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Abstract

In this text, we give the necessary tools to prove and understand the Mann-Su theorem.
In the context of transformation groups theory, the Mann-Su theorem gives a restriction on
which finite groups can act effectively on a manifold. Particularly, we will find an upper
bound N that only depends on the manifold M such that groups of the form (Zp)r can not
act effectively on M if r > N. Restricting ourselves to the case of smooth manifolds and
actions, we will take a slightly different approach compared to the original paper where
L.N Mann and J.C. Su proved the theorem.
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Introduction

While topology studies the properties of topological spaces or differential geometry
studies the geometrical properties of differential manifolds, the theory of transformation
groups studies the symmetries of some of these objects. The main notion considered is
group actions on the space we desire to study X. Roughly speaking, given a group G,
we assign to each element of G a homeomorphism (or diffeomorphism) θg : X −→ X, in
such a way that the group structure is preserved (so θe = idX and θg ◦ θ′g = θgg′ , where e
denotes the identity element of G). If the assignation is injective (the only element that is
mapped to the identity is e), we say the the group acts effectively on X.

A paradigmatic case that is easy to visualise is the actions of finite groups on the
circle S1. A cyclic group of order n, Cn may act on S1 in such a way that some fixed
generator c acts by rotations of angle 2π

n . This means that we assign each element cj to
the homeomorphism θj such that θj(e2πix) = e2πi(x+j/n). If we consider also a reflection
symmetry on S1, with the homeomorphism that maps e2πix → e2πi(−x) and we combine
it with the previous rotation symmetry, we obtain an action of the dihedral group D2n on
S1.

A natural question that can be formulated is whether there exist more finite groups
acting effectively on S1. The answer is negative. If G be a finite group acting effectively
on S1, then G is a cyclic group or a dihedral group. Although the proof of this statement
is not complex, we omit it for the sake of brevity.

Seeing how limited the group actions on S1 are, one could ask whether there exists a
finite group that does not act in any compact manifold. The answer is negative. Given a
finite group G, there exists a natural number n (we can choose n to be the cardinality of
the group) such that G is a subgroup of the group of permutations of n elements, Sn. Let
Tn = S1 × ...× S1 be the n-dimensional torus, Sn acts effectively on Tn by permuting the
coordinates, σ(e2πix1 , ..., e2πixn) = (e2πixσ(1) , ..., e2πixσ(n)). Therefore, restricting this action to
the subgroup G we obtain an effective action of G on Tn.

If we summarise the previous information, each finite group can act effectively on
some manifold, but the set of groups that act on a given manifold could be quite small.
An interesting problem is to study the finite groups that can act effectively on a given
manifold M.

This text has as main objective to prove one of the theorems that restricts which groups
can act effectively on a given compact manifold, in the case where the groups are abelian
and finite. In some way, it confirms the intuition suggested by the S1 case. Given a
compact manifold, a finite group acting effectively on it can not be excessively complex.

Theorem 0.1. Let M be a compact and connected smooth manifold, there exists a natural number
N, which only depends on the manifold, such that the groups of the form (Zp)r, where p is a prime
number, can not act effectively on M if r > N.

Observe that if G is a group acting on M which has (Zp)r as a subgroup, then (Zp)r

acts on M. Therefore, if r > N, we obtain that (Zp)r does not act effectively (an element
g 6= e of (Zp)r ⊂ G is mapped to the identity map), therefore G does not act effectively
on M. This fact shows how versatile the Mann-Su theorem could be.



Introduction iii

This theorem is due to L.N. Mann and J. C. Su and was proved in the paper [1], which
was published in 1962. In this period, transformation groups theory was an active area of
research with the contribution of outstanding mathematicians like A. Borel, P. A. Smith,
G. E. Bredon or P. E. Conner amongst others.

The theorem stated in [1] is proved in the general context of cohomology manifolds.
In order to reduce the required technicalities, we shall prove the theorem for smooth man-
ifolds (we will assume that compactness and connectedness on the manifolds). Working
with smooth manifolds allows us to take a different approach in some parts of the proof
and reduces some technical complication (for example, we are able to use singular homol-
ogy instead of more exotic homology theories).

One of the beauties of the transformation group theory is that it uses a big number
of disparate fields of mathematics. This project’s topics range from spectral sequences,
algebraic topology, fiber bundles theory, equivariant homology to Riemannian geometry
or frame bundles. Some of the theorem used throughout the chapters could deserve its
own project, like the Serre spectral sequence in the final part of chapter 3. These are
some of the reasons why, in mere 50 pages, it is not possible to make a self-contained or
even complete exposition on all of these subjects. Some standard topics, like Riemannian
geometry or some classic theorems of algebraic topology are not rigorously proved, we
rather provide some reference books where they are meticulously exposed. For some
statements of fiber bundles, we only show a sketch of their proofs. However, we intend
to provide rigorous proofs for the statements that involve group actions and of the claims
that are crucial to prove the Mann-Su theorem.

This project contains five different chapters, the firsts four ones explain the different
topics required for proving the theorem, while the last one is devoted to explaining the
proof of the Mann-Su theorem. The first chapter is an amalgamation of various topics
where we provide a concise introduction to the basic definitions of the transformation
group theory and fiber bundles, and we state some general results in algebraic topology.
The second chapter gives a short presentation of Riemannian geometry and frame bun-
dles. Thereafter, various results regarding smooth group actions are proved. The third
chapter is devoted to the construction of spectral sequences, focusing on the case of chain
complexes. Moreover, the Serre spectral sequence is explained in the final part of this
chapter. The fourth chapter describes classifying spaces and equivariant homology with
some of its properties. In the fifth and last chapter, some preliminary lemmas are stated
before proving the Mann-Su theorem.

A final remark that shall be made is that the Mann-Su theorem only involves groups
of the form (Zp)r, which are finite. Assuming the finiteness of the group reduces the
complexity of the proof of some of the auxiliary statements announced, like the slice
theorem or the construction of classifying spaces. In consequence, we will suppose that
the group is finite, although some of the statements could be valid in the more general
context of compact Lie groups.

Notation: We will denote by Zp the cyclic group of order p, where p is a prime
number. Usually, we will use the letter G to denote the group, the letters X or Y to denote
a topological space and the letters M or N to denote a manifold. The letters m or n
will denote the dimension of the previous manifolds respectively. We will suppose that
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manifolds do not have boundary. We will say that M is a smooth manifold if all transition
maps are C∞.

We will denote the closed interval [0, 1] by I, while J will denote an open interval. The
symbol "∼=" will denote an isomorphism, homeomorphism or diffeomorphism, depending
on the context. The symbol ' will denote homotopy equivalence.

Finally, Mm×m will denote the group of matrices with m rows and m columns which
has real numbers as entries. Gl(m, R) and O(m, R) will denote the general linear group
and the orthogonal group of dimension m respectively.



Chapter 1

Preliminaries

In this introductory chapter we will expose basic definitions and results that will be
required in subsequent chapters. The first section is dedicated to provide the definition of
a transformation group. The second and third section are devoted to explaining twisted
products, slices and fiber bundles. These objects will be crucial in subsequent chapters.
Finally, in the fourth section two classic theorems of algebraic topology are stated and we
define and explain some topological properties about a particularly nice type of topologi-
cal spaces called CW-complexes.

To elaborate the first part of this chapter, we used the acclaimed book of G. E. Bredon
titled Introduction to compact transformation groups, [2]. As additional reference, one can
consult [3]. For the last section of the chapter, we based on [4], [5] and [6].

1.1 Transformation groups

Definition 1.1. Let (G, ·) be a group, which it is also a Hausdorff topological space. It is called a
topological group if the inverse map ι : G −→ G (ι(g) = g−1) and the product σ : G× G −→ G
(σ(g, h) = g · h) are continuous (where G× G has the product topology).

The element e will denote the identity element of the group G. To simplify the notation,
we will write gh to symbolise the product of elements of G.

Remark 1.2. Let G be a finite group, we can equip it with the discrete topology. Consequently, it
is a topological group because both maps are continuous with this topology. When we talk about a
finite group, we shall suppose that it is a topological group with the discrete topology.

Definition 1.3. A topological transformation group is a triple (G, X, Θ) where G is a topological
group, X is a Hausdorff topological space and Θ is continuous map from G× X to X, such that:

• Θ(g, Θ(h, x)) = Θ(gh, x), for all g, h ∈ G and x ∈ X.

• Θ(e, x) = x, for all x ∈ X.

The map Θ is called an action of G over X, the space X together with the action is
called a G-space or a left G-space. Its obvious counterpart is a right G-space, where

1
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Θ(g, Θ(h, x)) = Θ(hg, x), for all ∈ G and x ∈ X. Most of the time we will omit the map
Θ if the action is clear from the context, and we simply write g(x) or gx to symbolise the
action on a left G-space, and xg to symbolise the action on a right G-space. We will always
work with left actions unless stated the contrary.

Remark 1.4. Given g ∈ G, we define the map θg : X −→ X such that θg(x) = gx. Clearly, given
g, h ∈ G, we have that θg ◦ θh = θgh, θe = IdX and θg ◦ θg−1 = θgg−1 = IdX . Then, θg is and
homeomorphism of X for all g ∈ G. Therefore, we obtain a group morphism G −→ Homeo(X)

such that the image of g is θg.

Now we can define some natural notions that appear when we start studying group
actions.

Definition 1.5. We define the following subgroups of G:

• kerΘ = {g ∈ G : g(x) = x, ∀x ∈ X} is called the kernel of the action Θ.

• Gx = {g ∈ G : g(x) = x} is called the isotropy group (or stabiliser) of x ∈ X.

Remark 1.6. It is clear that ∩x∈XGx = kerΘ

Definition 1.7. An action is said to be effective if kerΘ = {e}. An action is said to be free if
Gx = {e} for all x ∈ X. An action is said to be trivial if θg = idX for all g ∈ G.

Example 1.8. Some examples of topological transformation groups are the following ones:

1. Let Sn be the n dimensional sphere and let f be the antipodal map. Let Z2 be the group
with two elements {−1, 1}. We define a Z2-action on Sn such that 1(x) = x and −1(x) =
f (x). Because f is continuous and f 2 = id, it fulfills the conditions to be a topological
transformation group.

2. We can see the sphere S2n−1 in Cn, which we can describe by {(z1, ..., zn) : Σ|zi|2 =

1}. Given an integer m and integer l1, ..., ln, that are relative prime to m, the cyclic group
Zm acts on the sphere by rotations. If ρ is a generator of the group, then ρ(z1, ..., zn) =

(e2πil1/mz1, ..., e2πiln/mzn). The assumption that those integers are relatively prime is to
ensure that the action is free. The rotation action on S1 explained in the introduction is a
particular cases of this example.

3. Let Sn be the permutation group of n elements. Let x be a point of the n dimensional
torus Tn = S1 × ... × S1, which is the Cartesian product of n copies of S1. Let x have
coordinates (e2πix1 , ..., e2πixn). If σ ∈ Sn, we define an action of Sn on Tn such that
σ(e2πix1 , ..., e2πixn) = (e2πixσ(1) , ..., e2πixσ(n)). If G is a subgroup of Sn, we obtain an in-
duced action of G on Tn. Since every finite group is subgroup of some permutation group,
every finite group acts on Tn for some n.

Definition 1.9. Given a set A ⊂ X and a subgroup H ⊂ G, we define:

• H(A) = {h(x) : x ∈ A, h ∈ H}. The set A is said to be invariant under H if H(A) = A.

• F(H, A) = {x ∈ A : h(x) = x ∀ h ∈ H}. If A = X, XH is used to denote F(H, X).
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Definition 1.10. Let X and Y be two G-spaces, a map φ : X −→ Y is said to be equivariant if
φ(gx) = gφ(x) for all g ∈ G and x ∈ X. Moreover, if φ is an homeomorphism, it is called an
equivalence of G-spaces.

Definition 1.11. Let x be a point of X, the set x∗ = G(x) = {g(x) : g ∈ G} is called the orbit of
x.

Definition 1.12. We can define an equivalence relation on X such that x ∼ y if and only if
G(x) = G(y), which means that there exists g ∈ G such that y = gx. If X/G denotes the quotient
set of all orbits, we can see it as a topological space with the final topology induced by the quotient
map that takes a point into its class. X/G is called the orbit space. The map π : X −→ X/G
which maps every element of X to its equivalent class is called the orbit map.

Lemma 1.13. The map π : X −→ X/G is an open map.

Proof. Let U be an open set of X. Then G(U) =
⋃

g∈G g(U) is an open set in X, since
g(U) = θg(U) and θg is a homeomorphism for all g ∈ G. Hence, G(U) = π−1π(U) is
open and, by definition, π(U) is an open set of X/G.

Lemma 1.14. If G is a finite group, then:

1. The map π : X −→ X/G is a closed map.

2. The space X/G is Hausdorff.

Proof. For the first part of the lemma, let A be a closed set of X. Then G(A) =
⋃

g∈G g(A)

is a closed set in X, because it is the finite union of closed sets since g(A) = θg(A) is the
image of a closed set by a homeomorphism. The equality G(A) = π−1π(A) holds because
of the surjectivity of π. If we use the complement of G(A), we obtain that X − G(A) =

π−1(X/G− π(A)) and, by definition, the set X/G− π(A) is open. In consequence, π(A)

is closed, as we wanted to prove.
For the second part of the lemma, we take two points [x], [y] ∈ X/G. Their orbits in

X are a finite set of points. Using that X is Hausdorff, we can construct two open sets U
and V such that G(x) ⊂ U, G(y) ⊂ V and U ∩ V = ∅. Therefore, the set X \ V is closed
and U ⊂ Ū ⊂ X \V, in particular, G(y) ∩ Ū = ∅, hence [y] /∈ π(Ū). Then, the set π(U) is
open since U is open and [x] ∈ π(U). The set (X/G) \ π(Ū) is open because Ū is closed
and [y] ∈ (X/G) \ π(Ū). Observe that their intersection is the empty set, therefore these
are the two desired open sets.

Remark 1.15. Since π : X −→ X/G is continuous and surjective, if X is compact or connected,
then X/G is compact or connected.

Example 1.16. We are interested in the orbit spaces of the first example.

1. The orbit space Sn/Z2 is the real projective space of dimension n, RPn.

2. The orbit space S2n−1/Zm = Lm(l1, ..., ln) = Ln
m is called lens space.
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1.2 Twisted product and slices

Definition 1.17. Let X be a right G-space and Y a left G-space, we construct a left G-action on
the product X × Y such that g(x, y) = (xg−1, gy). Its orbit space is called twisted product of X
and Y and it is denoted by X×G Y.

Remark 1.18. The orbit of an element (x, y) is denoted by [x, y]. Observe that [xg, y] = [x, gy].
Given a right G-space X, we can construct a left G-action on X, by defining gx = xg−1. In

this way, we can define the twisted product of two left G-spaces X and Y as the orbit space of the
diagonal action of G on X×Y, where g(x, y) = (gx, gy). As a consequence, X×G Y ∼= Y×G X.

Remark 1.19. Let Y and Y’ be G-spaces and f : Y −→ Y′ an equivariant map. Then the map
id×G f : X×G Y −→ X×G Y′, such that id×G f ([x, y]) = [x, f (y)] is well defined.

With the definition and these remarks, we are able to proof some elementary properties
of the twisted product of spaces.

Lemma 1.20. If f is open, then id×G f is open.

Proof. If we consider the following commutative diagram, the statement is an immediate
consequence of the orbit maps being open.

X×Y X×Y′

X×G Y X×G Y′

id× f

π π

id×G f

Lemma 1.21. 1. If {pt} is the topological space formed by one point (G acts trivially on it),
then X×G {pt} ∼= X/G.

2. X×G G ∼= X.

Proof. The first statement is immediate by observing that X× {pt} is homeomorphic to X
and the diagonal action on this space is simply the action of G on X.

To prove the second part of the lemma, we will construct an equivariant homeomor-
phism. Consider the maps X ×G G −→ X such that [x, g] → xg and X −→ X ×G G such
that x → [x, e]. Clearly, both map are well defined and one is the inverse of the other. The
continuity of the first map is due to the continuity of the transformation map X×G −→ X
and the openness of the orbit map. The continuity of the second map is due to the con-
tinuity of the inclusion X −→ X × G such that x → (x, e) and the continuity of the orbit
map.

Proposition 1.22. Let X be a right H-space, Y be a left H-space and a right K-space, and Z be a
left K-space. Then (X×H Y)×K Z ∼= X×H (Y×K Z).
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Proof. We construct a map (X ×H Y) ×K Z −→ X ×H (Y ×K Z), such that [[x, y]z] →
[x, [y, z]]. It is well defined because

[[xh−1, hy]k−1, kz] = [[xh−1, k−1hy], kz]→ [xh−1, [hyk−1, kz]] = [xh−1, h[yk−1, kz]].

The continuity is a consequence of the openness of the map

(X×Y)× Z −→ (X×H Y)× Z −→ (X×H Y)×K Z.

The construction and continuity of the inverse is analogous.

Corollary 1.23. Let G be a topological group acting on X and H a subgroup of G. Then X ×G
G/H ∼= X/H.

