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We report the observation of the decay B� ! Dð�Þþ
s K�‘� ��‘ based on 342 fb�1 of data collected at the

�ð4SÞ resonance with the BABAR detector at the PEP-II eþe� storage rings at SLAC. A simultaneous fit

to three Dþ
s decay chains is performed to extract the signal yield from measurements of the squared

missing mass in the B meson decay. We observe the decay B� ! Dð�Þþ
s K�‘� ��‘ with a significance

greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction

to be BðB� ! Dð�Þþ
s K�‘� ��‘Þ ¼ ½6:13þ1:04

�1:03ðstatÞ � 0:43ðsystÞ � 0:51ðBðDsÞÞ� � 10�4, where the last

error reflects the limited knowledge of the Ds branching fractions.

DOI: 10.1103/PhysRevLett.107.041804 PACS numbers: 13.20.He, 12.15.Ji, 12.38.Qk
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The study of charmed inclusive semileptonic B meson
decays enables the measurement of the Cabibbo-
Kobayashi-Maskawa matrix element jVcbj. This measure-
ment relies on a precise knowledge of all semileptonic B
meson decays. Decays of orbitally excitedDmesons, from
the process B ! D��‘�, constitute a significant fraction of
these decays [1] and may help explain the discrepancy
between the inclusive B ! Xc‘� rate, where Xc is a
charmed hadronic final state, and the sum of the measured
exclusive decay rates [1,2]. So far, analyses of these decays

have focused on the reconstruction of B ! Dð�Þ�‘� states
[3–5]. In such analyses, experimental data are interpreted
as a sum of the four D�� resonances. The results show the
dominance of B decays to broad resonances, while QCD
sum rules imply the opposite [6]. Conversely, a small
contribution from broad D�� states implies the presence

of a nonresonant B ! Dð�Þ�‘� component, which has not
yet been observed. Measurement of the branching fraction

for the as-yet-unobserved B� ! Dð�Þþ
s K�‘� ��‘ decay [7]

would provide additional information relevant to this issue,
by exploring the hadronic mass distribution above
2:46 GeV=c2 where resonant and nonresonant components

are present. In addition, the measurement of B� !
Dð�Þþ

s K�‘� ��‘ will provide a better estimate of background
in future studies of semileptonic �Bs ! Dþ

s X‘
� ��‘ decays.

By using the shape of the hadronic mass spectrum in B
semileptonic decays, a rough estimate on the branching

fraction BðB� ! Dð�Þþ
s K�‘� ��‘Þ is of the order of 10�3

[8,9], which is consistent with the limit set by the ARGUS

Collaboration, BðB� ! Dð�Þþ
s K�‘� ��‘Þ< 5� 10�3 at

90% confidence level [10]. A comparison between this
expectation and the actual measurement can confirm or
refute the expected rapid decrease of the hadronic mass
distribution at high values.

In this Letter, we present the observation of B� !
Dð�Þþ

s K�‘� ��‘ decays, where ‘ ¼ e;�. This analysis
does not differentiate between final states with Dþ

s and
D�þ

s , where D�þ
s decays via emission of neutral decay

products that are not reconstructed. The results are based
on a data sample of NB �B ¼ ð376:9� 4:1Þ � 106 B �B pairs
recorded at the �ð4SÞ resonance with the BABAR detector
[11] at the PEP-II asymmetric energy eþe� storage rings at
the SLAC National Accelerator Laboratory. This corre-
sponds to an integrated luminosity of 342 fb�1. In addi-
tion, 37 fb�1 of data collected about 40 MeV below the
resonance are used for background studies. A GEANT-based
Monte Carlo (MC) simulation [12] of B �B and continuum
events (eþe� ! q �q with q ¼ u; d; s; c) is used to study the
detector response and acceptance, validate the analysis
technique, and evaluate signal efficiencies. The sample of
simulated B �B events is equivalent to approximately 3 times
the data sample. The signal MC events are generated by
adapting the decay model of Goity and Roberts [13] to
describe Dþ

s K
� final states. Two alternative signal MC

samples are used to estimate systematic uncertainties: a
sample based on the ISGW2 model [14], in which B�
mesons decay to D�0

