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Anomalous Roughening of Viscous Fluid Fronts in Spontaneous Imbibition
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We report experiments on spontaneous imbibition of a viscous fluid by a model porous medium in the
absence of gravity. The average position of the interface satisfies Washburn’s law. Scaling of the interface
fluctuations suggests a dynamic exponent z ’ 3, indicative of global dynamics driven by capillary forces.
The complete set of exponents clearly shows that interfaces are not self-affine, exhibiting distinct local
and global scaling, both for time (� � 0:64� 0:02, �� � 0:33� 0:03) and space (� � 1:94� 0:20,
�loc � 0:94� 0:10). These values are compatible with an intrinsic anomalous scaling scenario.
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FIG. 1. (a) Sketch of the experimental setup. (b) Schematic
representation of our Hele-Shaw cell with quenched disorder in
the bottom plate. (c) Temporal evolution of the oil-air interface
at H � �9 mm.
The dynamics of immiscible fluid-fluid displacements in
porous media has been a subject of much interest in last
years [1–13], both from a fundamental point of view, as a
dynamical nonequilibrium process leading to rough inter-
faces [1], and from a technological point of view, in
industrial and environmental problems such as oil recov-
ery, irrigation, and filtration [2]. The process is called
spontaneous imbibition when an invading fluid that wets
preferentially the medium displaces a resident fluid at
constant external pressure. In contrast, forced-flow imbibi-
tion takes place when the invading fluid gets into the
porous medium at a constant injection rate.

The case of spontaneous imbibition has special interest
from the point of view of dynamic scaling. Spontaneous
imbibition is dominated by capillarity. In contrast to
forced-flow imbibition, there is no global mass conserva-
tion law, a fact that may have a dramatic effect on scaling
[10,11]. Spontaneous imbibition is a case with slowing-
down dynamics in which time scales change continuously.
Indeed, it has been known from a long time [14] that the
temporal scaling of the mean advancing front obeys
Washburn’s law, hhi � t1=2, but little is known about the
scaling of fluctuations in this regime. Moreover, most
experiments in spontaneous imbibition have been per-
formed with the disordered medium placed vertically [9],
a situation where gravity limits the Washburn behavior to a
short observation time. Experiments with gravity have
been directed to the study of the pinning process and its
scaling. Only one experiment with the disordered medium
placed horizontally has been performed on paper [4]. In
this experiment, scale invariant roughness is found only for
highly anisotropic disorder, while logarithmic roughness,
at best, is found in isotropic paper. Paper, however, is a
medium with uncontrolled disorder, and phenomena such
as swelling and prewetting might change the effect of static
capillary forces.

In this Letter we report on spontaneous imbibition ex-
periments of a viscous fluid by a model porous medium
05=95(10)=104501(4)$23.00 10450
with well controlled disorder, consisting on a horizontal
Hele-Shaw cell with random variations in gap spacing. Our
scaling results suggest a dynamic exponent z ’ 3, consis-
tent with a nonlocal dynamics driven by capillary forces.
This exponent has never been observed in experiments
before, despite having been suggested by simple models
of imbibition [1,12]. After a detailed scaling analysis of the
interfacial fluctuations we find different global and local
exponents, with values that suggest that our experiment
must be described in the framework of intrinsic anomalous
scaling [15].

Experimental setup.—The experimental setup [6,7] con-
sists on a Hele-Shaw cell of size 190� 500 mm2 	L�H

made of two glass plates separated by a narrow gap of
thickness b � 0:46 mm. Fluctuations in the gap spacing
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are provided by square (SQ) copper obstacles (d �
0:06 mm high, 1:50� 1:50 mm2 size) that are randomly
distributed over a fiberglass substrate, without overlap,
filling 35% of the substrate area (disorder SQ 1.50 in
Ref. [6]).

In the present set of experiments we use a constant
pressure device that consists on an oil container of select-
able height H, in the range from �50 to 100 mm, in steps
of 0.1 mm. A silicone oil (Rhodorsil 47 V) with kinematic
viscosity � � 50 mm2=s, density  � 998 kg=m3, and oil-
air surface tension � � 20:7 mN=m at room temperature,
penetrates into the cell through two wide holes drilled in
the bottom glass, displacing the air initially present. The
holes connect to a reservoir in the cell, with the disorder
plate placed just ahead (Fig. 1).

The experimental procedure used to prepare a flat initial
interface is the following: The reservoir in the cell is
carefully filled and, using an auxiliary syringe, the oil-air
interface is pushed gently up to a transverse copper track
2 mm behind the disorder pattern, and the experiment
starts. The evolution of the oil-air interface is monitored
using two CCD cameras. A computer records the images
acquired and stores them for processing.

Washburn’s law.—Different heights of the oil column in
the container, in the range �9 � H � 15 mm, have been
explored. One example of the temporal evolution of the
interface is shown in Fig. 1(c) for H � �9 mm. As a first
result (Fig. 2) we observe that for H >�10 mm the aver-
age interface position obeys Washburn’s law, hhi � At1=2.
For H <�10 mm the interfaces recede. By Darcy’s law
h _hi � rp�H=hhi, so that A2 �H, as verified in the inset
of Fig. 2.