Proof. We have the following chain of homeomorphisms X ×G (G/H) ∼= X ×G (G ×H
{pt}) ∼= (X×G G)×H {pt} ∼= X×H {pt} ∼= X/H.

We finish this section by introducing a significant concept that use twisted products in
its definition.

Definition 1.24. Let X be a G-space with G compact, let x be a point of X and let S be a subspace
such that x ∈ S ⊂ X and Gx(S) = S. The subspace S is called a slice at x if the map G×Gx S −→
X taking [g, s] → g(s) is equivariant and a homeomorphism between G ×Gx S and an open
neighbourhood of the orbit G(x). This map is called a tube about G(x).

The slice theorem proves the existence of slices at any point of a space, supposing that
the space and the group action satisfy extra conditions. We shall prove the existence of
slices in the case that G is a finite group and the space is Hausdorff.

Proposition 1.25. Let G be a finite group and X a Hausdorff G-space, then there exists a slice at
x for all x ∈ X.

Proof. Let G(x) = {x1, ..., xr} be the orbit of the point x, where we choose x1 = x. Since X
is Hausdorff, there exists a collection of open sets {Ui}i=1,...,r such that xi ∈ Ui and Ui ∩
Uj = ∅ if i 6= j. For each point in the orbit G(x), we define the set Vi =

⋂
g∈G,gxj=xi

gUj,
which is an open set because it is the intersection of a finite number of open sets. Moreover,
observe that Vi ⊂ Ui, hence the sets Vi and Vj are disjoint if i 6= j. The set V1 will be
denoted by S and the union of all the sets Vi will be denoted by V, which is a open
neighbourhood of G(x). Our objective is to prove that S is a slice at x.

Firstly, let h be an element of G such that hxj = xi, then gVj = Vi. Using the definition,
hVj =

⋂
g∈G,gxk=xj

hgUk =
⋂

g∈G,hgxk=xi
hgUk = Vi, where the last equality is a consequence

of the map h : G −→ G such that g → hg being an isomorphism. Particularly, if g ∈ Gx,
then gS = S. Therefore, the map G ×Gx S −→ V such that [g, s] → gs is well defined,
exhaustive and equivariant. To prove its injectivity we suppose that there exists [g, s] and
[g′, s′] such that gs = g′s′. Consequently, g−1g′s′ = s ∈ S, which means that g−1g′ = h ∈
Gx. We can conclude that g′ = gh and s′ = h−1s, which mean that [g, s] = [g′, s′].
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The topological properties which the map requires to be a homeomorphism are in-
duced by the following commutative diagram

G× S V

G×Gx S

π

where the top arrow is the map such that (g, s)→ gs, which is continuous and open.

Remark 1.26. The following facts are direct consequences of the proposition we have just proved.

• The above proposition also prove the existence of a tube about each orbit of X.

• If the action is free, then Gx = {e} for all x ∈ M and the twisted product becomes the usual
Cartesian product.

• The open set Vi is a slice at xi for all i.

• If the space X is a smooth manifold, we can suppose that each Vi is inside one chart (W, φ)

of the differential structure of X, by choosing an open set Ui small enough to be inside one of
the charts.

We are interested in the relation between a slice at x ∈ X and its image in the orbit
space X/G.

Lemma 1.27. Let G be a finite group and X be a Hausdorff space where G acts freely. Given S a
slice at X, the map π|S : S −→ π(S) is a homeomorphism.

Proof. It is injective because S is a slice and the action is free. Suppose that x and y are two
points in S such that [x] = π|S(x) = π|S(y) = [y]. In consequence, there exists h ∈ G such
that y = hx. Since the action is free, gS = S if and only if g = e, thus h = e and x = y. It
is exhaustive by definition, hence, it is bijective. The continuity and openness are induced
by the map π : X −→ X/G and the fact that S is open in M and π(S) is open in X/G.

Remark 1.28. We can consider the inverse map π−1
|S : π(S) −→ S of the above homeomorphsim.

However, we can construct an homeomorphism between π(S) and any of the sets Vi of the tube by
composing it with θg with g ∈ G. In that sense, we can say that we have chosen a particular slice
of the tube to construct this homeomorphism, but we could have chosen any other slice by doing a
left translation with an element of the group.

1.3 Fiber bundles

Definition 1.29. Let X and B be Hausdorff spaces, G a topological group and F a right G-space
where G acts effectively. Then, a fiber bundle over B with total space X, fiber F and structure of
group K is a map p : X −→ B together with a collection of charts (they are usually called local
trivializations) Φ = {(U, φ)}, where U is an open set of B and φ : F × U −→ p−1(U) is a
homeomorphism that fulfills the following conditions:
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• For every x ∈ F×U, we have (p ◦ φ)(x) = π(x), where π : F×U −→ U is the projection
map. In other words, the following diagram commutes

F×U p−1(U)

U

φ

π p

• Each point of B is contained in a chart.

• If (U, φ) is a chart and V is an open set such that V ⊂ U, then (V, φ|V) is a chart.

• Given charts (U, φ) and (U, ψ), there exists a continuous map θ : U −→ K such that
ψ( f , u) = φ( f θ(u), u) for all f ∈ F and u ∈ U. The map θ is called transition function for
the charts φ and ψ.

• The set of charts Φ is maximal among all sets that satisfy the previous conditions.

Given a point x ∈ B, p−1(x) ∼= F is the fiber at x.

Definition 1.30. A cross section of a fiber bundle is a map f : B −→ X such that p ◦ f = idB.

Example 1.31. 1. Given two Hausdorff spaces X and Y, we consider the projection π : X ×
Y −→ X. Then it is a fiber bundle with base space X, total space X × Y, fiber Y and trivial
group structure.

2. Möbius strip is an example of a fiber bundle with group structure that is not trivial. In that
case, the base space is S1, the fiber is an open interval I, and the group structure is Z2.

There are two interesting cases, depending on the additional structure that the fiber
possesses.

Definition 1.32. A principal G-bundle is a fiber bundle that has G as a fiber and as structure
group. It acts by right translation on the fiber, that is, if g ∈ G is seen as an element of the
structure group and g′ ∈ G is seen as an element of the fiber, then g sends g’ to gg’ as an element
of the fiber.

Definition 1.33. A vector bundle is a fiber bundle p : E −→ B with fiber Rn an structure of group
Gl(n, R). Moreover, if φ : Rn ×U −→ p−1(U) is a local trivialization, then Rn × {b} −→
p−1(b) is an isomorphism of vector spaces for all b ∈ U.

Proposition 1.34. Let G be a finite group and let X be a Hausdorff G-space. If the action is free,
then the map π : X −→ X/G is a principal G-bundle.

Proof. Let [x] be a point of X/G, its inverse image is the orbit G(x), which is homeo-
morphic to G because the action is free. To prove that π : M −→ M/G is a principal
G-bundle we need to construct the local trivializations. Let S be a slice at x, and let T
be the tube such that the map G× S −→ T is the homeomorphism (g, s) → gs (since the
action is free, thus Gx = {e}, the twisted product becomes the Cartesian product). Note
that T = π−1(π(S)) and that we have a homeomorphism between any slice of the tube
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and π(S), by lemma 1.27. With this information, we can obtain the following commutative
diagram

G× π(S) T

π(S)

f

π

where f is a homeomorphism produced by composing id × π−1
S : G × π(S) −→ G × S

and the tube homeomorphism. The pair (π(S), f ) is the local trivialization we seek, and
if we take all subsets of M/G of that form together with these maps they form a principal
G-bundle. It is worth mentioning that the we have chosen a particular slice of the tube in
order to construct the homeomorphism, we could have chosen any other slice of the form
gS where g is an element of G, generating another pair (π(S), f̄ ). Nevertheless, it is clear
that f̄ (g′, [s]) = g′gs = f (g′g, [s]). Therefore the transition functions are right translations,
as a principal G-bundle requires.

Proposition 1.35. Let p : X −→ B be a principal G-bundle and F a right G-space. Then, there
exists a G-bundle with base space B, total space F×K X and fiber F. The map is π : F×K X −→ B
and the image of an element [ f , x] is p(x). This new fiber bundle is called the associated bundle to
the principal G-bundle p : X −→ B.

Proof. First of all, we start constructing the local trivializations for the new map with the
local trivializations of the principal G-bundle, φ : G×U −→ p−1(U).

Consider the chain of compositions φ̄ : F×U −→ (F×G G)×U −→ F×G (G×U) −→
F×G p−1(U) −→ π−1(U). Observe that all maps are homeomorphism as a consequence
of the results proved in the twisted product section. The last map is induced by the
inclusion i : p−1(U) ↪→ X. Finally, we note that φ̄( f , u) = [ f , φ(e, u)].

Let φ and ψ be charts over U of the principal bundle and θ : U −→ G the transition
function, we will see that it is the transition function for the charts φ̄ and ψ̄. Indeed,

ψ̄( f , u) = [ f , ψ(e, u)] = [ f , φ(θ(u)e, u)] = [ f , θ(u)φ(e, u)] = [ f θ(u), φ(e, u)] = φ̄( f θ(u), u).

The remaining properties are directly induced by the principal bundle.

Proposition 1.36. Let p : X −→ B be a fiber bundle with fiber F and group structure G. Given
a Hausdorff space B′ and a continuous map f : B′ −→ B. We define f ∗X = {(b′, x) ∈ B′ × X :
f (b′) = p(x)}. We have a new fiber bundle, called the pullback bundle, π : f ∗X −→ B such that
π(b′, x) = b′. It has the same fiber and the same group structure.

Given a chart (U, φ) of the fiber bundle p, we define a new chart (U′, ψ), where
U′ = f−1(U) and ψ : F ×U′ −→ π−1(U′) such that ψ(a, x′) = (x′, φ(a, f (x′))). It is a
straightforward process to verify that, with these charts, π : f ∗X −→ B satisfies all the
properties required to be a fiber bundle.
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1.4 Homology preliminaries and CW complexes

Firstly, we recall briefly the construction of singular homology. Let X be a topological
space, a singular n-simplex is a continuous map σ : ∆n −→ X where ∆n is the standard
n-simplex. We define a n-chain to be a finite formal sum of singular n-simplices, Σr

i=1λiσi,
where λi ∈ Z for all i and we consider the abelian group formed by all n-chains, Cn(X).
A group morphism is defined ∂n : Cn(X) −→ Cn−1(X) such that the image of a n-simplex
is ∂n(σ) = Σn

i=0(−1)iσi, where σi is the singular (n− 1)-simplex obtained by restricting σ

to the i-th face of ∆n (the simplex with vertices [v1, ..., vi−1, vi+1, ..., vn]).
It is a straightforward computation to prove that ∂n−1∂n = 0. Thus, the following chain

complex is obtained

...→ Cn+1(X)
∂n+1−−→ Cn(X)

∂n−→ Cn−1(X)→ ...

The n-th homology group, denoted by Hn(X), is Hn(X) = ker(∂n)/Im(∂n+1). The sub-
groups ker(∂n) and Im(∂n+1) are usually called cycles and boundaries respectively.

Observe that we have chosen coefficients in Z. However, coefficients could be chosen
to be in another group (or if we replace Z by another principal ideal domain ring R, the
coefficients can be in a R-module V). The universal coefficient theorem provides a relation
between homologies with different coefficients.

Theorem 1.37. Let X be a topological space, let R be a principal ideal domain and let V be a
module over R. Then, for each q, the short sequence

0→ Hq(X; R)⊗R V → Hq(X; V)→ TorR(Hq−1(X; R), V)→ 0

is a short exact sequence and splits.

Proof. The proof can be found at [6], theorem 2.34 and corollary 2.35 or [4] section 3A.

Remark 1.38. We are concerned about two particular cases. In the first one, R = Z and V = ,
where p is a prime number. In that cases, Hq are abelian groups, and the short exact sequence is

0→ Hq(X)⊗Zp → Hq(X; Zp)→ Tor(Hq−1(X), Zp)→ 0.

In the second case, R is the field Zp, where p is a prime number, and V is a vector space
over Zp. Since Zp is a field, TorZp(Hq−1(X; Zp), V) = 0. Therefore, the exactness of the short
sequence implies that Hq(X)⊗Zp V ∼= Hq(X; V).

The other that shall be discussed is the Künneth theorem, which give a relation be-
tween the homology of two topological spaces X and Y and the homology of X×Y.

Theorem 1.39. Let X and Y be topological spaces and R a principal ideal domain ring. Then, for
each q, the short sequence

0→
q⊕

j=0

Hj(X; R)⊗ Hq−j(Y; R)→ Hq(X×Y; R)→
q−1⊕
j=0

TorR(Hj(X; R), Hq−1−j(Y; R))→ 0

is a short exact sequence.
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Proof. The proof can be found at [6] theorem 3.6.

Remark 1.40. We are particularly concerned in the case where R = Zp, which is a field. Since
the torsion terms are 0 if we work in a field, the following isomorphism holds

q⊕
j=0

Hj(X; Zp)⊗ Hq−j(Y; Zp) ∼= Hq(X×Y; Zp).

A CW-complex (or cell complex) is a type of topological space that despite being more
general then simplicial complexes, it retains good properties for homology computation
because of their construction method.

In this section en
α will denote a n-cell, that it is homeomorphic to a open disk of di-

mension n. This type of space is constructed by attaching various cells in a nice way. The
construction method is the following

1. We start with a discrete set X0, called the 0-skeleton. Each point is called 0-cell.

2. We construct inductively the n-skeleton Xn from Xn−1. Given n-cells en
α = D̊n

α , we
attach them to the (n− 1)-skeleton via maps φα : ∂Dn

α −→ Xn−1, (observe that ∂Dn
α
∼=

Sn−1). If we consider the disjoint union Xn−1 äα Dn
α , the n-skeleton is the quotient

space under the identification x ∼ φα(x) for all x ∈ ∂Dn
α . Then, Xn = Xn−1 äα en

α ,
where en

α are the n-cells attached.

3. We can stop the process at a finite stage, then Xn = X and n would be the dimension
of the CW-complex. If we keep attaching cells indefinitely, we define the space X to
be the union of all n-skeletons, X =

⋃
n≥0 Xn, with the final topology induced by the

inclusions. This means that a set A ⊂ X is open (or closed) if and only if A ∩ Xn is
open (or closed) in Xn for each n.

Example 1.41. • Given a 0-cell and a n-cell we can construct the sphere Sn by collapsing
the boundary of the n-cell to the 0-cell. Alternatively, we can construct Sn starting with a
0-skeleton that consists of two points. Having constructed the (n-1)-skeleton Xn−1 = Sn−1,
we consider it to be the equator of the n-dimensional sphere and we attach two n-cells which
are the two hemispheres of the sphere Sn. We can consider the sphere S∞ =

⋃
n≥0 Sn.

• We can construct a lens space Ln
m with one cell for each dimension from 0 to 2n-1 with the

appropriate attaching maps. It can be constructed inductively. Given the sphere S2n−1 ⊂
Cn, we consider the sphere S2n−3 described by the n− 1 first coordinates of S2n−1 and S1

described by the last coordinate of S2n−1. We subdivide S1 by taking points of the form
(0, ..., 0, e2πij/m) as vertices, where j = 1, .., m. We proceed by joining each of these vertices
with S2n−3 via arcs of great circles, obtaining m (2n− 2)-cells. In a similar way, we join the
fragments of the subdivided S1 using arcs of great circles, obtaining m (2n− 1)-cells. The
group action in S2n−1 whose orbit space is the lens space maps each constructed (2n− 1)-cell
and (2n − 2)-cell to another one of the constructed cells. Therefore, we can identify every
(2n− 1)-cell and every (2n− 2)-cell via the group action. Note that the group acting on
S2n−3 produces a lens space Ln−1

m .
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The following propositions tell us some remarkable facts about the homology of CW-
complexes and a way to compute their homology. Because it is not or main goal in the
project and it is a standard topic in the majority of algebraic topology texts, we will omit
their proof (for example, see [4] for a good exposition about this topic).

Proposition 1.42. Given a CW-complex X, then:

• Hk(Xn, Xn−1) = 0 if k 6= n, and when k = n, it is a free abelian group with basis in one to
one correspondence with the n-cells of X.

• The homology Hk(Xn) = 0 if k > n. In particular, in the case that X is finite dimensional
with dimension n, then Hk(X) = 0 for k > n.

• The inclusion i : Xn ↪→ X, induces an isomorphism in the homology groups i∗ : Hk(Xn) −→
Hk(X) for k < n.

We will call the group Hn(Xn, Xn−1) = Celln(X). Observe that given a (n − 1)-cell
en−1

β , we can take into consideration the quotient map Xn−1 −→ Sn−1
β that results from

collapsing Xn−1 − en−1
β to a point. Then we can compose it with the map that attaches the

n-cell en
α to the (n− 1)-skeleton, obtaining a map between spheres of the same dimension,

so we can compute its degree. We will denote it by dαβ. With that information, we can
build a morphism dn : Celln(X) −→ Celln−1(X) such that dn(en

α) = Σβdαβen−1
β .

Proposition 1.43. We have the following properties:

• (Celln(X), dn) is a chain complex, therefore we can consider its homology HCW
n (X).

• HCW
n (X) ∼= Hn(X).