0 ‘� �� with D�0
0 ! Dþ

s K
�, and a

sample based on a simple phase space model. The signal
MC samples are equivalent to approximately 10 times the
expected signal yield.
We reconstruct Dþ

s candidates in three decay chains:
Dþ

s ! ��þ with � ! KþK�, Dþ
s ! �K�0Kþ with

�K�0 ! K��þ, and Dþ
s ! K0

SK
þ with K0

S ! �þ��. The
�, �K�0, and K0

S candidates are formed by combining

oppositely charged tracks. To suppress combinatorial
background from the Dþ

s reconstruction in the first two
decay chains, we employ a feed-forward neural network
(multilayer perceptron [15]) with three input variables and
four hidden layers. The input variables are the absolute
value of the difference between the reconstructed and the
nominal mass values of the �= �K�0 candidate [1],
the absolute value of the cosine of the helicity angle of
the �= �K�0, and the �2 probability of the fit to the Dþ

s

candidate. The helicity angle is defined as the angle be-
tween the Dþ

s candidate and one kaon originating from
the �= �K�0 in the �= �K�0 rest frame. To suppress combina-
torial background in the Dþ

s ! K0
SK

þ decay chain, we

require the invariant mass of the charged pions forming
the K0

S candidate to satisfy 0:490 GeV=c2 <mð��Þ<
0:506 GeV=c2, the flight length of the K0

S to be larger

than 1 mm, the cosine of the laboratory angle between
the K0

S momentum and the line connecting the K0
S decay

vertex and the primary vertex of the event to be positive,
and the probability of the Dþ

s candidate’s vertex fit to be
larger than 0.001. The selection criteria are optimized to
maximize the statistical significance of the signal. No
requirement on the mass of the Dþ

s candidates is applied,
since this distribution is used to extract the signal yield.
A lepton and a kaon, both with negative charge, are

combined with the Dþ
s candidate to form a B� candidate.

Leptons are required to have momentum j ~p‘j larger than
0:8 GeV=c [16] to reject those not directly originating
from B mesons. The probability of the vertex fit of the B
candidate is required to be larger than 0.01.
Three event-shape variables that are sensitive to the

topological differences between jetlike continuum events
and more spherical B �B events are used as input to a neural
network to suppress background from continuum events.
These variables are the normalized second Fox-Wolfram
moment R2 [17], the monomial L2 [18], and the cosine of
the angle between the flight direction of the reconstructed
B candidate and the rest of the event. A neural network
whose input variables are the B candidate mass, the B
candidate sphericity, and the thrust value of the rest of
the event is used to reduce the background from other B
decays, providing a slight, but not negligible, improvement
in the sensitivity of the measurement.
After applying these selection criteria, the remaining

background events are divided into two classes, depending
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on whether or not they contain a correctly reconstructed
Dþ

s meson. The first class is the more important of the two.
We refer to it as Dþ

s background events in the following.
Most of these events contain a Ds originating from decays
such as B ! DsD, where the kaon and lepton tracks used
to form a B candidate are taken from the other B meson in
the event. The angular correlation between the flight direc-
tions of the Ds and the D is used to suppress the Ds

background candidates. The direction of the D meson is
estimated from the direction of a previously unused
charged or neutral kaon candidate that is assumed to be
from D ! K�;0X decays. By requiring the cosine of the
angle between the flight direction of the Ds candidate and
the additional kaon to be larger than �0:5, about 30% of
the Ds-background events are rejected, as shown in Fig. 1.
About 8% of the remaining events have multiple candi-
dates, predominantly two. In such cases, we choose the
candidate with the largest B vertex fit probability.

