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Abstract

Generative Adversarial Networks (GANs) have been widely used for image generation.
From the conception of this model in 2014 until now, there has been a increasingly interest
in this model, which have lead it to be one of the most popular Deep Learning models
nowadays. The popularity of this model has entailed a significant list of variations of
it. This work aims are to study the GAN model, and specifically, one of its variations:
TripletGAN.
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Introduction

It is beyond all doubt that during the recent years the fields of Machine Learning, and
specially Deep Learning, have undergone an unprecedented growing. This growth has
been considerably more significant in what is known as Generative models. During the
last years, Machine Learning important successes were usually related to Discriminative
models which were based on BackPropagation and Dropout algorithms. It was in 2014
when Goodfellow [1] introduced the Generative Adversarial Networks. From then on, until
current times, this model has experimented continuous modifications in order to improve
it. Also, if one looks to the number of variations of this model, that have been defined
over those years, it is impossible to not think of GAN model as one of the most popular
Deep Learning models these days.

The aims of this work are to introduce myself in the Deep Learning field, and particu-
larly, to Deep Generative models, in order to solve an image generation problem. One can
think of this work as a three part problem. The first part is the one that sets the basis
of Machine Learning and Deep Learning. This first part is structured in two chapters, in
the first one we show the basics of what a Machine Learning algorithm is, and also some
interesting methods for function estimation like Maximum Likelihood Estimator.

The second chapter is centered in give a brief theoretical framework for a Multilayer
Perceptron model, which is the base model in Deep Learning, in this chapter we give the
formal definition of a MLP model and the algorithm that is used for training it, we also
give a proof based in [4] for the Universal Approximation Theorem.

The second part of the work is oriented in the specific model of Deep Learning that
we have discussed before: Generative Adversarial Networks. Also in this second chapter
we study the main model of this work: TripletGAN model. Following the same structure
of part one here we also have two chapters. The fist one covers the classic GAN model,
we give its formal definition and also a theoretical analysis of its well behaviour. In the
second chapter we present the Triplet Loss function and also some notions about what is
know as Integral Probability Metrics. With this and the GAN model defined in the previous
chapter we present here a variation of the mentioned model, which name is, as we have
said, TripletGAN model.

The last part coincides with the last chapter. This part can be seen as the experimental
part. Here, we present the results of applying the TripletGAN model over two famous
academic datasets (MNIST, FASHION-mnist). In this last part we also discuss about the
technical framework on which we have programmed.
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Chapter 1

Preliminaries

The purpose of this first chapter is to give a brief introduction of Machine Learning. We
know that it is a large field, so we do not attempt to cover everything but just what we
need in further chapters. The first part of this chapter aims to introduce the notation and
concepts that we use in a Machine Learning context. The second one is oriented to introduce
the estimation method of the Maximum Likelihood Estimator. This statistical estimation
method is crucial for us to define later what we call cost functions.

1.1 Machine Learning Algorithm

The first apparition of th Machine Learning concept was in the late fifties by the hand of
Samuel [11]. His definition was, however, ambiguous. He spoke explicitly of ’computers
with the ability to learn’ without shedding any light on what ’learn’ means. In order to
avoid what seems more of a metaphysical question than a mathematical one, we will rely
on the following, and more formal definition, provided by Mitchel (1997) [12]:

Definition 1.1. A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

To fully understand that definition we first need to understand the three concepts that
appear in it. When facing a Machine Learning problem we are asked to solve a particular
problem: maybe we are asked to make an algorithm1 capable of classify between cat
photos or dog photos, or we could be asked to make an algorithm capable of predict the
price of a house given its squared meters. Those two examples define what we name Tasks.
The Task is, then, the problem we want our algorithm to solve (classify photos or predict
a price in the examples just given). Our problem however, is to get the algorithm to learn
to solve its assigned problem (Task).

We have now set the Task concept. When giving the examples we suppose that the
algorithm is getting some information in order to make the prediction. This information

1When in the context of Machine Learning, we sometimes will use indistinctly the terms algorithm or model.