Example 1.44. If we consider the two previous examples, we have:

• We can compute the homology of the infinite dimensional sphere. Using the isomorphism
induced by the inclusion and that Xn = Sn, we have that Hk(S∞) = 0 for k>0 and
H0(S∞) = Z. Indeed, S∞ is contractible, a fact that will be proved in chapter 4.

• We can compute the homology of the lens space Ln
m via the cell complex structure previously

explained. Observe that Celli(Ln
m) = Z for i = 0, ..., 2n− 1 and 0 otherwise. Because of the

inductive process used to construct the lens space, we need only to compute the maps d2n−1
and d2n−2 and proceed inductively. Without providing the details, the map d2n−1 is 0, since
it is the result of a reflection fixing S2n−3 and a rotation. The map d2n−2 is a multiplication
by m, since it is induced by the orbit map S2n−3 −→ Ln−1

m . Therefore, the chain complex
(Celln(X), dn) has the following form

0 −→ Z
0−→ Z

m−→ Z
0−→ ... m−→ Z

0−→ Z→ 0.

of length 2n − 1. If we use it to compute the homology of the lens space, we obtain that
Hk(Ln

m) is 
Z i f k = 0, 2n− 1

Zm i f 0 < k < 2n− 1 and k is odd

0 otherwise
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We can compute the homology of the infinite dimensional lens space, defined in the same way
as the case of the sphere, using the last property stated in 1.42 and the homology of the finite
dimensional case. If we do the computation, we obtain that Hk(L∞

p ) is
Z i f k = 0

Zm if k is odd

0 otherwise

We will be interested in subsequent chapters in the homology in coefficients over Zp, where
p is a prime, instead of Z of the infinite dimensional lens space L∞

p . In that case, using the
universal coefficient theorem, we obtain that

0→ Hk(L∞
p )⊗Zp → Hk(L∞

p ; Zp)→ Tor(Hk−1(L∞
p ), Zp)→ 0.

It is known that Tor(0, Zp) = 0 and Tor(Zp, Zp) = Zp. If we use these two equalities in
the exact sequence, distinguishing if k is odd or even, we reach the conclusion that Hk(L∞

p ) =

Zp for all k ≥ 0.



Chapter 2

Smooth actions

The objective of this second chapter is to give a succinct exposition about smooth
group actions. Topological actions can be extremely complex. For instance, R. H. Bing
proved in 1952 that there exists an involution (a Z2 action) on the 3-sphere such the fixed
point set is an Alexander horned sphere. However, if we restrict ourselves to smooth
manifolds and actions, we can use the additional structures in order to avoid this type of
cases and simplify some arguments. Moreover, we have at our disposal the powerful tools
of differential geometry. In the first section, some basic facts of Riemannian geometry
and frame bundles are briefly explained, while in the second sections we utilize them to
deduce some useful statements regarding group actions on smooth manifolds.

The bibliography about smooth manifold is extensive, this chapter is basically based
on [7] and [9]. The development of frame bundles is based on the notes [10] and the
lectures of the subject of differential geometry given at UB during this course 2018-2019.

2.1 Riemannian manifolds

Let M be a smooth manifold, for each point p of M we can construct its tangent
space Tp M, which is the vector space that consists of all the tangent vectors of smooth
curves γ such that γ(0) = p, or the space of all derivations of the algebra of smooth
real valued functions at p. Then, we can define TM =

⋃
p∈M Tp M, which is called the

tangent bundle, and the projection π : TM −→ M such that π(p, v) = p, where p is a
point of M and v is a vector of Tp M, is a vector bundle with fiber Rm and group structure
Gl(m, R) = {A ∈ Mm×m(R) : det(A) 6= 0}, that is the group of invertible matrices with
product of matrices as operation.

Definition 2.1. Let M be a smooth manifold. A Riemannian metric on the manifold is a tensor
field g of type (2,0), (which means that for every p ∈ M we have a map gp : Tp M× Tp M −→ R

that is bilinear and smooth) that is symmetric and positive-definite. The pair (M,g) is called a
Riemannian manifold.

A first example of Riemannian metric is the usual inner product on Rn, that we will
denote by 〈·, ·〉. The following propositions shows that any manifold can be equipped
with a Riemannian metric.

13
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Proposition 2.2. Let M be a smooth manifold, then it has a Riemannian metric

Proof. Given an open cover {Uα} (we can choose it so (Uα, φα) is a chart for each α), then
it is a well known fact that there exists a partition of the unity { fi}i∈N subordinated to
{Uα}, so sup( fi) ⊂ Uα(i) for all i ∈N (see [8], theorem 1.11).

We can construct a Riemannian metric gα in each Uα, because it is diffeomorphic
to an open set of Rn with diffeomorphism φα. If p ∈ M is in Uα, then gα,p(u, v) =

〈dpφα(u), dpφα(v)〉. Then g = ∑i∈N figα(i) is a Riemannian metric on M.

Definition 2.3. Given two Riemannian manifolds (M, g) and (N, h), an isometry is a diffeomor-
phism f : M −→ N such that for every point p ∈ M and every pair of vectors v, w ∈ Tp M, the
relation gp(v, w) = h f (p)(dp f (v), dp f (w)) is satisfied.

The next concept we need to introduce is the exponential map, which requires the
use of geodesics. To define rigorously geodesics, we should first define the concepts
of covariant derivative and affine connection ∇, and expose their compatibility with a
Riemannian metric via the Levi-Civita theorem. Since it is not one of our main objective
and it is a standard topic on differential geometry books, we will omit the details. (One
can consult [9] for a exposition about those subjects).

Definition 2.4. Let γ : J −→ M be a parametrised curve in a Riemannian manifold (M,g). Then
γ is a geodesic if ∇γ′γ

′ = 0 for every point in the curve.

Given a point p ∈ M and v ∈ Tp M, it can be proved that there exists a geodesic curve
γ : (−ε, ε) −→ M such that γ(0) = p and γ′(0) = v, and this geodesic is unique. This
fact is a direct consequence of the existence and uniqueness of solutions of an ODE. It is
possible to generalise the concept to a geodesic flow, obtaining the following proposition.

Proposition 2.5. Given a point p ∈ M, we have an open neighbourhood V of p, an ε > 0 and a
smooth map γ : (−2, 2)×Ω −→ M, where Ω = {(q, v) ∈ TV : |v| < ε}, such that the curve
t→ γ(t, q, v) is the only geodesic which fulfills the conditions γ(0, q, v) = q and γ′(0, q, v) = v.

Definition 2.6. Let p be a point in M and U an open set TM like the one from the previous propo-
sition. Then, the map exp : U −→ M given by exp(q, v) = γ(1, q, v) is called the exponential
map on U.

It is clear that exp is a smooth map. We can choose a point p ∈ M and obtain expp :
Bε(0) ⊂ Tp M −→ M such that expp(v) = exp(p, v). Clearly, it is a smooth map. An
important property of the exponential map is presented in the next proposition.

Proposition 2.7. Given a point p ∈ M, then there exists an ε > 0 such that expp : Bε(0) −→ M
is a diffeomorphism of Bε(0) with an open set in M.

Proof. We will calculate the differential of expp at 0 in order to use the inverse function
theorem. Given v ∈ Tp M, we have

d0expp(v) =
d
dt
(expp(tv))|t=0 =

d
dt
(γ(1, p, tv))|t=0 =

d
dt
(γ(t, q, v))|t=0 = v.
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This implies that d0expp = idTp M, so we can apply the inverse function theorem to find
the desired result.

The last objects we shall study in this section are the frame bundles. Let M be a smooth
manifold, we consider the tangent bundle π : TM −→ M which is a vector bundle. Recall
that a local trivialization φ : π−1(U) −→ U×Rm restricted to π−1(p) for any p ∈ U gives
an isomorphism of vector spaces φp : π−1(p) −→ {p} ×Rm ∼= Rm.

Let p be a point in M, we consider the set of basis of Tp M, F(Tp M) = {(v1, ..., vm) :
v1, ..., vm ∈ Tp M is a basis of Tp M}. We can construct an isomorphism of vector spaces be-
tween Rm and Tp M which maps the canonical basis {e1, ..., em} of Rm to a basis {v1, ..., vm}
of Tp M. Since we can obtain any other basis of Tp M transforming {v1, ..., vm} with
an automorphism of Tp M, the set F(Tp M) = Iso(Rm, Tp M) = { f : Rm −→ Tp M :
f is an isomorphism}. Each element of F(Tp M) is called a frame of p.

Definition 2.8. Let M be a smooth manifold, the set

F(M) = {(p; v1, ..., vm) : p ∈ M, v1, ..., vm ∈ Tp M form a basis of Tp M} = ä
p∈M

Iso(Rm, Tp M)

is called the frame bundle of M.

Our objective is to prove that F(M) is a smooth manifold and the map π′ : F(M) −→ M
such that π′(p; v1, ..., vm) = p is principal fiber bundle with group Gl(m, R) = {A ∈
Mm×m(R) : det(A) 6= 0}.

Observe that Iso(Rm, Tp M) ∼= Gl(m, R).

Lemma 2.9. The group Gl(m; R) is a smooth manifold.

Proof. The group Gl(m; R) is an open set of Mm×m(R) ∼= Rm2
since it is det−1(R \ {0})

and det :Mm×m(R) −→ R is a continuous map. Hence, it is a smooth manifold.

Proposition 2.10. Let M be a smooth manifold. The set F(M) is a smooth manifold and the map
π′ : F(M) −→ M such that π′(p; v1, ..., vm) = p is principal fiber bundle with group Gl(m, R).

Proof. Let U be an open set of M such that we have the local trivialization of TM, φ :
π−1(U) −→ U ×Rm. Then, the map φ′ : π′−1(U) −→ U × Gl(m, R) such that φ′(p, x) =
(p, φp ◦ x), where x ∈ Iso(Rm, Tp M), is bijective (observe that φp ◦ x : Rm −→ Rm is an
isomorphism). Moreover, the following diagram commutes

π′−1(U) U × Gl(m, R)

U

φ′

π′

The fact that φ′ is bijective implies that a topology and a differential structure can be given
to every π′−1(U) induced by the topology and differential structure of U×Gl(m, R) such
that φ′ becomes a diffeomorphism.
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Therefore, the union of all the sets π′−1(U) obtained from the local trivialization of
π : TM −→ M is F(M). We equip F(V) =

⋃
π′−1(U) with the topology where a set W

is open if and only if W ∩ π′−1(U) is open in π′(U) for all U. The induced differential
structure in each π‘−1(U) induces a differential structure in F(M). The above diagram
also provides the local trivializations for π′ : F(M) −→ M. The remaining properties of
fiber bundles are induced by the properties of the vector bundle π : TM −→ M since its
structural group is Gl(m, R).

Definition 2.11. Let (M, g) be a Riemannian metric, the set Fg(M) = {(p; v1, ..., vm) : p ∈
M and v1, ..., vm ∈ Tp M forms an orthogonal basis of Tp M} = äp∈M Isom(Rm, Tp M), where
Isom(Rm, Tp M) denotes the isometries of Rm to Tp M, is called the orthogonal frame bundle.

As above, our objective is to show that Fg(M) is a submanifold of F(M).

Lemma 2.12. The orthogonal group O(m, R) = {A ∈ Mm×m(R) : At A = Id} is a submanifold
of Gl(m, R).

Proof. In order to prove the assertion of the lemma, we will use the typical result in dif-
ferential geometry, the preimage theorem, which claims that if M and N are smooth
manifolds and f : M −→ N is a smooth map, then f−1(y) 6= ∅ is a submanifold of M if
y ∈ N is a regular value (which means that for all x ∈ f−1(y) the map dx f : Tx M −→ TyN
is exhaustive).

In our case, the manifold M =Mm×m(R) and the manifold N = SMm×m(R) = {A ∈
Mm×m(R) : A is a symmetric matrix} and the map f fulfills that f (A) = At A. If the
identity matrix Id was a regular value, the claim would be proved because f−1(Id) =

O(m, R).
Firstly, notice that f−1(Id) 6= ∅ since Id ∈ f−1(Id). The next step is to compute the

differential for a point in f−1(Id). Observe that we have isomorphisms TpMm×m(R) ∼=
Mm×m(R) and TqSMm×m(R) ∼= SMm×m(R). Let A be a matrix in f−1(Id) and let
B ∈ Rm×m, consider the smooth curve γ(t) = Bt + A. Since γ(0) = A and γ′(0) = B,
we obtain that dA f (B) = ( f ◦ γ)′(0). We have that ( f ◦ γ)(t) = (Bt + A)t(Bt + a) =

Id + (Bt A + AtB)t + BtBt2. This implies that ( f ◦ γ)′(0) = Bt A + AtB. Let C be a matrix
of SMm×m(R), then dA f ( 1

2 AC) = 1
2 At AC + 1

2 Ct At A = 1
2 C + 1

2 Ct = C. Thus, dA f is
exhaustive for all A ∈ f−1(Id). In consequence it is a submanifold of Mm×m(R), and
since O(m; R) ⊂ Gl(m, R), which is an open submanifold of Mm×m(R), we obtain that
O(m, R) is a submanifold of Gl(m, R).

We want to repeat the analogous process of the construction of F(M) in the case of
Fg(M). However, the maps φp : π−1(p) −→ Rm should not be necessarily an isometry.

To solve this problem, given a local trivialization φ : π−1(U) −→ U×Rm of the vector
bundle π : TM −→ M, we construct sections si : U −→ π−1(U) such that si(p) = φ−1

p (ei),
i = 1, ..., m. For all p ∈ U, the collection of vectors {s1(p), ..., sm(p)} are a basis of Tp M.
Using the Gram-Schmidt algorithm, we can obtain new section σi : U −→ π−1(U) such
that {σ1(p), ..., σm(p)} is an orthogonal basis of Tp M. In that way, we can construct the
following local trivialization ψ : U×Rm −→ π−1(U) which satisfies that ψ(p, ∑m

i=1 λiei) =

∑m
i=1 λiσi(p). This new map fulfills that ψp : Rm −→ Tp M is an isometry.
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The same process used in proposition 2.1 can be employed replacing Gl(m, R) by
O(m, R) (notice that Isom(Rm, Tp M) ∼= O(m, R)) to show that Fg(M) is a principal bundle
with structural group O(m, Rm).

Proposition 2.13. Let M be a smooth manifold, then the frame bundle F(M) is a smooth manifold.
If M is a Riemannian manifold with metric g, then Fg(M) is a submanifold of F(M).

The fact that it is a submanifold is a consequence of O(m, R) being a submanifold of
Gl(m, R).

Proposition 2.14. Let M be a Riemannian manifold, and let g and g′ be two Riemannian metrics.
Then, the orthogonal frame bundles Fg(M) and Fg′(M) are diffeomorphic.

Proof. We define the map f : Fg(M) −→ Fg′(M) such that f (p; v1, ..., vm) = (p; v′1, ..., v′m),
where v′1, ..., v′m are obtained by using the Gram-Schmidt algorithm on v1, ..., vm in order
to create a g′-orthogonal basis. Our goal is to prove that f is a diffeomorphism.

Recall that Gram-Schmidt algorithm is defined recursively where v′1 = v1 and v′i = vi−

∑i−1
j=1

g′p(vi ,v′j)
g′p(vj ,vj)

v′j. If we rewrite these equations without recursivity, we obtain that v′i = vi −

∑i−1
j=1 f ji(g′p(vk, vk′))vj, where f ji are functions that only depend on g′p(vk, vk′) for k, k′ =

1, ..., i− 1. We can arrange these information in a triangular matrix

A(p, v1, ..., vm) =


1 f12 . . . f1m
0 1 . . . f2m
...

...
. . .

...
0 0 . . . 1

 .

This matrix sends each basis of Tp M to the g′-orthogonal basis obtained by performing
the Gram-Schmidt algorithm.

Let {u′1, ..., u′m} be a g′-orthogonal basis of Tp M. Given a g′-orthogonal basis {v′1, ..., v′m}
obtained by using Gram-Schmidt algorithm in a g-orthogonal basis {v1, ..., vm}, there ex-
ists a matrix B ∈ O(m, R) such that u′i = Bv′i. We claim that if the Gram-Schmidt algorithm
is used on the basis {u1, ..., um} such that ui = Bvi, we recover the basis {u′1, ..., u′m}. In
order to prove this assertion, we need to compute BA(p, v1, ..., vm)B−1. For one element
of the basis ui,

BA(p, v1, ..., vm)B−1ui = BA(p, v1, ..., vm)vi

= B(vi −
i−1

∑
j=1

f ji(g′p(vk, vk′))vj)

= ui −
i−1

∑
j=1

f ji(g′p(vk, vk′))uj

= ui −
i−1

∑
j=1

f ji(g′p(uk, uk′))uj

= u′i,
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where penultimate equality is a consequence of g′p(uk, uk′) = g′p(Bvk, Bvk′) = g′p(vk, vk′).
The above observation implies the bijectivity of the map f : Fg(M) −→ Fg′(M). Given a g′-
orthogonal basis {u′1, ..., u′m}, the basis {u1, ..., um} such that (BA(p, v1, ..., vm)B−1)−1u′i =
ui satisfies that f (p, u1, ..., um) = (p; u′1, ..., u′m). If f (p, v1, ..., vm) = f (q, u1, ..., um), then p =

q and the matrix that connects the both g′-orthogonal basis is the identity matrix. Since,
all the matrices are invertible, the matrix that change the basis {v1, ..., vm} to {u1, ..., um}
is the identity, therefore both basis are the same.