The remaining events are divided into signal regions
and sidebands based on the mass of the Dþ

s candidate.
The sidebands are defined by 1:9 GeV=c2 <mðDþ

s Þ<
1:94 GeV=c2 and 2:0 GeV=c2 <mðDþ

s Þ< 2:04 GeV=c2.
Fits to the Dþ

s mass distributions are performed separately
for each decay channel to define the signal regions and to
measure the number of reconstructed Dþ

s mesons, which
are used later for extracting the signal yield. The signal
regions are defined as �2:5� wide bands, centered on the
‘‘fitted means’’ for each decay channel. Signal events are
identified by the missing mass of the visible decay products
Y ¼ Dþ

s K
�‘� with respect to the nominal B meson mass:

M2
m ¼ ðEB � EYÞ2 � j ~pYj2 ¼ m2

�; (1)

where EB is the beam energy, corresponding to the energy
of the B meson, while EY and ~pY represent the energy and
momentum of the Y composite, respectively. Because of its
smallness and unknown direction, the momentum of the B
meson is neglected. This leads to a distribution forM2

m with
a Gaussian shape for correctly reconstructed signal events.
Other B semileptonic decays, where one particle is not
reconstructed or is erroneously included, lead to higher or
lower values of M2

m.

To extract the signal yield, we perform an unbinned
extended maximum-likelihood fit, applied simultaneously
to the M2

m distributions of the signal region and the side-
bands of the three Dþ

s decay chains. While the sidebands
are populated only by combinatorial background events,
the signal region also contains Dþ

s background and signal
events. Because their lepton acceptances differ, the elec-
tron and muon channels are fitted separately. The combi-
natorial background is modeled by using a sum of two
Gaussian distributions whose parameters are the same
for the three Dþ

s decay chains. This parameterization is
favored by MC simulation. This fit technique is equivalent
to a sideband subtraction. The contributions of Dþ

s back-
ground events are modeled by using a Fermi function:

fðM2
mÞ ¼ 1

e½ðM2
m�M2

0Þ=EC� þ 1
; (2)

where M2
0 represents the M2

m dropoff value and EC the

smearing of the Fermi edge. The values for M2
0 and EC,

M2
0 ¼ ð0:303� 0:034Þ GeV2=c4 and EC ¼ ð0:333�

0:018Þ GeV2=c4 for the electron channel and
M2

0 ¼ ð0:247� 0:041Þ GeV2=c4 and EC ¼ ð0:346�
0:022Þ GeV2=c4 for the muon channel, are fixed to the
values derived from fits to MC distributions and are the
same for all Dþ

s decay chains. Signal events are modeled
by a Gaussian distribution, with the same mean and width
for all reconstruction channels. The width is fixed to the
value determined from the simulation. The mean of the
distribution is determined in the fit, allowing for contribu-
tions from events with a D�þ

s in the final state.
The total number of events with a Dþ

s and the number
of combinatorial background events in the signal region
have been determined from fits to the mðDþ

s Þ distributions.
The number of signal B� ! Dð�Þþ

s K�‘� ��‘ and Dþ
s back-

ground events are extracted from the fits to the M2
m distri-

butions, separately for the electron and muon samples.
For these fits the three Dþ

s decay channels are combined,
taking into account their detection branching fractions
�BR ¼ BðDþ

s ! D1d2Þ �BðD1 ! d3d4Þ and individual
reconstruction efficiencies �reco. For illustration, these
efficiencies and the branching ratios are listed in Table I,
together with the total fitted number of signal events and the
estimated contributions from each of the three channels.
The fit is performed in the range jM2

mj< 1:5 GeV2=c4

and has 10 free parameters: the mean value ofM2
m, the total

number of fitted signal events Nsignal, five parameters that
describe the shape of the combinatorial background, and
three sideband normalization parameters. The number of
signal and Dþ

s background events are free in the fit; only
the sum of both values is constrained to the result of the fits
to the mðDþ