1



2 Preliminaries

that the algorithm gets, is expressed as a vectorized representation of a real observation
problem. The example of the house pricing prediction is trivial, we just have to pass to
the model one scalar of its squared meters. The dog and cat images case is far more
complicate. In this last scenario we face the matrix representation of a photo.This is a
common practice in Deep Learning since it is mainly focused in images, text and sound. For
the image codification we usually use multi-dimensional matrices. This objects are known
as multi-dimensional arrays or even Tensors in computer science. When we face a RGB
colored image we treat it as a 3D-matrix, where the third component can be understood
as the volume of the matrix. In particular, for a RGB photo we have three channels, and
for a gray scale image we just have one. Since we will work only with gray scale images
we are not going to extend more here. Now, we introduce the definition of the object or
structure that resumes all our information:

Definition 1.2. Given a sample space X = {x(1), x(2), ..., x(n)} where each x(i) is considered
as an observation, and each x(i)j from x(i) = (x(i)1 , x(i)2 , ..., x(i)m ) a feature, we can construct

D ∈ Rn×m as a matrix2 where each row contains one observation with all its features and
the different features of each observation are confined in the matrix columns. This matrix
D is called dataset 3.

From what have said, one can think that the observations that are defined in the dataset
are our Experience. This would be, in fact, a misconception. Every Machine Learning algo-
rithm needs some input, and that input is in the following categorization: Supervised or
Unsupervised learning. The fact or being in one category or the other depends on what
we know as target or label. This target represent the real value of an observation. When
we get our algorithm to interact with this label we say that we work on a Supervised Learn-
ing Algorithm. When we do not pass any information about labels to the algorithm we are
reproducing an Unsupervised Learning Algoritm. Almost every Machine Learning algorithm
is classified in one of this two categories.

The only term that remains untouched is the Performance Measure. This Performance
Measure is a function we chose depending on the case for a qualitative notion of how well
the algorithm solves its task. The most intuitive could be the accuracy measure, which is
used in binary classification tasks and it is as simple as the ratio between well classified
observations and the total number of observations. There are a lot of Performance Measures,
and as we said, choosing between is conditioned by our problem.

With all this information one can now define a complete Machine Learning model, and
that is exactly what we do in the next section. We present the simplest Machine Learning
algorithm: the Linear Regression Model.

2Note that when working in complex sample space, as the image space, the matrix would be expressed as
multi-dimensional arrays or tensors

3Throughout the work we will use indistinctly D or X when speaking of datasets



1.1 Machine Learning Algorithm 3

Example 1: Lineal Regression

Let x ∈ Rn be one observation with n features and let y ∈ R be its corresponding label.
Then, we define as ŷ the approximation of y such that ŷ = w>x where w ∈ Rn is known as
the weight or parameter vector. We just have formally defined a Task. By now our algorithm
is returning a prediction ŷ but we do not know if it is a ’good’ one.

In this case we are going to use the mean squared error as loss function. Every
Machine Learning algorithm has one loss or cost function. This function maps an event to a
real value that intuitively represents the loss associated with that event. In our scenario
our events are if our predictions of y are correct or not, so it seems logical to use the
following:

MSE =
1
m ∑

i
(ŷ− y)2

i (1.1)

Note that the choice of this function automatically send our problem into the Supervised
category, since for computing the error we let the algorithm to use the value of the label
y. What we are doing here is to calculate the observation errors as the distance4 between
their real values of y and the predictions ŷ. This is perfectly logical as we want ŷ ≈ y.
When we have computed all this errors the error is then given as the mean of all of them.5

As we stated above, we want ŷ ≈ y to happen. This is equivalent to looking for
∇wMSE = 0 to happen. To note this, it suffices to note that MSE ≥ 0, and that the
equality only holds if the prediction is equal to the real value for every observation. Thus,
minimizing MSE lead us to the more accurate prediction the model can get, given its
hypothesis space. In our example our hypothesis space is {w>x}w∈Rn .

Let us express the MSE with an equivalent representation, which is considering the
euclidean norm between two vectors instead of the sum of squares. We aim to solve the
following equation

∇w MSE = ∇w
1
m
‖ŷ− y‖2

2 = 0 (1.2)

This lead us to:

∇w
1
m
‖ŷ− y‖2

2 = 0⇒ 1
m
∇w‖Xw− y‖2

2 = 0

⇒ ∇w(Xw− y)>(Xw− y) = 0

⇒ ∇w(w>X>Xw− 2w>X>y + y>y) = 0

⇒ 2X>Xw− 2X>y = 0

⇒ w = (X>X)−1X>y

The last equation is a well known lineal equation system. These equations even have a
name, they are called the normal equations. Solving them will yield to the best approxima-
tion of y.