Local trivialization will be used in order to prove that f : Fg(M) −→ Fg′(M) is a
diffeomorphism. Let π : Fg(M) −→ M and π′ : Fg′(M) −→ M be the principal fiber
bundles and let ψ : U ×O(m, R) −→ π−1(U) and ψ : U ×O(m, R) −→ π′−1(U) local
trivializations over an open set U. Observe that f (π−1(U)) = π′−1(U). The following
commutative diagram holds

U ×O(m, R) U ×O(m, R)

π−1(U) π′−1(U)

ψ

ψ′−1◦ f ◦ψ

ψ′

f

Since ψ and ψ′ are diffeomorphisms by construction, it suffices to show that ψ′−1 ◦
f ◦ ψ : U × O(m, R) −→ U × O(m, R) is a diffeomorphism. Suppose that ψ(p, Id) =

(p; v1, ..., vm) and that ψ(p, Id) = (p; v′1, ..., v′m). Let C(p) ∈ Gl(m, R) be the matrix such
that C(p)vi = v′i for all i. Observe that ψ(p, B) = (p; u1, ..., um) such that Bvi = ui for all i.
The diagram below shows schematically the changes of basis

{v1, ..., vm} {v′1, ..., v′m}

{u1, ..., um} {u′1, ..., u′m}

B

C(p)

B′

A(p,u1,...,um)

Therefore ψ′−1 ◦ f ◦ ψ(p, B) = (p, B′) = (p, A(p, u1, ..., um)BC(p)). The fact that the
metric is a tensor field and that f ji are smooth implies that the entries of A(p, u1, ..., um) are
smooth functions. The entries of C(p) are smooth by construction. Thus, ψ′−1 ◦ f ◦ψ(p, B)
is a smooth map. Since all the matrices are invertible we can construct the inverse of the
map, which is smooth. In consequence, (ψ′−1 ◦ f ◦ ψ)(p, B) is a diffeomorphism.

Remark 2.15. If M is compact, then Fg(M) is also compact since O(m, R) is compact.

2.2 Smooth actions

Definition 2.16. Let G be a smooth manifold which has a group structure. It is called a Lie group
if the operations of a group σ : G× G −→ G such that σ(g, h) = gh and ι : G −→ G such that
ι(g) = g−1 are smooth.

Remark 2.17. Observe that a Lie group is a topological group, and we can consider its action on
topological spaces.
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Definition 2.18. Let (G, M, Θ) be a topological transformation group, where M is a smooth
manifold and G is a Lie group. The action is said to be smooth if the map Θ : G ×M −→ M is
smooth.

Observe that if the action is smooth, for all h ∈ G, the maps θh : M −→ M are smooth.
Therefore, they are diffeomorphisms. In fact, if each θh : M −→ M is smooth, then the
action is smooth. The prove of this statement in the general case is difficult. However if
we consider the case of G being a finite group, the proof becomes straightforward.

Lemma 2.19. Let G be a finite group and let Θ : G × M −→ M an action. If the maps θg :
M −→ M are smooth for all h ∈ G, then the action is smooth.

Proof. If the group G is finite (and it is equipped with the discrete topology), then for
every h ∈ G the set {h} × M is an open set of G × M. Thus, G × M =

⋃
h∈G({h} × M)

and two of these sets, {h} ×M and {h′} ×M are disjoint if h 6= h′. The restriction of the
action on each one of these sets is Θ|{h}×M = θh, which is smooth by hypothesis. The
smoothness of each restriction and the fact that the sets are open and disjoint implies that
the map Θ : G×M −→ M is smooth and therefore, the action is smooth too.

We want to take advantage of Riemannian metrics to study the group action on the
manifold. The first step is to construct a suitable metric.

Definition 2.20. Let (M, g) be a Riemannian manifold and G a Lie group that acts smoothly on
M, the metric is said to be invariant if

gh(p)(h(v), h(w)) = gp(v, w)

for all p ∈ M, v, w ∈ Tp M and for all h ∈ G, where h(v) = dpθh(v).

Proposition 2.21. If (M,g) is a Riemannian manifold and G is a compact Lie group, then there
exists an invariant Riemannian metric.

Proof. We are basically concerned about actions of finite groups, so we will assume that
the group is finite. Let ]G denote the cardinality of the group.

Given the metric g, we define a new one by putting ḡ =
1
]G ∑h∈G h∗g, where if we fix

a point p ∈ M, h∗g(v, w) = gh(p)(h(v), h(w)) for all v, w ∈ Tp M. It is clear that if f is an
element of G, then

ḡ f (p)( f (v), f (w)) =
1
]G ∑

h∈G
h∗g f (p)( f (v), f (w)) =

1
]G ∑

h∈G
(h · f )∗gp(v, w) = ḡ(v, w)

for all v, w ∈ Tp M. The key fact in this chain of equalities is that the map such that
h→ h · f is an isomorphism of groups.

The case where the group G is not finite has exactly the same proof, but changing the
finite sum for the Haar integral (See [2], chapter VI, section 2).

In this case, each map θg : M −→ M is an isometry, and we shall say that G acts by
isometries on M. Using this new metric, we obtain an the following lemma.
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Lemma 2.22. If we have a smooth action on a manifold with an invariant metric, the exponential
map is equivariant.

Proof. We need to specify how acts G in TM. Given h ∈ G and (p, v) ∈ TM, we define
h(p, v) = (hp, dpθh(v)). It is clearly an action because θh : M −→ M are diffeomorphisms
for all h ∈ G.

The crucial fact to prove the lemma is that isometries preserve geodesics, in the sense
that if γ : J −→ M is a geodesic and φ : M −→ M is an isometry, then φ ◦ γ : J −→ M
is a geodesic. Given p ∈ M and v ∈ Tp M such that exp(p, v) is well defined, we consider
the geodesic used in the exponential map definition γ(t, p, v), which is a geodesic γ :
J −→ M which fulfills that γ(0, p, v) = p and γ′(0, p, v) = v. For all h ∈ G, the curve
θh ◦ γ(t, p, v) = h(γ(t, p, v)) = γ̃(t) is a geodesic such that γ̃(0) = hp and γ̃′(0) = dpθh(v).
Therefore, using the uniqueness of geodesics, we conclude that γ̃(t) = γ(t, hp, dpθh(v)),
and consequently h(exp(p, v)) = h(γ(1, p, v)) = γ(1, hp, dpθh(v)) = exp(h(p, v)).

Having defined the concept of smooth action, we are interested in the structure of
some of the spaces that appear in the context of group actions, such as MG or M/G.

Proposition 2.23. If we have a smooth action of a Lie group G on M, the set of fixed points MG

is a submanifold.

Proof. Let p be a point of MG, we consider the diffeomorphism induced by the exponential
map on that point expp : Bε(0) −→ V ⊂ M.

Given a fixed point p, we can induce an action of G on Tp M. Given v ∈ Tp M, we define
gv = dθg(v). It is clearly well defined because θg : M −→ M are diffeomorphisms.

Let q be a point in MG ∩V, we consider the vector vq = exp−1
p (q), which is unique since

a diffeomorphism is bijective. Therefore, we can define the subspace of Tp M generated
by all these vectors, F = 〈vq〉q∈MG∩V , which it is a submanifold of Tp M. Because dpθg is
linear for every g ∈ G, every vector in F is a fixed point of the action of G on Tp M, and
since the exponential map is equivariant and a diffeomorphism if we restrict it on Bε(0),
we obtain that expp(Bε(0) ∩ F) = MG ∩V, which is a submanifold of V. In consequence,
MG is a submanifold of M.

If we focus on the space M/G, some glaring problems appear, the most prominent
one is that M/G is not usually a topological manifold. If we restrict ourselves to finite
groups, we can resolve some of these problems, for instance, we have already seen that
if the group G is finite, the orbit space M/G is Hausdorff. However, we need to add an
additional property to ensure that M/G is an smooth manifold, the action shall be free.

Proposition 2.24. Let M be a smooth manifold and let G be a finite group acting smoothly in M.
If the action of G is free, then M/G is a smooth manifold.

Proof. Firstly, we shall prove that M/G is a topological manifold. We need to check that it
satisfies the three properties that every topological manifold verifies. First of all, we have
already seen in 1.14 that M/G is Hausdorff. Let {Bi}i∈N be a numerable basis of M, then
{π(Bi)}i∈N is a numerable basis of M/G. Let [x] be point M/G and V an open set such
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that [x] ∈ V, then π−1(V) is an open set of M such that x ∈ M. Therefore, x ∈ Bi ⊂
π−1(V) for some i. This implies that [x] ∈ π(Bi) ⊂ V, thus {π(Bi)}i∈N is a numerable
basis of the topology on M/G. Let [x] be in M/G, then π−1([x]) = Gx is the orbit of
x. Let S be a slice at x such that it is inside a chart (U, φ). Recall that π|S : S −→ π(S)
is a homeomorphism. Thus, the map φ|S ◦ π−1

|S : π(S) −→ φ(S) is a homeomorphism
between an open set of M/G and an open set of an Euclidean space, therefore M/G is
locally Euclidean. We have just proved that M/G is a topological manifold.

Moreover, we shall see that the pair (π(S), φ|S ◦ π−1
|S ) is a chart and that the collection

of all these pairs where S is a slice creates a differential structure on M/G. Suppose that
S and S′ are slices such that π(S) ∩ π(S′) 6= ∅. It is possible that S ∩ S′ = ∅. However,
since the action is free, there exists and unique g ∈ G such that gS ∩ S′ 6= ∅. This implies
that g−1S ∩ S′ 6= ∅. We have the following commutative diagram

S ∩ g−1S′ gS ∩ S′

π(S) ∩ π(S′)

π|S

θg

π−1
|S′

If we have pairs (π(S), φ|S ◦ π−1
|S ) and (π(S′), ψ|S′ ◦ π−1

|S′ ), the composition (ψ|S′ ◦ π−1
|S′ ) ◦

(φ|S ◦ π−1
|S )−1 = ψ|S′ ◦ θg ◦ φ−1

|S , which is smooth because is the composition of smooth
maps (θg is a diffeomorphism since the action is smooth).

Remark 2.25. Observe that the dimensions of M and M/G are equal, since the group G is finite
(thus, its dimension is 0).

Example 2.26. The sphere Sn is a smooth manifold for all n ∈ N, and Zp is a finite groups for
all p ∈ N. If we consider the group actions described in the first chapter, then the projective space
RPn and the lens space Ln

p are both smooth manifolds.

This chapter’s last statement will acquire an important role in the proof of the Mann
Su theorem we will provide in the last chapter.

If G acts on a Riemannian manifold and g is a G-invariant metric, then we can define an
action on Fg(M) such that h(p; v1, ..., vm) = (hp; dpθh(v1), ..., dpθh(vm)). It is well defined
because the group acts by isometries on M.

Proposition 2.27. Let M be a Riemannian manifold, which is compact and connected. Let G be
a finite group acting smoothly and effectively on M, and let g be an invariant Riemannian metric.
Then, the group G acts freely on Fg(M).

Proof. Instead of taking an arbitrary point x ∈ Fg(M) and proving that Gx = {e}, we will
prove that if an element h ∈ G is in a stabilizer for some x ∈ Fg(M), then h = e. Let h be
in G, we define the following set

Sh = {p ∈ M : there exists a basis of Tp M fixed by dpθh}
= {p ∈ M : all vectors in Tp M are fixed by dpθh}.

The set Sh is closed. If we take a sequence of points {pn}n∈N in Sh converging to a
point p (in the sense that all the points in the sequence are inside a chart (U, φ) and the
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sequence {φ(pn)}n∈N converges to φ(p) in the euclidean space), then the point p is in Sh
because θh is smooth.

The set Sh is open. Let p be in Sh, there exists a diffeomorphism given by the exponen-
tial map expp : Bε(0) −→ U ⊂ M. Let q be in U, then there exists v ∈ Bε(0) ⊂ Tp M such
that expp(v) = q. Since the exponential map is equivariant and dpθh leaves each vector
of Tp M fixed, we obtain that hq = hexpp(v) = expp(hv) = expp(v) = q. Therefore, every
point in U is fixed by h. Let w be in Tq M and let γ : J −→ U be a smooth curve such
that γ(0) = q and γ′(0) = w. In this case, dpθh(w) = (θh ◦ γ)′(0). But θh ◦ γ = γ since
every point of U is fixed by h. In consequence dpθh(w) = γ′(0) = w. We can conclude
that q ∈ Sh.

Since Sh ⊂ M is open and closed and M is connected, then Sh = M or Sh = ∅. If
Sh = M, then every point of M is fixed by h, therefore h = e, because the action is effective.
If Sh = ∅, then h(p; v1, ..., vm) 6= (p; v1, ..., vm) for all p ∈ M and for all basis {vi}i of Tp M,
hence, h /∈ Gx for all x ∈ Fg(M). This concludes the proof of the proposition.



Chapter 3

Spectral sequences

The aim of this chapter is to introduce an object of the context of homological algebra
called spectral sequence, a tool that will prove essential in the results of following chapters.
The range of applications spectral sequences have in other fields of mathematics, specially
in algebra and topology, give them and interest on their own, and give further reasons
to study them carefully. This chapter starts with some basic definitions and remarks
that motivate the creation of this object. Thereafter, we provide the definition of spectral
sequence and we justify it thoroughly. A brief section is committed to explain when a
spectral sequence converges. Finally, we expose one application of spectral sequences,
which its usefulness will be evident in the next chapters.

The approach to spectral sequences in this chapter is based on the references [12],
[11],[13] and [14], using the notation of Spanier’s book. A comprehensive review on
spectral sequences can be found in [16]. Other ways to introduce spectral sequences, like
exact couples, are not included in this chapter.

Finally, all the chapter is developed using homology, the construction using cohomol-
ogy is essentially the same, changing only some indices.

3.1 Previous definitions

Definition 3.1. Let (C∗, d) be a chain complex with differential d, an increasing filtration is a se-
quence of subcomplex {FpC}p∈Z such that FpC ⊂ Fp+1C and it is compatible with the differential
d, so d(FpCq) ⊂ FpCq−1.

Definition 3.2. Given a chain complex with an increasing filtration, we define the associated
graded module Gr(C) to be

⊕
p Fp+1C/FpC.

Remark 3.3. It is not difficult to see that we can treat the associated graded module as a chain
complex with a differential d :

⊕
p Fp+1Cq/FpCq −→

⊕
p Fp+1Cq−1/FpCq−1 induced by the

differential of the original chain complex, so we can compute the homology of that chain complex
H∗(Fp+1C/FpC, d).

On the other hand, we can compute the homology of the original complex H∗(C, d). This new
chain complex has an increasing filtration induced by the one in the complex C. Because of the

23
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compatibility of the differential with the filtration, we can consider the homology of the subcomplex
(FpC, d) and the induced mapping by the inclusion in the homology H(i) : H(FpC) −→ H(C).
Then, we define Fp H = Im{H(i) : H(FpC) −→ H(C)}, and we claim that {Fp H}p∈Z is an
increasing filtration, so we can obtain its associated graded module.

At this point, a natural question arises. Given a chain complex with a filtration, which
relation exists between the homology of the associated graded module and the associated
graded module of the homology of the chain complex. One could expect, quite naively,
that both chains need to be isomorphic. Unfortunately, this is not usually true, and we
need to search to more sophisticated relations. This is where spectral sequences appears.

3.2 The spectral sequence

We need to emphasize an observation that will motivated part of the spectral sequence
definition.

Remark 3.4. With the previous notation, consider a chain complex with an increasing filtration
and the filtration in the homology Fp H. We can describe this submodule more explicitly computing

the image of the map. FpH = {[a] ∈ H(C) : a ⊂ FpC} =
FpC ∩ Z
FpC ∩ B

, where Z and B are the cycles

and boundaries of C. Then, the associated graded module is given by

⊕
p

FpC ∩ Z
(FpC ∩ B) + (Fp−1C ∩ Z)

.

Definition 3.5. Given a chain complex with an increasing filtration, we define four submodules
as follows:

• Zr
p,q = {a ∈ FpCp+q : da ∈ Fp−rCp+q−1}.

• Br
p,q = {db ∈ FpCp+q : b ∈ Fp+rCp+q+1}.

• Z∞
p,q = {a ∈ FpCp+q : da = 0} = FpCp+q ∩ Z.

• B∞
p,q = {db ∈ FpCp+q : b ∈ Cp+q+1} = FpCp+q ∩ B.

Remark 3.6. The following properties are easily verified using tha previous definitions and the fact
the the filtration is increasing.

• d(Zr
p,q) = Br

p−r,q+r−1.