s Þ distributions.
The likelihood function is

L ¼ e�Nsignal

n!
ðNsignalÞnY

j

YNj

i

P ðM2
m;i; �jÞ; (3)
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FIG. 1. Angular distribution of the cosine of the angle between
the flight direction of the D�

s meson and additional charged and
neutral kaons: (a) cos�ðD�

s K
�Þ and (b) cos�ðD�

s K
0
SÞ. Solid

lines represent signal MC events; dashed lines are Dþ
s back-

ground. The vertical lines indicate the selection applied.
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with Nj the number of events and P ðM2
m;i�jÞ the proba-

bility density function (PDF) for a given fit slice j (signal
region or sideband of each Dþ

s decay chain), with the fit
parameters �, and n ¼ P

jNj the total number of events.

By using MC experiments from a generator, which
includes parameterizations of detector performance for
signal reconstruction and background expectations, it has
been verified that the fit is able to extract signal branching

fractions for BðB� ! Dð�Þþ
s K�‘� ��‘Þ> 3� 10�4. Values

of fit biases are also determined with this procedure and are
taken into account in the analysis.

Fit results are given in Table I. Reconstruction efficien-
cies for the three decay chains are obtained by counting
simulated signal events in the range jM2

mj< 1:2 GeV2=c4.
As reported in Ref. [19], the reconstruction efficiency of
the Dþ

s ! ��þ decay chain depends on the requirement
on the � mass. The impact of this effect is covered by the
systematic uncertainties on �BR. Figure 2 shows the side-
band subtracted M2

m distributions summed over the decay
channels.

The bias-corrected signal yields are Nsignal
electron ¼ 301þ68

�67

and N
signal
muon ¼ 206þ53

�52. The bias correction is þ42 (� 4)
events for the electron (muon) channel. Extended
simulations showed that the source of the bias is a
fluctuation of the underlying combinatorial background
distribution.

The systematic uncertainties are divided into two cate-
gories: Additive uncertainties (Table II) are related to the
number of extracted signal events, while multiplicative

uncertainties (Table III) are related to the calculated
branching fraction. The uncertainty due to theDþ

s daughter
branching fractions is quoted separately.
The systematic uncertainty arising from the choice of

the Dþ
s background PDF is evaluated by using 1000 sta-

tistically independent MC experiments. Each experiment
corresponds to different values for the two parameters
that describe the PDF, M2

0 and EC, which are distributed

according to the error matrix for these parameters. We
take the width of a Gaussian fitted to the resulting Nsignal

distribution as a systematic uncertainty. The impact of
shape differences between the data and MC simulations
has been studied, as well as shape differences due to
varying compositions of the Dþ

s background, and both
were found to be negligible. A similar procedure is used
to estimate the uncertainty due to using the Dþ

s branching
fractions �BR for the combination of the individual channel
signal yields. MC samples of �BR are produced for each
decay channel by using the information of Ref. [1]. This
leads to differences in the total number of extracted signal
events. The width of a Gaussian fitted to the resulting
distribution of signal yields is taken as the systematic
uncertainty.
The width of the Gaussian PDF ofM2

m for the signal and
the number of fitted Dþ

s are varied by �1� to evaluate
these systematic uncertainties. This approach also takes
into account the variation of the width due to a contribution
of D�þ

s to the signal yield. The systematic uncertainty
related to the bias correction is given by the statistical
uncertainty of the correction.
We evaluate the uncertainty of the signal MC model by

calculating the difference of the efficiencies between the
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FIG. 2. Sideband subtracted M2
m distributions with fitted func-

tions superimposed: (a) for the electron channel and (b) for the
muon channel. AllDþ

s reconstruction chains have been summed.
Solid lines represent the full distribution, dashed lines are theDþ

s

background component, and dotted lines represent the fitted
signal component.

TABLE II. Additive systematic uncertainties in events.

