S0306437914001288.

Human intelligence through an API. URL: https://www.mturk.com/.
Ježek, Karel and Josef Steinberger. “Text Summarization and Singular Value

Decomposition”. In:
Le, Quoc and Tomas Mikolov (2014). “Distributed representations of sentences

and documents”. In: International Conference on Machine Learning, pp. 1188–
1196.

Locke, Brian William (2009). “Named entity recognition: Adapting to microblog-
ging”. In:

Logstash. URL: https://www.elastic.co/products/logstash.
Mikolov, Tomas et al. (2013). “Efficient estimation of word representations in

vector space”. In: arXiv preprint arXiv:1301.3781.
MLlib | Apache Spark. URL: https://spark.apache.org/mllib/.
Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “Glove:

Global vectors for word representation”. In: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP), pp. 1532–
1543.

Production-Grade Container Orchestration. URL: https://kubernetes.io/.
Ramage, Daniel et al. (2009). “Labeled LDA: A supervised topic model for

credit attribution in multi-labeled corpora”. In: Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language Processing: Volume 1-Volume
1. Association for Computational Linguistics, pp. 248–256.

Sievert, Carson and Kenneth Shirley (2014). “LDAvis: A method for visual-
izing and interpreting topics”. In: Proceedings of the workshop on interactive
language learning, visualization, and interfaces, pp. 63–70.

Singhal, Amit et al. (2001). “Modern information retrieval: A brief overview”.
In: IEEE Data Eng. Bull. 24.4, pp. 35–43.

Soni, Devin (2018). Introduction to k-Nearest-Neighbors – Towards Data Science.
URL: https://towardsdatascience.com/introduction-to-k-nearest-
neighbors-3b534bb11d26.

TF/IDF. URL: http://www.tfidf.com/.
Thanda, Abhinav et al. (2016). “A Document Retrieval System for Math Queries.”

In: NTCIR.
Theory Behind Relevance Scoring - Elasticsearch. URL: https://www.elastic.co/

guide/en/elasticsearch/guide/current/scoring-theory.html.
Tokenization. URL: https://nlp.stanford.edu/IR-book/html/htmledition/

tokenization-1.html.
tweepy. URL: http://www.tweepy.org/.
Unsupervised learning intuition. URL: https://whatis.techtarget.com/definition/

unsupervised-learning.
Yamada, Ikuya, Hideaki Takeda, and Yoshiyasu Takefuji (2015). “Enhancing

named entity recognition in twitter messages using entity linking”. In: Pro-
ceedings of the Workshop on Noisy User-generated Text, pp. 136–140.

Zuva, Keneilwe and Tranos Zuva (2012). “Evaluation of information retrieval
systems”. In: International Journal of Computer Science & Information Technol-
ogy 4.3, p. 35.

https://doi.org/https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/https://doi.org/10.1016/j.is.2014.07.006
http://www.sciencedirect.com/science/article/pii/S0306437914001288
http://www.sciencedirect.com/science/article/pii/S0306437914001288
https://www.mturk.com/
https://www.elastic.co/products/logstash
https://spark.apache.org/mllib/
https://kubernetes.io/
https://towardsdatascience.com/introduction-to-k-nearest-neighbors-3b534bb11d26
https://towardsdatascience.com/introduction-to-k-nearest-neighbors-3b534bb11d26
http://www.tfidf.com/
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
http://www.tweepy.org/
https://whatis.techtarget.com/definition/unsupervised-learning
https://whatis.techtarget.com/definition/unsupervised-learning

	Abstract
	Acknowledgements
	Introduction
	Problem context
	Project method and outcomes
	Problem constraints
	Motivations

	State of the Art Review
	GuruFinder approach
	Specific goals
	GuruFinder first approach
	GuruFinder text representations
	LDA
	Doc2Vec
	Word2Vec

	Text cleaning

	GuruFinder architecture
	Architecture requirements
	Logical view
	Logical view diagram
	GuruFinder ingestion
	Search engine
	Text models
	Recommender
	REST API
	Scalability by design
	Security by design

	Implementation view
	Implementation diagram
	Beats
	Elasticsearch
	Logstash
	Tweets ingestion
	Docker

	Deployment instructions
	API Acces
	Code repositories

	Results evaluation
	GuruFinder evaluation
	Evaluation pipeline
	Evaluation methods
	Evaluation data

	Results presentation
	Vocabulary
	Recommending through text model LDA
	Recommending through text model Doc2Vec
	Recommending through text model Word2Vec
	Recommending through text model Elasticsearch firs recommendation layer only

	Conclusion
	Gurus and input texts numerical representations
	Twitter data ingestion
	Architecture: scalability, replicability and security

	Future work
	Adding new text models
	Work with Doc2Vec
	GuruFinder Heuristics
	Chrome App
	Text models improved evaluation

	GuruFinder results appendix
	Bibliography