• B0
p,q ⊂ ... ⊂ Br−1

p,q ⊂ Br
p,q ⊂ ... ⊂ B∞

p,q ⊂ Z∞
p,q ⊂ ... ⊂ Zr

p,q ⊂ Zr−1
p,q ⊂ ... ⊂ Z0

p,q.
To prove this sequence of inclusions, we only use the fact that the filtration is increasing.
For instance, if a ∈ Zr

p,q then da ∈ Fp−rCp+q−1 ⊂ Fp−r+1Cp+q+1 and this implies that
a ∈ Zr−1

p,q , proving the inclusion. If a ∈ Z∞
p,q then da = 0 ∈ Fp−rCp+q+1 for all r implying

that a ∈ Zr
p,q. If a ∈ B∞

p,q then a = db with b ∈ Cp+q+1, in consequence, da = d2b = 0,
and then a ∈ Z∞

p,q. The two last inclusions remaining to be proven have an analogous proof
to the previous ones.
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Definition 3.7. We define the following module Er
p,q =

Zr
p,q

Zr−1
p−1,q+1 + Br−1

p,q
and a map induced by

the differential d of the original chain complex, dr : Er
p,q −→ Er

p−r,q+r−1.

Remark 3.8. The module Er
p,q and the map dr are well defined. First of all, Zr−1

p−1,q+1 = {a ∈
Fp−1Cp+q : da ∈ Fp−rCp+q−1} and it is clearly a subset of Zr

p,q because Fp−1Cp+q ⊂ FpCp+q.
Then, Zr−1

p−1,q+1 + Br
p,q ⊂ Zr

p,q and the quotient of these modules makes perfect sense.
In order to study the map dr, we observe that the composition

Zr
p,q

d7−→ Br
p−r,q+r−1 ⊂ Zr

p−r,q+r−1
π7−→ Er

p−r,q+r−1.

sends an element a ∈ Zr
p,q to the equivalence class [da] ∈ Er

p−r,q+r−1. This composition has the

submodule Zr−1
p−1−r,q+r + Br−1

p−r,q+r−1 as a kernel. Finally, the image by the map d of the submodule

Zr−1
p−1,q+1 + Br−1

p,q is Br−1
p−r,q+r−1 ⊂ Zr−1

p−1−r,q+r + Br−1
p−r,q+r−1. Using the universal property of the

quotient, we obtain the map dr : Er
p,q −→ Er

p−r,q+r−1 and it fulfills that dr[a] = [da]. Moreover,
(dr)2 = 0.

Lemma 3.9. Er+1
p,q = H(Er

p,q, dr).

Proof. Recall that

H(Er
p,q, dr) =

kerdr : Er
p,q −→ Er

p−r,q+r−1

Imdr : Er
p+r,q−r+1 −→ Er

p,q
.

In order to prove this statement, we only need to compute the kernel and the image of
these maps.

If [a] ∈ kerdr then [da] = 0 implying that da ∈ Zr−1
p−1,q+1 + Br−1

p,q . Then

{a ∈ FpCp+q : da ∈ Zr−1
p−1,q+1 + Br−1

p,q } =

{a ∈ FpCp+q : da ∈ Fp−r−1Cp+q−1}+ {a ∈ FpCp+q : da ∈ d(Zr−1
p−1,q+1)} = Zr+1

p,q + Zr−1
p−1,q+1.

Therefore, we conclude that

kerdr =
Zr+1

p,q + Zr−1
p−1,q+1

Zr−1
p−1,q+1 + Br−1

p,q
.

To compute the image, we use that d(Zr
p+r,q−r+1) = Br

p,q. Therefore, we have the
following equality

Imdr =
Br

p,q + Zr−1
p−1,q+1

Zr−1
p−1,q+1 + Br−1

p,q
.

To conclude the proof we only need to calculate the quotient using the second and the
third isomorphism theorems.

H(Er
p,q, dr) =

Zr+1
p,q + Zr−1

p−1,q+1

Br
p,q + Zr−1

p−1,q+1

=
Zr+1

p,q

(Br
p,q + Zr−1

p−1,q+1) ∩ Zr+1
p,q

=
Zr+1

p,q

Zr
p−1,q+1 + Br

p,q
= Er+1

p,q .
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The direct sum of all the modules
⊕

p,q Er
p,q = Er has a structure of bigraded module

with the differential dr of bidegree (−r, r− 1).

Definition 3.10. The sequence of bigraded modules together with the differential {Er, dr}r≥0 such
that Er+1 = H(Er) is called the spectral sequence associated to the filtered complex C.

Remark 3.11. Although until now we have been exposing the topic in the context of filtration
and chain complex, the definition of the spectral sequence can be generalized, in the sense that the
bigraded modules do not need to come from a filtered chain complex. Therefore, a spectral sequence
is a collection of bigraded modules, {Er, dr}r≥0 with differentials dr : Er

p,q −→ Er
p−r,q+r−1 such

that H(Er) = Er+1. The bigraded module Er is called the page r of the spectral sequence.

Remark 3.12. With the definitions above, we can calculate the

E∞
p,q =

Z∞
p,q

Z∞
p−1,q+1 + B∞

p,q
=

FpCp+q ∩ Z
(FpCp+q ∩ B) + (Fp−1Cp+q ∩ Z)

.

This imply that the module E∞ is equal to the associated graded module of the filtration in the
homology of C, Gr(H(C, d)).

Remark 3.13. In general, calculating one of the modules Er can be an arduous labor, but fortuan-
tely, most of the time we will have enough information with the E0, E1 and specially E2 pages of
the spectral sequence. This remark is committed to describe E0 andE1.

When r = 0, the submodules that are used in the definition of Er
p,q are

Z0
p,q = {a ∈ FpCp+q : da ∈ FpCp+q−1} = FpCp+q,

B−1
p,q = {db ∈ FpCp+q : b ∈ Fp−1Cp+q+1} ⊂ Fp−1Cp+q,

Z−1
p−1,q+1 = {a ∈ Fp−1Cp+q : da ∈ FpCp+q−1} = Fp−1Cp+q.

Therefore, using the definition we obtain that E0
p,q =

FpCp+q

Fp−1Cp+q
. We can conclude that the module

E0 is the associated graded module of the filtration. The differential

d0 :
FpCp+q

Fp−1Cp+q
−→

FpCp+q−1

Fp−1Cp+q−1
.

is the induced map by the differential of the chain complex (C∗, d) in the associated graded module,
and consequently E1 = H(Gr(C), d).

With this last remark, we start to suspect the answer to the question of the previous
section of this chapter. Given a filtered chain complex, the page E1 is the homology of the
graded complex, and the somewhat obscure E∞ is the graded module associated to the
filtration in the homology induced by the original filtration. As someone can expect from
the notation, the modules of the spectral sequence connect both modules, in the sense
that Er "approximate successively" to Gr(H(C, d)). We may say that the spectral sequence
"converge" to Gr(H(C, d)). Nonetheless, this last two statements are slightly cryptic and
not truly rigorous. In the next section, we will provide a clear notion of convergence and
extra conditions on the filtration to ensure its convergence.
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3.3 Convergence of spectral sequences

Remark 3.14. As we said in the remark 3.11, spectral sequences can be defined more generally as
a collection of bigraded modules, {Er, dr}r≥0 with differentials dr : Er

p,q −→ Er
p−r,q+r−1 such that

H(Er) = Er+1. Using this definition, the module

Ē∞
p,q =

∩rkerdr : Er
p,q −→ Er

p−r,q+r−1

∪r Imdr : Er
p+r,q−r+1 −→ Er

p,q

is said to be the limit of the spectral sequence.

Definition 3.15. A spectral sequence {Er, dr}r≥0 is said to converge if for every integers p and q
there exists an integer r(p, q) ≥ 0 such that the differential dr : Er

p,q −→ Er
p−r,q+r−1 is trivial for

all r ≥ r(p, q). Then, Ē∞
p,q is isomorphic to the direct limit of the sequence

Er(p,q)
p,q → Er(p,q)+1

p,q → ...

Remark 3.16. Frequently, we will require a stronger convergence condition. For every integers p
and q, there exists an integer r(p, q) ≥ 0 such that Er

p,q
∼= Ē∞

p,q for all r ≥ r(p, q).

The following proposition provides a first condition for a spectral sequence to converge
in the strong sense.

Proposition 3.17. Let {Er, dr}r≥0 be a spectral sequence with the property that there exist integer
numbers R, N and N’ such that ER

p,q = 0 for every p < N and q < N′. Then, the spectral sequence
converges in the strong sense.

Proof. We observe that if ER
p,q = 0, then Er′

p,q = 0 for every r′ ≥ R. Then, given p and q,
we choose and r′ ≥ R such that r′ > sup(p − N, q − N′ + 1). We consider the diagram
Er

p+r,q−r+1 −→ Er
p,q −→ Er

p−r,q+r−1, where the two maps are the morphisms dr from the
spectral sequence. The modules from the sides are both 0 for every r ≥ r′. The first one
because q − r + 1 ≤ q − r′ + 1 < N′ and the second one because p − r ≤ p − r′ < N.
Therefore, the maps dr are 0 and Er

p,q
∼= Er+1

p,q for every r ≥ r′. We can conclude that the

spectral sequence is convergent and Er′
p,q
∼= Er′+1

p,q
∼= ... ∼= Ē∞

p,q.

Remark 3.18. If R, N and N’ are zero, then the spectral sequence is called a first quadrant spectral
sequence.

To ensure the convergence to the graded module of homology for the case of the spec-
tral sequence of a filtered chain complex, we need additional conditions on the filtration.

Definition 3.19. An increasing filtration is said to be convergent if ∩pFpC = 0 and ∪pFpC =

C. A filtration is said to be bounded below if for any q there exists an integer p(q) such that
Fp(q)Cq = 0. A filtration is said to be bounded above if for any q there exists an integer p(q) such
that Fp(q)Cq = Cq. A filtration is bounded if it is bounded above and bounded below.

Theorem 3.20. Let (C, d) be a chain complex with an increasing filtration, which is convergent
and bounded below. There exists a convergent spectral sequence such that E1 = H(Gr(C), d) and
Ē∞ is isomorphic to Gr(H(C, d)).
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Proof. The existence of the spectral sequence is proved by the construction of the pre-
ceding sections. We only need to prove the statements regarding the convergence of the
spectral sequence, that is, proving that the spectral sequence converge and Ē∞ ∼= E∞ =

Gr(H(C, d)).
In order to prove the first statement, we need to use that Er

p,q = Zr
p,q/(Zr−1

p−1,q+1 + Br−1
p,q )

and Zr
p,q = {a ∈ FpCp+q : da ∈ Fp−rCp+q−1}. Because the filtration is bounded below,

given a p + q, there is a p small enough such that Er
p,q = 0 for all r. Then, given p and

q there exists a r′ big enough so Er′
p−r′ ,q+r′−1 = 0, and therefore, the map dr : Er

p,q −→
Er

p−r,q+r−1 is trivial and the spectral sequence converge to Ē∞.
Finally, we compute the module Ē∞. Firstly, we observe that using isomorphism theo-

rems

Er
p,q =

Zr
p,q

Zr−1
p−1,q+1 + Br−1

p,q

∼=
Zr

p,q + FpCp+q

Fp−1Cp+q + d(Zr−1
p+r−1,q−r+1)

.

By the definition, and using the previous computation of kerdr and Imdr, we have that

Ē∞
p,q =

∩r(Zr
p,q + FpCp+q)

∪r(Fp−1Cp+q + d(Zp+r−1,q−r+1))
=

∩rZr
p,q + FpCp+q

Fp−1Cp+q + ∪rd(Zp+r−1,q−r+1)
.

Given p and q,
⋂

r Zr
p,q = Z∞

p,q, because for an r sufficiently large Fp−rCp+q+1 = 0, since
the filtration is bounded below.

Since
⋃

p FpC = C, then
⋃

r d(Zr−1
p+r−1,q−r+1) = B ∩ FpCp+q, where B are the boundaries

of C.
Therefore,

Ē∞
p,q =

∩rZr
p,q + FpCp+q

Fp−1Cp+q + ∪rd(Zp+r−1,q−r+1)
=

Z∞
p,q + FpCp+q

Fp−1Cp+q + (B ∩ FpCp+q)
=

Z∞
p,q

B∞
p,q + Z∞

p−1,q+1
= E∞

p,q.

The next theorem is a corollary of the theorem 3.20.

Theorem 3.21. Let (C, d) be a chain complex with an increasing filtration which is bounded.
There exists a spectral sequence such that E1 = H(Gr(C), d) and converges to Gr(H(C, d)) in
the strong sense.

Proof. First, we observe that the filtration being bounded implies that it is convergent and
bounded below, using the theorem 3.20, there exists a convergent spectral sequence such
that E1 = H(Gr(C), d) and Ē∞ is isomorphic to Gr(H(C, d)) = E∞. The only remaining
part of the theorem is that the convergence is strong.

Given integers p and q, the boundness of the filtration guarantees that there are in-
tegers r′ and r′′ such that Fp−r′Cp+q−1 = 0 and Fp+r′′−1Cp+q+1 = Cp+q+1. Let R be an
integer such that R > sup(r′, r′′). Therefore, for every r ≥ R, we have that Zr

p,q = Z∞
p,q,

Br−1
p,q = B∞

p,q and Zr−1
p−1,q+1 = Z∞

p−1,q+1. Then, Er
p,q = Er+1

p,q = ... = E∞
p,q, hence, the spectral

sequence converges in the strong sense.
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Remark 3.22. It is usual to say that a spectral sequence of a filtered chain complex C converge
to the homology H(C), denoted by E1

p,q ⇒ Hp+q(C), when the page E∞ = Gr(H(C, d)), so
E∞

p,q = Fp Hp+q(C)/Fp−1Hp+q(C). In the majority of the cases, it is not possible to recover all the
information of Hp+q(C) from the bigraded module Gr(H(C, d)). However, this will not become a
problem to prove the Mann-Su theorem.

3.4 The spectral sequence of a fiber bundle

Given a fiber bundle p : X −→ B with fiber F, we are interested in describing the
homology of the total space X using the information we have about the homology of the
base space and the fiber. The main tool which allows us to connect these homologies
is the Serre spectral sequence (or Leray-Serre spectral sequence). However, it is usually
introduced in the wider context of fibrations, which we should define and explain briefly
before stating the main results related with Serre spectral sequence.

Definition 3.23. A mapping p : E −→ B is said to have the homotopy lifting property respect
to a space Y if, given a homotopy G : Y × I −→ B and a map g : Y × {0} −→ E such that
(p ◦ g)(y, 0) = G(y, 0), then there exists a homotopy Ḡ : Y × I −→ E, such that Ḡ(y, 0) =

g(y, 0) and p ◦ Ḡ = G. We have the following commutative diagram,

Y× {0} E

Y× I B

g

p

G

Ḡ

A map satisfying the homotopy lifting property respect to all topological spaces is called a fibration
(or a Hurewicz fibration). If it only satisfies the property respect to disks, then it is called a Serre
fibration.

Remark 3.24. Given a map p : E −→ B, being a Serre fibration is equivalent to fulfill the
homotopy lifting property respect all CW-complexes.

The space E is called total space, the space B is called base space and given b ∈ B,
Fb = p−1(b) is called the fiber of b over p.

The next proposition shows us the relation between fibrations and fiber bundles.

Proposition 3.25. A fiber bundle p : X −→ B with fiber F is a Serre fibration.

We will give a full proof of this claim omitting some technical details.

Proof. It is sufficient to prove the homotopy lifting property for disks, or equivalently, for
cubes In. Let K : In × I −→ B and k : In × {0} −→ X be maps such that (p ◦ k)(x, 0) =

K(x, 0). We need to find a map H such that the following diagram commutes,

In × {0} X

In × I B

k

p

K

H
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We start choosing an open cover {Uα} where (Uα, φα) are charts. Then {K−1(Uα)} is an
open cover of a compact set, we can divide the cub in a finite number of tiny cubes that
are small enough so that the image under K of one of these cubes lies inside one Uα.
By induction on the dimension of the cubes and using the homeomorphism φα, we can
reduce the proof of the proposition to the case of a trivial fibration p : F× B −→ B.

We have the following diagram

In × {0} F× B

In × I B

k

i p

K

H

with H = K× (πF ◦ k ◦ πIn), where πF and πIn are the usual projections.

The last concept we need to introduce to understand the Serre spectral sequence is
called system of local coefficients.

Definition 3.26. A system of of local coefficients on a space B is a collection of groups {Gb : b ∈
B}, together with a collection of homomorphisms h[α] : Gb1 −→ Gb0 , one for each path α : I −→ B
from b0 to b1. This collection needs to satisfy the following conditions:

1. The constant path cb has associated the identity homomorphism h[cb] = id : Gb −→ Gb .

2. If two path α and α′ satisfy that α(0) = α′(0), α(1) = α′(1) and are homotopic, α ' α′,
then h[α] = h[α′].

3. If α is a path from b0 to b1 and α′ is a path from b1 to b2 then h[α ∗ α′] = h[α] ◦ h[α′].

We will denote it by G.