Source �Nelec: [evts] �Nmuon [evts]

Dþ
s bkg parameterization 19.9 15.9

Single channel signal yields 14.5 9.0

Width of the signal PDF 3.9 4.3

Error of the mðDþ
s Þ fits 3.6 3.4

Total, affecting significance 25.2 19.1

Bias correction 2.2 1.8

Total uncertainty 25.3 19.2

TABLE I. Signal yields, selection efficiencies �reco, and branching fractions �BR ¼ BðDþ
s ! D1d2Þ �BðD1 ! d3d4Þ for the

individual and combined decay chains. The signal yields of each decay chain are computed by using Nsignal and the efficiencies and are
given for illustration only. The errors on the signal yields are the fit errors, the uncertainties of �reco are the systematic uncertainties,
and the uncertainties of �BR represent the limited knowledge of the branching fractions of the Dþ

s .

Dþ
s decay chain N

signal
electron �reco;electron [%] N

signal
muon �reco;muon �BR [%]

All 259:4þ67:6
�67:2 209:7þ53:0

�52:2

Dþ
s ! ��þ, � ! KþK� 115:7þ30:2

�30:0 (2:76� 0:08) 92:1þ23:3
�22:9 (1:62� 0:06) (2:18� 0:33)

Dþ
s ! �K�0Kþ, �K�0 ! K��þ 85:2þ22:2

�22:1 (1:79� 0:06) 70:2þ17:8
�17:5 (1:09� 0:05) (2:60� 0:40)

Dþ
s ! K0

sK
þ, K0

s ! �þ�� 58:5þ15:3
�15:2 (2:98� 0:08) (47:4þ12:0

�11:8) (1:78� 0:06) (1:02� 0:09)
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alternative signal models and the Goity-Roberts signal MC
model. The impact of the finite statistics of the simulated
signal sample is deduced from the uncertainty on the
efficiency determination. The uncertainty arising from par-
ticle identification, as well as from theK0

S reconstruction, is

determined by using dedicated high purity control samples
for the corresponding particles. Uncertainties arising from
track and photon reconstruction, as well as from radiative
corrections, are evaluated by varying their reconstruction
efficiencies and the energy radiated by photons in the
simulation. The uncertainty on the number of B mesons
in the data set is determined as described in Ref. [20], and
the Dþ

s daughter branching fraction uncertainties are taken
from Ref. [1].

A second fit, imposing an Nsignal ¼ 0 hypothesis, is used
to estimate the significance of the measurement. Since the
mean of the Gaussian is a free parameter in the signal PDF,
the difference in the number of free parameters (�NDF) of
the fits is larger than 1. As shown in Ref. [21], the resulting
probability distribution cannot be approximated by a chi-
square distribution with an integer number of degrees of
freedom. Thus, only a significance range, representing the
significances for �NDF ¼ 2 and �NDF ¼ 1, is calcu-
lated. Including statistical and systematic uncertainties, the
ranges are ½3:3–3:7�� and ½3:5–3:9�� for the electron and
muon channel, respectively. Combining both lepton chan-
nels results in a significance larger than 5:0�.

The branching fractions for the individual lepton chan-

nels are BðB�!Dð�Þþ
s K�e� ��eÞ¼½5:81þ1:30

�1:30ðstatÞ�0:54

ðsystÞ�0:49ðBðDsÞÞ��10�4 and BðB�!Dð�Þþ
s K���

���Þ¼ ½6:68þ1:72
�1:69ðstatÞ�0:69ðsystÞ�0:56ðBðDsÞÞ��10�4,

where the last uncertainty reflects the limited knowledge
of the Ds branching fractions. The measurements are com-
bined, taking into account the correlations between their sys-

tematic uncertainties, yielding BðB� ! Dð�Þþ
s K�‘� ��‘Þ ¼

½6:13þ1:04
�1:03ðstatÞ � 0:43ðsystÞ � 0:51ðBðDsÞÞ� � 10�4.