Scaling analysis of the rough fronts.—The statistical
properties of a one-dimensional interface defined by a
function h	x; t
 are usually described in terms of the fluc-
tuations of h. More precisely, global fluctuations are mea-
sured by the global interface width, which for a system of
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FIG. 2. Main plot: Squared average interface position as a
function of time, for different oil column heights H, showing
that the imbibition process follows Washburn’s law, hhi � At1=2.
Inset: Dependence of Washburn’s law prefactor A (squared) on
column height H.
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total lateral size L scales according to the Family-Vicsek
(FV) ansatz [16]. However, in experiments one cannot
usually probe the global width, since system size is fixed
in standard setups. Instead of global fluctuations, one
measures the local surface fluctuations, which are more
easily accessible in the laboratory. Local interface fluctua-
tions are measured by calculating either the spectral den-
sity of the interface, S	k; t
  hh	k; t
h	�k; t
i, where
h	k; t
 is the Fourier transform of the interface and brackets
indicate averages over independent runs of the experiment,
or the local width, w	l; t
 � hh�h	x; t
 � hhil�2ili1=2, where
h� � �il denotes an average over x in windows of size l. The
local width is also expected to satisfy dynamic scaling

w	l; t
 � t�g	l=t1=z
; (1)

where the most general scaling function [15,17] is ex-
pected to behave as

g	u
 �
�
u�loc if u� 1
const: if u� 1

: (2)

Here � and z are the growth and dynamic exponents,
respectively, and � � �z is the roughness exponent. So,
for short scales 	l < t1=z
 the local width grows as t�

�
with

�� � 	�� �loc
=z, whereas for larger scales the growth of
the global width, t�, is recovered. This generalization of
the scaling form is required to account for potentially
anomalous roughening 	� � �loc
. Note that three inde-
pendent exponents are necessary now to define the univer-
sality class. The standard self-affine FV scaling [16] is then
fully recovered when global and local roughness expo-
nents become equal, i.e., � � �loc, �� � 0. Sometimes a
more detailed analysis of the scaling functions is necessary
to completely define the generic class of scaling. Then both
S	k; t
 and w	l; t
 must be examined. The scaling of the
spectrum

S	k; t
 � k�	2��1
s	kt1=z
; (3)

where now the scaling function is

s	u
 �
�
u2	���s
 if u� 1
u2��1 if u� 1

; (4)

and �s is the spectral exponent, adds valuable additional
information [15]. With the same value of the scaling ex-
ponents the system can belong to one or another class
depending on the value of the auxiliary exponent �s. For
instance, with �> 1 the system can be either in the super-
rough, �s � �, or the intrinsic anomalous class, �s �
�loc. This is important because it can inform of the exis-
tence of different symmetries [18].

Experimental results.—Since slight perturbations of the
interface at the beginning of the experiment are unavoid-
able, it is difficult to characterize the scaling of the inter-
facial fluctuations at very short times. To minimize this
effect we have always considered the subtracted width
W	l; t
, defined as W	l; t
 � �w2	l; t
 � w2	l; 0
�1=2 [3].
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We have focused on measuring the values of the scal-
ing exponents for an oil column height H � �9 mm. In
these conditions the imposed (negative) pressure gradi-
ent nearly compensates the traction due to capillarity, so
that the interface is driven very slowly. The prefactor of
Washburn’s law in this case is A � 1:26� 0:15 mm=s1=2,
and we observe that the average interface velocity (initially
h _h	t � 0
i ’ 0:05 mm=s) decreases by about 84% in the
experiment. We have performed a total of 6 different ex-
periments, 2 for each of 3 different disorder realizations.
The plot ofW	l; t
 as a function of time and for 9 different
windows of size l is shown in Fig. 3(a). We obtain a power
law with different exponents for large and small window
size, � � 0:64� 0:02 and �� � 0:33� 0:03. The value of
this last exponent is very robust and clearly different
from 0. Saturation occurs simultaneously in all scales at
around 6800 s. Both facts rule out a FV scaling and indicate
the presence of anomalous scaling.

The exponent �loc can be obtained directly from W	l; t

as a function of window size l near saturation. As shown in
Figure 3(b) the behavior is close to the expected power law,
10 100 1000 10000
10-2

10-1

100

101

l = L/128

l = L/64

l = L/32

l = L/16

l = L/8

l = L/4

l = L/2

l = L/256

l = L

β* = 0.33

β = 0.64

W
 (

l, 
t)

  (
m

m
)

t  (s)

1 10 100
10-3

10-2

10-1

100

101

10 100 1000
10

100

 

 

l C
 (

m
m

)

t (s)

(b)

(a)

1000 s
6800 s

400 s
100 s
40 s
10 s

 
W

 (
l, 

t)
  (

m
m

)

α loc = 0.94

 

l (mm)

FIG. 3. (a) Log-log plot of the interfacial width as a function of
time, for different window sizes l. The straight lines, with slopes
0.64 and 0.33, result from a data fit in the scaling region. (b) Log-
log plot of the interfacial width as a function of window size l for
different times. The straight line is a fit to the data at the latest
time available, with slope 0.94. The inset shows the correlation
length lc as a function of time. The behavior t1=3 is represented
by the solid line. The experimental parameters are b � 0:46 mm
and H � �9 mm.
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with an exponent �loc � 0:94� 0:10. Having determined
the three independent exponents �, ��, and �loc directly
from the experimental data, the remaining exponents � �
1:94� 0:20 and z � 3:0� 0:3 follow from the scaling
relations.