Definition 3.27. Let G and G ′ be systems of local coefficients on a space B, a morphism of system
of local coefficients is a collection of group morphisms for each b ∈ B, fb : Gb −→ G′b, such that
for every path α : I −→ B the following diagram commutes

Gb1 Gb0

G′b1
G′b0

h[α]

fb1
fb0

h′ [α]

Example 3.28. • Given a space B and a group G, the trivial system of local coefficients, de-
noted by G, satisfies that Gb = G for all b ∈ B and each path has the identity as associated
homomorphism.

• Given a fibration p : E −→ B with B path-connected, and let G be a group. We can form
a system of local coefficients if we define Gb = Hn(Fb; G), where Fb = p−1(b). Using the
homotopy lifting property, given a path α : I −→ B, we can construct homomorphisms that
fulfill the aforementioned properties. This system of local coefficients is denoted byHn(F; G).



3.4 The spectral sequence of a fiber bundle 31

Our goal is to define the homology of a space B with coefficients in G, in a similar way
we define the homology with coefficients in a group G (in fact, the definitions will be the
same if we use the trivial system of local coefficients).

Let ∆p be a simplex with leading vertex v0 = (1, 0, ..., 0) and v1 = (0, 1, 0, ..., 0). We
define the set of singular p-chains with local coefficients in G by

Cp(B,G) = {finite formal sums ∑
i

gi ⊗ Ti : Ti : ∆p → B are continuous and gi ∈ GT(v0)
}.

The boundary map is defined on the basis by

∂h(g⊗ T) = h[TLv0
v1 ](g)⊗ ∂0T +

p

∑
j=1

(−1)jg⊗ ∂jT

where TLv0
v1 = T(tv0 + (1− t)v1) and ∂ is the usual boundary map of singular homology,

so ∂i, where i goes from 0 to p, denotes the component of ∂ related with the i-th face of
the simplex.

The process of checking that it is a boundary map (∂h ◦ ∂h = 0) is similar to the one
in the usual singular chains case, although we need to be more careful when we compute
the part where we change the local coefficient.

The homology with local coefficients is

H∗(B,G) = H(C∗(B;G), ∂h).

In a similar way, if B is a CW-complex, we define Cellp(B;G) = Hp(Bp, Bp−1;G).

Theorem 3.29. Given an abelian group G and a fibration F ↪→ X −→ B where B is path connected
and F is connected, then there exists a first quadrant spectral sequence {Er

∗,∗, dr} converging to
H∗(X; G) such that the second page E2

p,q = Hp(B,Hq(F; G)).

The proof is rather complex, so we will provide a rough sketch of it.

Proof. We will prove it in the case that B is a CW-complex (to extend it to a paracompact
space the CW-complexes approximation theorem shall be used). In that case, we have a
filtration in B given by its skeleton, and we can rise it to X using the map p. We define
Js = p−1(Bs). It is clear that J0 ⊂ J1 ⊂ ... ⊂ X, because B0 ⊂ B1 ⊂ ... ⊂ B.

Considering these inclusions, we can define an increasing filtration in the chain com-
plex of the total space E in the following way,

FpC∗ = Im{C∗(Jp; G) −→ C∗(X; G)}.

We can consider that Cq(Jp; G) = 0 if p, q < 0. Then, it is clear that it is a first quadrant
spectral sequence and bounded below. Using arguments of compactness of the simplicies,
we can say that every simplex in E will be contained in a Jn for n large enough, and
therefore C∗(X) =

⋃
p≥0 FpC∗. Using the previous theorems of this chapter, the spectral

sequence converges to Hp+q(X), and the first page is

E1
p,q = H(FpCp+q/Fp−1Cp+q; G) = Hp+q(Jq, Jq−1; G).
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It only remains to determine the second page of the spectral sequence. Firstly, we
observe that the first page of the spectral sequence reassembles to the cell homology
definition we have seen in the first chapter. In fact, if we were working with a trivial
fibration (that is a fibration p : B × F −→ B, where p is the projection), then we would
have that Js = Bs × F. Therefore, we would use Künneth formula and we would obtain
that E1

p,q = Cellp(B)⊗ Hq(F; G). Unfortunately, this is not always the case, and we need
to use a local system of coefficients H∗(F; G) to describe the second page.

The main result states that E1
p,q
∼= Cellp(B,Hq(F; G)) and the map d1 is the map of this

chain complex. We want to reach a similar situation as the above case. To achieve this
objective, we shall use the CW-structure.

The first key observation is that a p-cell ep
α is contractible, therefore the local system of

coefficients G can be replaced by a trivial local system of coefficients that will be denoted
by Gα, which is one of the groups of the local coefficient system G for an arbitrary point
inside ep

α . Using the excision theorem, it is possible to find the following isomorphism⊕
α Hp(e

p
α , ∂ep

α ; Gα) −→ Hp(Bp, Bp−1;G), where α runs through all the p-cells of the CW-
complex. This isomorphism enables us to work with a p-cell and its boundary (that are
homeomorphic to a ball and its boundary sphere), reducing the difficulty of the problem.
In consequence, Cellp(B;Hq(F; G)) = Hp(Bp, Bp−1;Hq(F; G)) ∼=

⊕
α Hp(e

p
α , ∂ep

α ; Fα).
The other key observation will help us to connect the previous information about

the homology in local coefficients with the information about the filtration induced by
the skeleton of the CW-complex on the total space E. Observe that Hp(e

p
α , ∂ep

α ; Fα) =

Hp(e
p
α , ∂ep

α) ⊗ Hq(F; G) which is isomorphic to Hp+q(e
p
α × F, ∂ep

α × F) by using the Kün-
neth formula. Finally, a homotopy equivalence induced by the fibration induces an iso-
morphism Hp+q(e

p
α × F, ∂ep

α × F; G) ∼= Hp+q(p−1(ep
α), p−1(∂ep

α); G).
Combining this two claims, we obtain that Cellp(B;Hq(F; G)) ∼=

⊕
α Hp(e

p
α , ∂ep

α ; Fα) ∼=⊕
α Hp+q(p−1(ep

α), p−1(∂ep
α); G) ∼= Hp+q(Jp, Jp−1; G) = E1

p,q.
These isomorphisms are natural, giving us the following commutative diagram

Cellp(B;Hq(F; G)) Cellp−1(B;Hq(F; G))

E1
p,q E1

p−1,q

∂

∼= ∼=
d1

and therefore, the second page of the spectral sequence is E2
p,q = Hp(B;Hq(F; G)).



Chapter 4

Equivariant homology

Or main objective is to use the tools from homological algebra developed in the previ-
ous chapters to study the group actions on smooth manifolds. Obviously, given a G-space
X, applying one of the homology or cohomology theories on the space can give us plenty
of information about the space, but it does not provide information about the group ac-
tion, so we need to find a better candidate that reflects both the structure of the space and
the group action. The first candidate that comes to mind is the orbit space X/G, but it may
not retain the nice topological properties G-space X has, and it may not contain all the
information about the action. Therefore, it is not a suitable choice. Instead, a contractible
topological free G-space is constructed, and we link it via a twisted product with the G-
space X. The fact that the space is contractible and the action is free will help to retain
the information about the G-space X we want to study, while giving us invaluable infor-
mation about the action. In addition, the computations that are required are manageable
with the tools of homological algebra.

The first section of this chapter is devoted to giving some notions about that con-
tractible space and the second section define and provide some of the results of that
construction.

The majority of authors expose this topic using cohomology, since cohomology pos-
sesses supplementary multiplicative properties to develop the theory. Nevertheless, using
homology is sufficient to achieve our main goal. In this chapter, we used [17] and [18]. An
interesting article that provides a conscise introduction to equivariant cohomology is [19].

4.1 Classifying spaces

We want to construct a contractible free G-space, that we will call EG. The next theorem
shows its existence for topological groups and a general method to build it.

Theorem 4.1. Let G be a topological group, then there exists a contractible free G-space EG.

A general proof of this fact is due to Milnor, that construct EG as an infinite join of G,
G ∗ G ∗ G ∗ .... We will show a different proof in the case that G is a finite group.

33
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Proof. Let G be a finite group and ]G = n. We consider the set R[G] = {φ : G → R}
which is a vector space over R . In fact, we have the following isomorphism Rn ∼= R[G].
For all g ∈ G, we define φg : G −→ R such that φg(g′) = 1 if g = g′ and φg(g′) = 0 if
g 6= g′. Then, {φg}g∈G is clearly a basis of R[G] and we can construct the isomorphism
by sending bijectively each vector of the basis to the usual basis of Rn. Moreover, we can
construct a left action of G on R[G]. Given φ ∈ R[G], we define gφ such that for all g′ ∈ G
we have that (gφ)(g′) = φ(gg′).

The next step is to define the set

Inj(R[G], Rk) = { f : R[G] −→ Rk : f is linear and injective} = Ak.

We have a left action induced by the above action, such that if f ∈ Ik, then g f (φ) = f (gφ)

for all φ ∈ R[G]. We claim that EG =
⋃

k∈N Ank = A. We need to prove that the action
of G is free and that A is contractible. Given f ∈ A, then f ∈ Ank for some k ∈ N.
We want to see that G f = {g ∈ G : g f = f } = {e}. Given g ∈ G f , it is clear that
f (φ) = g f (φ) = f (gφ) for all φ ∈ R[G]. Using the injectivity of f , we have that gφ = φ

for all φ ∈ R[G]. In particular, for each element of the basis φh, where h ∈ G, we have
that gφh = φg−1h = φh. In consequence, g−1h = h for all h ∈ G. If h = g we obtain that
e = g−1g = g.

Since Rn ∼= R[G], we can describe

Ank = {(M1, ..., Mk) : Mi ∈ End(Rn) and ∀v ∈ Rn v 6= 0 ∃j such that Mjv 6= 0}

where Mj is thought as n × n matrix. The topology of A fulfills that U is an open set
if and only if U ∩ Ank are open sets for all k ∈ N. Observe that we have the inclusions
Ank ↪→ An(k+r) such that (M1, ..., Mk) → (M1, ..., Mk, 0, ..., 0). Therefore, we can express
every element of A as a sequence of matrix M = (M1, M2, ..., Mk, 0, ...). Finally, we denote
MId = (Id, 0, ...) and we define a shift function σ : A −→ A such that σ(M1, ..., Mk, 0, ...) =
(0, M1, ..., Mk, 0, ...) that is clearly a continuous map. We have all the pieces to prove that
the identity in A is homotopic to the constant map that sends every M to MId.

We define the homotopy H : A× I −→ A such that

H(M, t) = tMId + (1− t)M + t(1− t)σ(M).

It is clear that for t = 0 we obtain the identity map, and for t = 1 we obtain the constant
map. First of all, we need to prove that H is well defined, which means that H(M, t) ∈ A
for all M ∈ A and t ∈ I, and we can suppose that t 6= 0, 1. If M = (M1, ..., Mk, 0, ...), then
H(M, t) is equal to

(tId + (1− t)M1, (1− t)M2 + t(1− t)M1, ..., (1− t)Mk + t(1− t)Mk−1, t(1− t)Mk, 0, ...).

Suppose that we have a vector v ∈ Rn, such that H(M, t)jv = 0 for all j, where
H(M, t)j denotes the component j of H(M, t). Then, we have that t(1 − t)Mkv = 0,
and consequently Mkv = 0. Replacing this information in the previous component, we
find that t(1 − t)Mk−1v = 0. Repeating the same argument we can arrive to the first
component and find that tId(v) = tv = 0 and because t 6= 0 we have that v = 0. Therefore,
H(M, t) ∈ A for all M ∈ A and t ∈ I.
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In order to prove the continuity, we take an open set U ⊂ A, then the sets U ∩ Ank are
open in Ank. This allows us to restrict the problem to the finite case, Hnk : Ank × I −→
An(k+1), where all maps used are continuous, and therefore, Hnk are continuous for all k.
From here we can deduce the continuity of H.

The orbit space EG/G = BG is the called classifying space of G, and together with the
orbit map π : EG −→ BG we can obtain a principal G-bundle.

Proposition 4.2. The map π : EG −→ BG is G-principal bundle with total space EG and base
space BG.

Proof. The statement is a corollary of proposition 1.34. The total space is Hausdorff since
Inj(R[G], Rk) = Ak for all k ∈N. Let M and N be in EG, if M and N are in the same Ank,
we can take open neighbourhoods U and V of M and N respectively which fulfill that
U ∩V = ∅. The sets U and V are open in EG. If M and N are in different Ank, M ∈ Ank
and N ∈ Ank′ , we take as disjoint open neighbourhoods the sets Ank and Ank′ .

This principal G-bundle is called the universal G-bundle, which satisfies the following
property. If B is a paracompact space, there exists a bijection between the homotopy classes
of maps f : B −→ BG and the G-principal bundles with base space B. This bijection sends
the map f to the pullback bundle f ∗(EG) −→ B. It should be remarked that the spaces
EG and BG are unique up to homotopy equivalence.

Finally, an important remark should be made regarding the homology (or cohomology)
of a group G and the homology (or cohomology) of its classifying space. The homology
of a group G can be defined algebraically, using chain complexes in a similar way we
construct the homology of a topological space, (one could see [11] for the construction of
group cohomology). However it can be proved that we have an isomorphism between the
group homology and the homology of BG, H∗(BG) ∼= H∗(G), thus, we will define the
group homology of G to be H∗(BG). The same can be said about cohomology. Observe
that if G is a topological group, the group homology of G differs from the homology of G
seen as a topological space.

In particular, we are concerned about the classifying space of the groups of the form
Zp where p is a prime number. In that case, we can describe it explicitly in a easier way.

Lemma 4.3. The infinite dimensional sphere S∞ is contractible.

Proof. Recall that we defined S∞ =
⋃

n≥0 Sn with the topology that a set A is an open set
in S∞ if and only if A ∩ Sn is open for all n ≥ 0.

Let x be a point of S∞, then it is inside one of the finite dimensional spheres Sn and
we can consider its coordinates (x0, ..., xn) such that Σi|xi|2 = 1.

On the other hand, we have the continuous inclusion map in,m : Sn −→ Sm such that
in,m((x0, ..., xn)) = (x0, ..., xn, 0, ..., 0), where n ≤ m. Therefore, we can consider that a point
p of S∞ is a sequence (x0, ..., xn, 0, ...) and it has norm one.

We consider the map ι : S∞ −→ S∞ such that ι((x0, ..., xn, 0, ...)) = (0, x0, ..., xn, 0, ...).
Using the characterization of the open sets in S∞ is easy to restrict this map to the case
of inclusions of finite dimensional spheres that are continuous. This fact implies that the
map ι is continuous.



36 Equivariant homology

In order to prove that the space is contractible, we need to see that the identity map is
homotopic to the constant map (we will choose the map c : S∞ −→ S∞ that sends S∞ to
the point (1, 0, 0, ...)). We will do it in two steps, proving that id ' ι ' c. We will construct
the homotopies explicitly.

To construct the first homotopy H : S∞ × I −→ S∞ is defined in the following way.

H(p, t) =
tι(p) + (1− t)p
|tι(p) + (1− t)p|

It is well defined because all the points only have a finite number of coordinates not
null and the sum is never zero. Suppose that tι(p) + (1− t)p = 0 for some (p, t). If p
has coordinates (x0, ..., xn, 0....), this means that ((1− t)x0, x0t + (1− t)x1, ..., txn, 0....) =

(0, 0, ....). If x0 6= 0, then t = 1, implying that (0, x0, ..., xn, 0, ...), which is not true. If
x0 = 0, then the second coordinate has the form of x1(1− t) = 0 and we can repeat the
same reasoning. Because the norm is always one, we will eventually find a coordinate
xi 6= 0, reaching a contradiction.

Using the characterization of open sets in S∞, it suffices to prove the continuity on
each restriction to Sn. But, in the finite case, all the maps involved are already continuous,
hence, the H is continuous.

The second homotopy is defined similarly. It is a map G : S∞ × I −→ S∞ such that

G(p, t) =
tc(p) + (1− t)ι(p)
|tc(p) + (1− t)ι(p)|

Checking that it is well defined and continuous is analogous to the first homotopy.

In a slighly different approach, we can describe S∞ =
⋃

n≥1 S2n−1, where S2n−1 ⊂ Cn.
Observe that Zp acts freely on it by rotating each sphere as we showed in the first example
of chapter 1. In consequence, its classifying space is BZp = S∞/Zp =

⋃
n≥0 S2n−1/Zp =

L∞
p .

Finally, we need to compute the classifying space of groups of the form (Zp)r. In
general, if G is a topological group and we consider the space EG, we can construct
a free action of Gr to EGr, such that if (g1, ..., gr) ∈ Gr and (x1, ..., xr) ∈ EGr then
(g1, ..., gr)(x1, ..., xr) = (g1x1, ..., grxr). Clearly, it is a free action and EGr is contractible. In
consequence, the classifying space of Gr is B(Gr) = EGr/Gr ' (BG)r.

4.2 Borel construction

Let G be a topological group acting on X, and let π : EG −→ BG be the universal
G-bundle. Then, we consider the associated bundle p : EG ×G X −→ BG constructed in
the proposition 1.35.

Definition 4.4. We define the equivariant homology of space X, HG
∗ (X), to be the homology of the

total space H∗(EG×G X).