In summary, using a data sample of about 376:9� 106

B �B pairs, we find evidence for the decay B� ! Dð�Þþ
s

K�‘� ��‘. The signal has a significance larger than 5:0�,

after taking systematic effects into account. The mea-

sured branching fraction BðB�!Dð�Þþ
s K�‘� ��‘Þ¼

½6:13þ1:04
�1:03ðstatÞ�0:43ðsystÞ�0:51ðBðDsÞÞ��10�4, where

the last uncertainty reflects the limited knowledge of the Ds

branching fractions, is consistent with the previous upper
limit reported by the ARGUS Collaboration and with theo-
retical expectations.
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kAlso with Università di Sassari, Sassari, Italy.

[1] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
100, 151802 (2008).

[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
101, 261802 (2008).

[4] D. Liventsev et al. (Belle Collaboration), Phys. Rev. D 77,
091503 (2008).

[5] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C
45, 35 (2006).

[6] N. Uraltsev, Phys. Lett. B 501, 86 (2001).
[7] Throughout this Letter, whenever a mode is given, the

charge conjugate is implied.
[8] E. Golowich et al., Z. Phys. C 48, 89 (1990).
[9] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 289,

199 (1992).
[10] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 60,

11 (1993).
[11] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum.

Methods Phys. Res., Sect. A 479, 1 (2002).
[12] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[13] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459

(1995).
[14] N. Isgur, D. Scora, B. Grinstein, and M. Wise, Phys. Rev.

D 39, 799 (1989).

TABLE III. Multiplicative systematic uncertainties in percent.

Source Syst. uncer. electron (muon) ch. ½%�
��þ �K�0Kþ K0

SK
þ

Signal MC model 7.6 (0.2) 3.1 (6.4) 5.9 (2.1)

N (signal MC) 2.7 (3.5) 3.3 (4.2) 2.5 (3.3)

Particle ID 0.6 (1.6) 1.2 (4.9) 3.6 (7.9)

K0
S eff. � � � ( � � � ) � � � ( � � � ) 2.0 (3.1)

Tracking eff. 0.4 (0.1) 0.5 (0.2) 1.8 (2.4)

Photon eff. 0.6 (0.9) 0.4 (0.9) 0.5 (0.7)

Radiative corr. 2.0 (2.1) 2.2 (2.5) 1.9 (1.9)

Total ��reco 8.4 (4.5) 5.2 (9.5) 8.1 (9.9)

B counting 1.1 (1.1) 1.1 (1.1) 1.1 (1.1)

B (Dþ
s ) 15.1 (15.1) 15.4 (15.4) 6.0 (6.0)

PRL 107, 041804 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JULY 2011

041804-7

http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevLett.100.151802
http://dx.doi.org/10.1103/PhysRevLett.100.151802
http://dx.doi.org/10.1103/PhysRevLett.101.261802
http://dx.doi.org/10.1103/PhysRevLett.101.261802
http://dx.doi.org/10.1103/PhysRevD.77.091503
http://dx.doi.org/10.1103/PhysRevD.77.091503
http://dx.doi.org/10.1140/epjc/s2005-02406-7
http://dx.doi.org/10.1140/epjc/s2005-02406-7
http://dx.doi.org/10.1016/S0370-2693(01)00110-1
http://dx.doi.org/10.1007/BF01565609
http://dx.doi.org/10.1016/0370-2693(92)91385-M
http://dx.doi.org/10.1016/0370-2693(92)91385-M
http://dx.doi.org/10.1007/BF01650427
http://dx.doi.org/10.1007/BF01650427
http://dx.doi.org/10.1016/S0168-9002(01)02012-5
http://dx.doi.org/10.1016/S0168-9002(01)02012-5
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1103/PhysRevD.51.3459
http://dx.doi.org/10.1103/PhysRevD.51.3459
http://dx.doi.org/10.1103/PhysRevD.39.799
http://dx.doi.org/10.1103/PhysRevD.39.799
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