Figure 3(b) shows alsoW	l; t
 at different time intervals,
providing a direct observation of the temporal growth of a
lateral correlation length, lc � t1=z, as implied by Eqs. (1)
and (2). We have estimated lc from the crossover between
the power law and plateau regions, and plotted it as a
function of time in the inset. The uncertainty in the values
of lc determined in this way is large, but the result is
consistent with lc � t1=3, as expected.

The exponents obtained provide a good collapse of our
data, as presented in Fig. 4(a), consistently with the scaling
assumption of Eqs. (1) and (2). Finally, the power spectrum
at different times, presented in Fig. 4(b), provides the value
�s � 0:92� 0:11, close to �loc and significantly different
from �. This, together with the observation that the spectra
at different times are shifted upwards, points unambigu-
ously to an intrinsic anomalous scaling. We have verified
that the collapse of the spectrum (not shown in the figure)
is also well fitted with the exponents obtained.
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Discussion.—The deterministic linearized equation for
the dynamics of a perturbation of the interface, in the
form of a normal mode of wave number k, in spontane-
ous imbibition, reads [10,12] _hk � ��	b2=12 
k2jkjhk �
h _hijkjhk, where  � � is the dynamic viscosity of the
fluid, and h _hi is the average interface velocity. Surface
tension (the term proportional to k2jkj) is responsible for
the damping of short wavelength fluctuations, while vis-
cous pressure (the term proportional to h _hijkj) damps long
wavelength fluctuations.

The two terms, however, cross over at a characteristic
length !� � 2���	b2=12 
	1=h _hi
�1=2. In spontaneous
imbibition, h _hi � t�1=2, and thus the crossover length
!� � t1=4. As the interface invades the porous medium,
Dubé et al. [10] have pointed out that the growth of the
lateral correlation length due to the k2jkj term, lc � t1=3, is
effectively dominated by the slower growth of the cross-
over length, !� � t1=4. One should then observe a dynamic
exponent z � 4 for length scales larger than !�, a result
verified in Ref. [9].

In our experiment, however, lc never reaches !�, and
thus the observation of a dynamic exponent z ’ 3 is fully
justified on theoretical grounds. Indeed, (i) at very short
times lc grows from 0 while, from h _h	t � 0
i ’ 0:05 mm=s
and the values of �, b, and  , we get !� ’ 76 mm, which
is about half the cell width. (ii) At saturation 	lc � L
 !�
can be estimated as follows: lc � 	Dt
1=3, where D ’
103 mm3=s is estimated from the inflection in Fig. 4(a),
so that saturation occurs indeed at a time ts � L3=D ’
6800 s. The interface velocity at ts, determined experimen-
tally, is 8� 10�3 mm=s. From this velocity we get !� ’
190 mm at saturation; a value that coincides with the size
of the cell. Thus !� is only reached at saturation. (iii) This
result is consistent with the observation that at the end of
the experiment h _hi ’ 0:16h _h	t � 0
i, and we get again
!� ’ 190 mm. This reflects also that saturation is reached
shortly before the end of the experiment.

Conclusions.—Our experiments provide a controlled
realization of spontaneous imbibition without gravity.
The interface roughness is a result of the random spatial
distribution of capillary forces. Traction due to capillarity
is so strong that the external pressure must be negative to
have a very slow (forward) motion of the roughening front.
Once the control parameter (the pressure imposed) is fixed,
the front advance verifies Washburn’s law.

Our results � ’ 2, �loc ’ 1, � ’ 2=3, �� ’ 1=3, and z ’
3, together with �s ’ �loc, identify the present experiment
with the so-called intrinsic anomalous scaling [15]. This
type of scaling is entirely different from the usual FV
scaling found in the same setup and with the same kind
of disorder, in forced-flow conditions [6]. This substantial
10450
difference should be attributed to the absence of a global
mass conservation law.

Finally, our results provide the first experimental evi-
dence of z ’ 3 in spontaneous imbibition. This has been
made possible by driving the interfaces very slowly, thus
avoiding the lateral correlation length lc to reach the cross-
over length !� in the experiment. Preliminary experiments
in which the interfaces are driven at much higher pressure
	H � 29 mm
 and, consequently, !� is much smaller
throughout the whole experiment, cannot be properly col-
lapsed with z � 3.
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