This construction is due to Borel (hence, it also has the name of Borel construction)
and it will reflect how acts the group G on X.
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Remark 4.5. The examples below are the most simple cases of equivariant homology computations,
and are helpful for the purpose of understanding equivariant homology.

• If X is the topological space that only consist of a point, X = {pt}, then EG ×G X ∼=
EG/G ∼= BG. Therefore HG

∗ ({pt}) = H∗(BG) = H∗(G).

• More generally, if X is a G-space and the action is trivial, then XG ∼= X× BG, so HG
∗ (X) =

H∗(X × BG). If we are working with coefficients in a field, then HG
∗ (X) = H∗(BG) ⊗

H∗(X).

• Given a subgroup H of G, then G/H ×G EG ∼= (G× EG)/H = EG/H = BH. Therefore,
HG
∗ (G/H) = H∗(BH).

On the other hand, we have the following result if the action is free.

Proposition 4.6. Let X be a free G-space, then HG
∗ (X) ∼= H∗(X/G).

Although the above proposition is a general fact, we will prove it when the space
X = N is a compact smooth manifold and G is a finite group.

Proof. Firstly, since the action on N is free, we have the G-principal bundle π : N −→
N/G. We can construct its associated bundle with fiber EG, p : EG×G N −→ N/G, such
that p([M, x]) = [x]. Our goal is to find a global section s : N/G −→ EG ×G N and to
show that s ◦ π ' idEG×G N in order to obtain a homotopy equivalence N/G ' EG×G N.

To construct the section we shall use the concrete structure of EG for a finite group
we developed in the above section and the fact that N/G is a manifold. Recall that a
point of EG can be expressed as a sequence of n× n matrices (M1, M2, ...) such that there
exists a number j0 such that Mj = 0 for j > j0. Let M(i)

Id ∈ EG be the point of the form
(0, ..., 0, Id, 0, ...), where the identity is in the i-th position.

We have seen in the second chapter that the collection {π(S)}S slice of the images by
π of all the slices we can construct in N, is an open cover of N/G. Since N is compact,
it follows that N/G is compact. In consequence, a finite open cover {π(Si)}i=1,..,k can be
obtained. Therefore, there exists a finite partition of the unity {ψi}i=1,..,k subordinated
to the previous finite open cover. Since the action is free, we have a homeomorphism
π−1
|Si

: π(Si) −→ Si. Let Ti be the tube G× Si −→ Ti.

Given x ∈ Ti, there exists an unique g ∈ G such that g−1x ∈ Si. We define an
equivariant map fi : Ti −→ EG such that fi(x) = gM(i)

Id . If we use the partition of the unity,
we can construct an equivariant map f : X −→ EG such that f (x) = ∑ ψi([x]) fi(x) =

(ψ1g1 Id, ψ2g2 Id, ...). Observe that since each x ∈ N is inside one of the tubes Ti, there
is always a component different than 0, and that for j > k, the j-th component of fi(x)
is 0 because of the finiteness of the partition of the unity. Moreover, note that if x /∈ Tj
for some j and then ψj = 0. Thus, f is well defined and equivariant. In consequence, it
follows that the map N −→ EG× N such that x → ( f (x), x) is equivariant and it induces
a map s : N/G −→ EG ×G N which satisfies that s[x] = [ f (x), x]. Then, it is clear that
π ◦ s = idN/G. Therefore, it is a global section.

In order to prove that s ◦ π ' idEG×G N , we will construct an equivariant homotopy
on EG × N. Observe that idEG×N induces the map idEG×G N on the orbit space and the
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map φ : EG× N −→ EG× N such that φ(M, x) = ( f (x), x) induces the map s ◦ π on the
orbit space. If we construct an equivariant homotopy between these maps, it will induce a
homotopy between idEG×G N and s ◦ π and the assertion of the proposition will be proved.

The homotopy reassembles closely to the ones stated in the previous subsection. We
define H : (EG × N)× I −→ EG × N such that H((M, x), t) = tM + (1− t) f (x) + t(1−
t)σk(M), x), where σk is the shift function composed with itself k times (therefore, it moves
each matrix k positions to the right). Using an analogous process to the ones made in the
preceding subsection, it can be seen that the homotopy is well defined. Since every map
involved is equivariant, the homotopy H is also equivariant. Therefore H is the homotopy
we seek. In consequence, the proposition is proved.

One of the most useful aspects of the Borel construction is that we have a Serre spectral
sequence that arises from the associated fiber bundle.

Remark 4.7. Let X be a G-space, then there exists a spectral sequence {Er
∗,∗, dr} such that E2

p,q =

Hp(BG,Hq(X; R)) and it converges to HG
∗ (X).

At this point, we show a slightly different approach of systems of local coefficients on
a space B. The idea of assigning a group to each point of b closely resembles the fiber
bundle construction, where each point has its fiber. Indeed, systems of local coefficients
on B can be understood as a fiber bundle with base space B, fiber an abelian group A and
structural group G ⊂ Aut(A). If we restrict a local trivialization φ : U × A −→ p−1(U) to
{x} × G, we obtain a group isomorphism between {x} × G and p−1(X). The collection of
homomorphism of the system of local coefficients and its properties are consequence of
the lifting property of fiber bundles.

Consider the system of local coefficients which appears in the Serre spectral sequence
for the Borel construction, Hq(X; R). The action of G on X induces an action on Hq(X; R)
for all q. Therefore, the system of local coefficients can be described by the associated fiber
bundle p : Hq(X; R) = EG×G Hq(X; R) −→ BG.

Let x be a point in BG. We consider its fiber p−1(x) ∼= Hq(X; R). Then, each homotopy
class of a loop with base point x (in other words, each element of π1(BG, x)) has associated
an automorphism of p−1(x). Since π1(BG, x) ∼= G, we obtain another action of G on
Hq(X; R). Nevertheless, this action coincides with the action of G induced in Hq(X; R)
by the action of G on X. This fact is a direct consequence of the construction of the fiber
bundle associated to the principal G-bundle π : EG −→ BG.



Chapter 5

Elementary p-groups smooth
actions on smooth manifolds

In the previous chapters, we studied properties of some objects, like orbits or orbit
spaces, where we had an effective action of a group on a manifold together with some
additional conditions, like the group acting freely or the action being smooth, as hypoth-
esis. In this last chapter, we change our viewpoint to answer a different type of questions.
We are concerned with the existence of an effective action. Given a compact manifold M,
which finite groups can act effectively on M?

The Mann Su theorem, [1], answers the question for a concrete type of group, acting
on any cohomological manifold. Since the machinery used in that paper is rather complex
and we have not developed it in this project, we will restrict ourselves to the case that the
manifold is compact, connected and smooth and the action is smooth.

In the first section of this chapter, some preliminary lemmas are proved before stating
and proving the Mann Su theorem.

5.1 Preliminary lemmas

Definition 5.1. An elementary p-group of rank r is a group isomorphic to (Zp)r, which is the
direct sum of r copies of Zp, where p is a prime number.

In this chapter, G always denotes an elementary p-group of rank r, so G ∼= (Zp)r. With
these groups, it is convenient to use the homology with coefficients in Zp. Therefore, we
can consider them to be Zp vector spaces and use concepts as the dimension of a vector
space.

Definition 5.2. Let X be a topological space. The value of dim(Hi(X; Zp)) = bi is called the i-th
Betti number mod p. We denote by B the sum ∑i bi.

Lemma 5.3. Let BG be the classifying space of G, then the dimension of its homology with coeffi-
cients in Zp is

dim(Hk(BG; Zp)) =

(
k + r− 1

r− 1

)
.

39
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Proof. Since G ∼= (Zp)r, we have that BG ' (BZp)r. We proceed by induction on the rank
of the group.

• If r = 1, then BG ' BZp = L∞
p . We have proved in chapter 1 that Hk(L∞

p ; Zp) = Zp
for all k ≥ 0. Thus, we obtain that

dim(Hk(BG; Zp)) = 1 =

(
k + 0

0

)
.

• Suppose we have proved the statement for r′ < r. We have that Hk(BG; Zp) =

Hk((BZp)r; Zp). Therefore, we can use the Künneth formula to obtain that

Hk(BG; Zp) =
⊕

n+m=k

(Hn(BZp; Zp)⊗ Hm((BZp)
r−1; Zp)).

If we compute its dimension, we obtain that

dim(Hk(BG; Zp)) =
k

∑
m=0

dim(Hk−m(BZp; Zp)) · dim(Hm((BZp)
r−1; Zp)).

The dimension of the first term is always 1. Using the inductive hypothesis, we
obtain that

dim(Hk(BG; Zp)) =
k

∑
m=0

(
k + r− 2

r− 2

)
=

k+r−2

∑
j=r−2

(
j

r− 2

)
=

(
k + r− 1

r− 1

)
.

Lemma 5.4. Let V be a vector space over Zp with dimension d. Suppose that the group G acts on
V linearly (θg : V −→ V is a lineal map for all g ∈ G). Then, we have a chain of vector subspaces
of length d, 0 = V0 ⊂ V1 ⊂ .... ⊂ Vd = V such that it is G-invariant and the action of G on
Vi+1/Vi is trivial.

Proof. We have that V ∼= (Zp)d (it is an isomorphism of vector spaces), therefore the
cardinality of V is pd. Since G ∼= (Zp)r, the cardinality of the orbits of the action of G on
V could be 1,p,p2,...,pr.

Because the action is linear, the orbit of the 0 vector is G(0) = {0}. In consequence,
the sum of the cardinalities of the rest of the orbits shall be pd − 1. This implies that there
exists another fixed vector. Otherwise, the cardinality of each orbit would be a multiple of
p, hence, their sum would be a multiple of p. However, their sum is equal to pd − 1 which
is not a multiple of p. We have reach a contradiction. Thus, there exists a vector v1 6= 0
which is a fixed point.

We define V1 = 〈v1〉, which is clearly G-invariant. We proceed similarly on the quotient
space V/V1. A vector of the quotient space [v2] 6= [0] can be found such that it is a fixed
point of the action of G in V/V1 (this action is induced by the action on V). Therefore, we
define V2 = 〈v1, v2〉, which is clearly G-invariant and V2/V1 = 〈[v2]〉. In consequence, the
action of G on V2/V1 is trivial.

If we repeat that process, we obtain an ascending chain of vector subspaces, where the
dimension of one of those subspaces is the dimension of the preceding subspaces plus
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one. Therefore, the length of the chain is dim(V) = d and the chain is 0 = V0 ⊂ V1 ⊂ .... ⊂
Vd = V. Because of the construction process, it is clear that the chain is G-invariant and
that the action of G on Vi+1/Vi is trivial.

Lemma 5.5. Let L,L′ and L′′ be systems of local coefficients on a space X such that we have the

following short exact sequence 0→ L′ f−→ L g−→ L′′ → 0. Then, there exists an induced long exact
sequence on the homology

...→ Hk+1(X;L′′)→ Hk(X;L′)→ Hk(X;L)→ Hk(X;L′′)→ Hk−1(X;L′)→ ...

Proof. Recall that for every x ∈ X we have group morphisms fx : L′x −→ Lx and gx :
Lx −→ L′′x . Therefore, the short exact sequence of local coefficients on X induces a short

exact sequence of group for all x ∈ X, 0→ L′x
fx−→ Lx

gx−→ L′′x → 0.
We will prove that these short exact sequences induce a short exact sequence of chain

complexes 0 → C∗(X;L′) f∗−→ C∗(X;L) g∗−→ C∗(X;L′′) → 0, hence, the lemma will be a
direct consequence of the theorem from homological algebra that constructs a long exact
sequences of homology from a short exact sequence of chain complexes.

For every natural number k, we define a linear map fk : Ck(X;L′) −→ Ck(X;L) such
that fk(g ⊗ T) = fT(v0)

(g) ⊗ T. It clearly commutes with the differential of the chain
complex ∂k fk = fk−1∂′k.

f (∂h(g⊗ T)) = f (h[TLv0
v1 ](g))⊗ ∂0T +

p

∑
j=1

(−1)j f (g)⊗ ∂jT

= (h[TLv0
v1 ]( f (g)))⊗ ∂0T +

p

∑
j=1

(−1)j f (g)⊗ ∂jT

= ∂h( f (g⊗ T)).

The process of defining the map g∗ is analogous. Finally, observe that we have a short

exact sequence of complexes 0→ Ck(X;L′) fk−→ Ck(X;L) gk−→ Ck(X;L′′) → 0 for all k ∈ N,

since 0→ L′x
fx−→ Lx

gx−→ L′′x → 0 is a short exact sequence for all x ∈ X.

Therefore, we can construct the short exact sequence 0 → C∗(X;L′) f∗−→ C∗(X;L) g∗−→
C∗(X;L′′)→ 0 using the previous statements, proving the lemma.

Proposition 5.6. Let X be a G-space. Then, the following inequality holds

dim(Hk(BG;Hq(X; Zp)) ≤
(

k + r− 1
r− 1

)
dim(Hq(X; Zp)).

Proof. Since G acts on X, a lineal action is induced on Hq(X; Zp), which is a vector space
over Zp. Let d be its dimension. Therefore, there exists an ascending chain of length d,
0 = V0 ⊂ V1 ⊂ ... ⊂ Vd = Hq(X; Zp), because of the lemma 5.4. with this chain, we
can construct an ascending chain of systems of local coefficients 0 = H0 ⊂ H1 ⊂ ... ⊂
Hd = Hq(X; Zp), where Hi = EG×G Vi. Since the group G acts trivially on the quotients
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Vi+1/Vi, the system of local coefficients Hi+1/Hi is trivial ( Hi+1/Hi = EG×G Vi+1/Vi =

BG×Vi+1/Vi).
For each i from 0 to d− 1, there exists a short exact sequence of systems of local coef-

ficients 0 → Hi
ι−→ Hi+1

π−→ Hi+1/Hi → 0, induced by the inclusion and the projection.
Thus, using lemma 5.5, we obtain the following long exact sequence of homology for each
i.

...→ Hk(BG;Hi)
ιk−→ Hk(BG;Hi+1)

πk−→ Hk(BG;Hi+1/Hi)→ Hk−1(BG;Hi)→ ...

From this long exact sequence the following short exact sequence can be extracted,

0→ Im(ιk) ↪→ Hk(BG;Hi+1)→ Im(πk)→ 0.

Thus, the following equality regarding their dimensions holds

dim(Hk(BG;Hi+1)) = dim(Im(ιk)) + dim(Im(πk)).

Since dim(Hk(BG;Hi)) = dim(ker(ιk)) + dim(Im(ιk)), we obtain that

dim(Im(ιk)) ≤ dim(Hk(BG;Hi)).

Since Im(πk) ⊂ Hk(BG;Hi+1/Hi), we have that

dim(Im(πk)) ≤ dim(Hk(BG;Hi+1/Hi)).

Combining these statements, we obtain that

dim(Hk(BG;Hi+1))− dim(Hk(BG;Hi)) ≤ dim(Hk(BG;Hi+1/Hi))

for all k and i.
If the number k is fixed and we sum all the inequalities varying i, most of the terms on

the left of the inequality will cancel each other, reaching the below inequality

dim(Hk(BG;Hq(X; Zp)))− dim(Hk(BG;H0)) ≤
d−1

∑
i=0

dim(Hk(BG;Hi+1/Hi)).

Since V0 = 0, then H0 = 0, hence, the second term on the inequality disappears.
Because Hi+1/Hi = BG×Vi+1/Vi and Vi+1/Vi

∼= Zp, the above inequality becomes

dim(Hk(BG;Hq(X; Zp))) ≤
d−1

∑
i=0

dim(Hk(BG; Zp)).

Using lemma 5.3 and that d = dim(Hq(X; Zp)), we obtain the inequality we sought,

dim(Hk(BG;Hq(X; Zp)) ≤
(

k + r− 1
r− 1

)
dim(Hq(X; Zp)).
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Remark 5.7. Observe that the equality holds if the action of G on Hq(X; Zp) is trivial. If we sup-
pose that the action is trivial, Hk(BG;Hq(X; Zp)) = Hk(BG; Hq(X; Zp)). Using the universal
coefficients theorem with the field R = Zp, we obtain that Hk(BG; Hq(X; Zp)) = Hk(BG; Zp)⊗
Hq(X; Zp). Thus, dim(Hk(BG; Hq(X; Zp)) = dim(Hk(BG; Zp))dim(Hq(X; Zp)).

Remark 5.8. In order to prove the Mann-Su theorem, we will use the upper bounds of lemma
5.6 when X is the frame orthogonal bundle of the given smooth connected manifold M, Fg(M),
where g is the G-invariant metric constructed in chapter 2. In this remark we explain how the
previous remark will be used in the case where q = 0. Although M is connected, Fg(M) is not
necessarily connected, since O(m, R) has two connected components (one consists of matrices with
determinant equal to 1, and the other consists of matrices with determinant −1). Indeed, it can
be proved that if M is non-orientable, then Fg(M) is connected. Hence, H0(Fg(M); Zp) ∼= Zp.
On the other hand, if M is orientable, then Fg(M) has two connected components. In consequence
H0(Fg(M); Zp) ∼= Zp ⊕Zp.

If p 6= 2, then the action of the group G on Fg(M) can not map points of one connected compo-
nent to the other. Therefore, the action of G on H0(Fg(M); Zp) is trivial in both cases. By using the
lemma 5.8, we obtain that dim(Hk(BG; H0(Fg(M); Zp)) = dim(Hk(BG; Zp))dim(H0(Fg(M); Zp)).
In the non-orientable case, dim(H0(Fg(M); Zp)) = 1. In the orientable case, dim(H0(Fg(M); Zp)) =

2. In conclusion, we obtain that dim(Hk(BG; H0(Fg(M); Zp)) ≥ dim(Hk(BG; Zp)).
If p = 2 and M is orientable, the action could map points of one of the connected component

of Fg(M) to the other. If it was the case, the action of G on H0(Fg(M); Z2) ∼= Z2 ⊕Z2 would
not be trivial. However, with a similar reasoning from the lemma 5.4, there would exist a subgroup
G′ of G of index 2 (therefore G′ ∼= (Zp)r−1) such that G′ acts trivially on H0(Fg(M); Z2).
In this case, we can work with G′ instead of G and we can assume that the action is trivial on
H0(Fg(M); Z2). Hence, we can use lemma 5.8 to obtain that dim(Hk(BG′; H0(Fg(M); Z2)) ≥
dim(Hk(BG′; Z2)). In consequence, the Mann-Su theorem will provide an upper bound N such
that r− 1 < N. We can deduce that r < N + 1, obtaining an upper bound for the rank of G. For
the sake of simplicity and brevity, we will not explicitly state this case in the proof the theorem (we
will only need to recall to add 1 to the upper bound in this particular case).

The remaining lemmas are related with the homology of the manifolds, and they can
be found in [20]. Although the underlying concepts are basically the same, we proceed in
a different way in some steps of the proofs.

Lemma 5.9. Let M be a compact topological manifold which has dimension m. Then Hk(M) = 0
for all k > m.

Proof. Since M is a compact manifold, there exists a finite open covering {Ui}i=1,...,r such
that each Ui is homeomorphic to an open set of Rm. Firstly, we will show that an open set
U ⊂ Rm satisfies that Hk(M) = 0 for all k ≥ m.

Let σ = ∑n
j=1 λjσj be a k-cycle (where σj : ∆k −→ U with k ≥ m for all j). Observe

that K =
⋃n

j=1 σj(∆k) ⊂ U is compact, hence, the distance between K and Rm \U, which
is a closed set, is positive, d(K, Rm \U) = δ > 0. Our next step is to divide the Euclidean
space in cubes that are sufficiently small so a cube which intersects with K is inside U. We
choose cubes whose edges have length l = 1√

m
δ
2 .
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Observe that if a and b are points of this cube

d(a, b) =

√
m

∑
i=1

(ai − bi)2 ≤
√

m

∑
i=1

( 1√
m

δ
2 )

2 = δ
2 < δ.

We divide Rm in cubes whose edges have length equal to l and their vertices are in
positions of the form (n1, ..., nm) where n1, ..., nm ∈ Z. More precisely, we will denote by
C(n1,...,nm) the cube whose coordinates satisfy that njl ≤ xj ≤ (nj + 1)l for each j = 1, ..., m.
Since K is compact, there exists an open ball which has the origin as a center and a radius
R such that K ⊂ BR(0). Let r denote an integer such that R < rl. We construct a cube T
with edge’s length 2rl and centred at the origin. Note that the cubes C(n1,...,nm) divide T.

Consider the space C, which is the union of all the cubes C(n1,...,nm) which intersect
with K (note that because of the compactness of K there is only a finite number of cubes
which has non-empty intersection with K). Because of the length of the edge we chose,
K ⊂ C ⊂ U. On the other hand, observe that C and T have a CW-structure induced by the
cube’s division (their 0-skeleton is the set of vertices of all squares that form these spaces,
to construct the 1-skeleton we attach the edges, and we proceed until obtaining the sets C
and T). Observe that C ⊂ T (in fact, C is a subcomplex of T and (T, C) is a called a CW
pair). We can consider a portion of the relative homology exact sequence

...→ Hk+1(T, C)→ Hk(C)→ Hk(T)→ ...

Since T is a cube, we have that Hk(T) = 0. Since T and C do not posses (k + 1)-cells,
it follows that Hk+1(T, C) = 0. Therefore, Hk(C) = 0.

In consequence, σ is a boundary in C, and since C ⊂ U, it is a boundary in U. Thus,
its class in the homology is 0. Because the chosen k-cycle was arbitrary, we conclude that
all k-cycles are boundaries for k ≥ m, hence, Hk(U) = 0 for k ≥ m.

In order to prove the lemma, we shall use induction on a finite open cover of M and
use the Mayer-Vietoris long exact sequence. The initial case has already been proved in the
above discussion. Suppose we have proved that Hk(

⋃r−1
i=1 Ui) = 0 for all k > m. Consider

the Mayer-Vietoris long exact sequence

...→ Hk+1(
r−1⋃
i=1

Ui)⊕ Hk+1(Ur)→ Hk+1(
r⋃

i=1

Ui)→ Hk((
r−1⋃
i=1

Ui) ∩Ur)→ ...

Since (
⋃r−1

i=1 Ui) ∩ Ur ⊂ Ur, the intersection is homeomorphic to an open subset of
Rm. Therefore, Hk((

⋃r−1
i=1 Ui) ∩ Ur) and Hk(Ur) are trivial for all k ≥ m. By induction

hypothesis, Hk(
⋃r−1

i=1 Ui) = 0 for all k > m. The exactness of the Mayer-Vietoris sequence
implies that Hk(

⋃r
i=1 Ui) = 0 for all k > m. Since M =

⋃r
i=1 Ui, the assertion of the lemma

is proved.

The last lemma we prove in this section provides an upper bound to the Betti numbers
mod p that is independent of p.

Lemma 5.10. Let M be a compact manifold of dimension m. Then, H∗(M) is finitely generated.
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Proof. The first part involve embedding the manifold in a high-dimensional euclidean
space Rn.

Since M is a compact manifold, there exists a finite open covering {Ui, φi}i=1,...,k such

that φi : Ui
∼=−→ Bm, where Bm is the ball of dimension m which has radius equal to 1 and

the origin as a center. Consider the homeomorphism h : Bm −→ Sm \ {N}, where N is
the north pole of Sm+1. We construct maps hi : Ui −→ Sm such that fi(x) = (h ◦ φi)(x)
if x ∈ Ui and fi(x) = N if x /∈ Ui for each i. Let f : M −→ Sm × Sm × ....× Sm such that
f = ( f1, f2, ..., fk). This new map is continuous since the maps fi are continuous and it is
injective. Suppose that x and y are points of M which satisfy that f (x) = f (y). Since the
open sets Ui cover M, there exists a j such that x ∈ Uj, therefore f j(x) 6= N. It follows from
this fact that f j(y) 6= N and consequently y ∈ Uj, thus (h ◦ φj)(x) = (h ◦ φj)(y). Since φj
and h are homeomorphisms (in particular, they are bijective), we obtain that x = y. If we
consider the standard embedding Sm ⊂ Rm+1 and we compose it with each component
fi, we obtain an embedding of M in R(m+1)k. From this point on, we will suppose that the
manifold is embedded in a high dimensional euclidean space Rn.

The next step in the proof is to construct an open neighbourhood U ⊂ Rn of M and a
map r : U −→ M which is a retraction. Since the proof is quite long and technical, we will
not provide them in this text. The proof of this statement can be found at the appendix 2
of [20]. A proof for a stronger property that has as a corollary the assertion we will not
prove can be found at the appendix A of [4] and at the appendix E of [5].

We comment a basic outline of the proof. Let s be a simplex such that M ⊂ s (it
exists because the compactness of M). The idea is to construct a triangulation of s \ M
using barycentric subdivision and to use it to construct U and r inductively. The initial
case starts by defining a map in the vertices of the simplicies of the triangulation. The
inductive process involves extending continuously the map r from the i − 1-simplices to
some of the i-simplices of the triangulation where r is defined on their boundary.

It is interesting to remark that if M is a smooth manifold, a different approach to the
proof of the previous statement can be used. The main statement used is called the tubular
neighbourhood theorem (see e.g. [14], theorem 10.19 and proposition 10.20).

We proceed in a similar way to the previous lemma. Since M is compact, U is open
and M ⊂ U. We can divide Rn in cubes which are small enough so the ones that intersect
M are inside U. Let C denote the union of all cubes which have non-empty intersection
with M. Note that C is the union of a finite number of cubes because of the compactness
of M, therefore, C is a CW-complex. The retraction r can be restricted to a retraction
r|C : C −→ M. The equality r|C ◦ ι = idM, where ι denotes the inclusion, induces the
following commutative diagram on the homology for every s:

Hs(M) Hs(M)

Hs(C)

ι∗

id∗

r∗

Since C is a CW-complex with a finite number of cells, Hs(C) is finitely generated for all
s. From the diagram, it follows that ι∗ is injective for all s, therefore Hs(M) is finitely
generated.
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Remark 5.11. Observe that the previous lemma is valid if we work with coefficients in a field
of the form Zp instead of Z. Thus, we obtain a upper bound for the s-th Betti number bs =

dim(Hs(M; Zp)) ≤ dim(Hs(C; Zp)). In addition, dim(Hs(C; Zp)) is bounded by the number of
s-cells of C, a number which does not depend of p. Let βs denote the number of s-cells of C and let
β be the sum of βs for all s. Then, for all prime number p, the s-th Betti number mod p satisfies
that bs ≤ βs and B = ∑ bs ≤ β. Observe that β does not depend on p, but it is not optimal in any
way, since it depends on the number of cubes (therefore, it depends on the size of the cubes) and the
dimension n of the euclidean space, which could be high if we use the method explained at 5.10.

An alternative way to justify that B possesses an upper bound is using the universal coefficients
theorem. Since Hs(M) is a finitely generated abelian group, we know that Hs(M) ∼= Zr(s) ⊕
Zk1 ⊕ ...⊕Zkn(s)

, where each ki is a power of a prime number. From the universal coefficients
theorem, it follows that Hs(M; Zp) ∼= (Hs(M) ⊗ Zp) ⊕ Tor(Hs−1(M), Zp), since the short
exact sequence splits. Since the tensor product and the Tor functor are additive, Hs(M; Zp) can be
computed with the decomposition of Hs(M; Z) and Hs−1(M; Z). It is known that Z⊗Zp ∼= Zp,
Zki
⊗Zp is isomorphic to Zp if p divides ki and 0 otherwise, Tor(Z, Zp) = 0 and Tor(Zki

, Zp) =

Zgcd(ki ,p), where gcd denotes the greatest common divisor. With the aforementioned information,
Hs(M; Zp) can be computed easily. In particular, if αs denotes the number of addends of the
decomposition of Hs(M) (αs = r(s) + n(s)), the inequality dim(Hs(M; Zp) ≤ αs−1 + αs holds.
Therefore, we can find and upper bound for B, namely, B ≤ 2 ∑ αs = α.

5.2 The Mann Su theorem

Theorem 5.12. Let M be a compact, connected and smooth manifold. There exists a natural
number N such that any elementary p-group of rank r > N can not act effectively on M.

Before starting the theorem’s proof, an essential remark shall be made. We are search-
ing a upper bound that only depends on parameters of the manifold. Indeed, we shall
be extremely careful that each step we make towards finding the upper bound does not
depend on the group.

Proof. We suppose that an elementary p-group of rank r, G, acts effectively on M, and we
will find a upper bound for r that only depends on parameters related with M.

Since M is a compact and connected smooth manifold and the action is effective, then
Fg(M) is compact (where g denotes an invariant metric). Therefore, we can suppose that
the action is free if we work with Fg(M) instead of M, by proposition 2.27. Note that
because of proposition 2.14, the homological properties of the space Fg(M) do not depend
on group action, thus, we can replace M for Fg(M) and the bound found will continue
depending only on the parameters of the manifold. Committing an abuse of notation, we
will write M instead Fg(M). Let m denote its dimension.

By remark 4.7, there exists a first quadrant spectral sequence {Eq, dq}, such that E2
t,s =

Ht(BG;Hs(M; Zp)) and converges to HG
t+s(M; Zp). Since M is compact, by lemma 5.9

we know that Hq(M; Zp) = 0 for all q > m. Therefore, E2
t,s = 0 for all s > m, hence,

Eq
t,s = 0 for all s > m and q ≥ 2. Recall that dq

t,s : Eq
t,s −→ Eq

t−q,t+q−1. This implies that for

q ≥ m + 2, all differentials are 0. Thus Em+2 = Em+3 = ... = E∞.
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We have a first quadrant spectral sequence, hence, Eq+1
t+1,0 = kerdq+1 : Eq

t+1,0 −→
Eq

t+1−q,q−1. Therefore,

dim(Eq+1
t+1,0) = dim(Eq

t+1,0)− dim(Imdq+1) ≥ dim(Eq
t+1,0)− dim(Eq

t+1−q,q−1).

Using that dim(Eq
t+1−q,q−1) ≤ dim(E2

t+1−q,q−1), the following inequality holds,

dim(Eq+1
t+1,0)− dim(Eq

t+1,0) ≤ dim(E2
t+1−q,q−1).

If we denote q− 1 = j, we have

m

∑
j=1

dim(E2
t−j,j) ≥

m

∑
j=1

(dim(Ej+1
t+1,0)− dim(Ej+2

t+1,0)) = dim(E2
t+1,0)− dim(Em+2

t+1,0).

Rearranging the terms of the inequality and recalling that Em+2 = E∞, we obtain that

dim(E2
t+1,0) ≤

m

∑
j=1

dim(E2
t−j,j) + dim(E∞

t+1,0).

Since the action on M is free, HG
t+1(M; Zp) = Ht+1(M/G; Zp). Because M/G is com-

pact and has dimension m, we know that Ht+1(M/G; Zp) = 0 for all t ≥ m (by lemma
5.9). Thus, since the spectral sequence converge to HG(M), we obtain that E∞

t+1,0 = 0 for
all t ≥ m. If we impose that t = m and we use the bounds found in proposition 5.6 and
take into account the remark 5.7 and 5.8, the above inequality transforms into(

m + r
r− 1

)
≤

m

∑
j=1

(
m− j + r− 1

r− 1

)
dim(Hj(M; Zp)) =

m

∑
j=1

(
m− j + r− 1

r− 1

)
bj.

Recall that dim(Hj(M; Zp)) = bj, which are the Betti numbers mod p. If we denote
i = m− j, the previous inequality becomes(

m + r
r− 1

)
≤
(

m−1

∑
i=0

(
i + r− 1

r− 1

))
maxi{bi} =

(
m + r− 1

r

)
maxi{bi}.

If we define B = ∑m
i=0 bi and we use that (m

n) =
m!

n!(m−n)! , we obtain the inequality

(m + r)!
(r− 1)!(m + 1)!

≤ (m + r− 1)!
r!(m− 1)!

maxi{bi} ≤
(m + r− 1)!
r!(m− 1)!

B.

If we rearrange the factorial terms, we reach the following inequality,

r2 + mr ≤ m(m + 1)B.

The bound that the theorem asserts is found by solving the second grade equation on
r provided by the above inequality.

r ≤ f (m, B) =
√

m2 + 4m(m + 1)B−m
2

.
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Remark 5.13. If we replace B by one of the upper bounds α or β found in the remark
5.11, we obtain and upper bound for k which is also independent of p. Hence, f (m, α)

or f (m, β) provides and upper bound for the groups of the form (Zp)k which can act
effectively on M for any prime number p.

If we make N = f (m, α) or N = f (m, β), this last remark finishes the proof of the
theorem.

If the action is free the upper bound depends only on the dimension of the manifold M
and the sum of its Betti numbers mod p. If the actions is effective but not free, it depends
on the dimension of the orthogonal frame bundle Fg(M) and its Betti numbers mod p,
which only depend on the manifold M. Albeit it is not extremely difficult to compute the
dimension and the Betti numbers of Fg(M), we do not present these computations in this
text.

We could ask ourselves whether this bound is optimal. It is a remarkable fact that this
bound was computed for an arbitrary manifold, therefore it would not be optimal most
of the times, since the specific properties of a manifold are not used. For example, P.A.
Smith proved that if M = Sn, then r ≤ n+1

2 if p 6= 2 and r ≤ n + 1 in any case (see [21]).
Mann and Su provide bounds for elementary 2-groups acting effectively on RPn and for
elementary p-groups acting effectively on Ln

p in [1].
An easy example where we can compute the upper bound f (m, B) is the case where

M = S1 and the action is free. Using the universal coefficients theorem, we obtain that
Hn(S1; Zp) = Zp if n = 0, 1 and Hn(S1; Zp) = 0 if n > 1. Thus, m = 1 and B = 2.

Consequently, the value of f (m, B) =
√

17−1
2 < 2. Since r shall be a natural number, this

implies that the only elementary p-groups that acts freely on S1 is the cyclic group Zp. As
we showed in the preface, the cyclic group Zp acts freely on S1 by performing rotations.
Therefore, the theorem provides an "optimal" bound in that cases (in the sense that the
theorem states that the the maximum rank of an elementary p-group acting on S1 is 1,
although f (m, B) 6= 1).
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