4Notice that ∑i(ŷ− y)2
i = ‖ŷ− y‖2

2
5This is the reason of the method being called Mean Squared Error



4 Preliminaries

1.2 Generalization

We have just presented a basic example of a machine learning algorithm. Now, it seems
legitimate to ask oneself what is the difference between a machine learning problem and
an optimization one. In this last example we have just found the values of w ∈ Rn

that made minimum the performance measure MSE. This is obviously an optimization
problem, so, why are we discussing it as a machine learning one? The objective of this
section is to give an answer to this last question and to present the statistical framework
we are going to use along the project.

When we are trying to solve a machine learning problem our main objective is to
design an algorithm that adapts well when facing new data -observations that has not
experienced before-.This property of performing well with new data is called general-
ization, and is a crucial concept in the field of machine learning. In order to achieve
this generalization we simulate the situation by splitting the initial dataset in two before
anything else. These two parts are named train and test sets.

We can explain now the difference between proper optimization and machine learning.
We are interested in getting a good result when analyzing the performance measure Ptest,
which is defined over the test set and we keep it as intractable. With the hope of improving
Ptest we optimize a different measure function Ptrain, which will be the loss function
defined over the train set. Minimizing the loss function Ptrain can be solved with an
optimization algorithm, and so it can be seen as an optimization problem. Nevertheless,
minimizing Ptest is what we really want, and because of that we can not say that our
problem is an optimization problem. We are optimizing Ptrain but just to indirectly, and
here relies the main difference, optimize Ptest.

With relation to this we introduce the two most important problems when looking for
a good generalization. The first one is known as Overffiting. We face this problem when
our model has a good performance when evaluated in the training set but not in the test.
The second one is produced when the model do not perform well in any of the two sets.
It is named Underfitting. To sort these problems we define a new concept: Capacity. We
can define the capacity of a model as the range of possible functions that it can fit. We
can control capacity by choosing its hypothesis space. In the Linear Regression example we
gave the hypothesis space of our model, which was {w>x}w∈Rn for x ∈ Rn. If we let the
hypothesis space to have polynomials, or other kind of functions, we are augmenting its
capacity. This may lead us to a complex solution that fits well the train set but not the test
one. This problem is very common in Machine Learning and has the name of Overfitting.
The other problem we usually have is the Underffiting. This problem origin is that our
hypothesis space may not contain the function we look for, therefore, the model does not
perform well in either set.
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1.3 Maximum Likelihood Estimation

From now on we will consider our problem from a more probabilistic or statistic point
of view. What we have considered in Example 1. as an optimization problem, finding
some w∗ such that the loss function was minimum, now is raised as the problem of esti-
mating some function f ∗ over a parametric family of functions { fθ}θ∈Θ such that f ∗ ≈ f ,
for f being the real, but unknown, objective function. In this case { fθ}θ∈Θ is our hypothesis
space.

We consider that our observations x ∈ Rn follow a certain, but unknown, distribution
function pr(x). This function plays the same role as the objective function f we considered
above. We also consider a family of parametric distribution functions {p(x; θ)}θ∈Θ that
represent the hypothesis space of our algorithm. Let us introduce before anything the
following definition:

Definition 1.3. Given an observation x ∈ X, where X is considered the sample space, we can
define a likelihood function as follows:

L(x; ·) : Θ −→ R

θ 7−→ L(x; θ) = fθ(x)

Where fθ is the density of the mentioned model. 6

So we can say that if we are given a certain x ∈ X, we can make an assumption of how
are the observations distributed. Once we have one assumption, we can set

p(x; ·) : Θ→ R

θ → p(x; θ) = fθ(x) (1.3)

which is indeed a likelihood function if our assumption was right. It is important to
note the importance of how well we guess the distribution. If the real distribution of the
data does not belong to our hypothesis space for some θ then, there is nothing we can do
to estimate our parameters this way. One of the most used methods to estimate is the
Maximum Likelihood Estimator. This method gives us an estimate θ̂ ∈ Θ that maximizes the
likelihood function for every observation. Let us define it formally.

Definition 1.4. We will call maximum likelihood estimator (MLE) of θ to θ̂ : X → Θ ⊂ Rd such
that

L(x; θ̂(x)) = sup
θ∈Θ

L(x; θ), ∀x ∈ X (1.4)

In plane words, we can say that the MLE of a parameter θ is understood as the pa-
rameter θ̂ ∈ Θ that maximizes the likelihood function for every observation x ∈ X. Let
us retake the fact that we can set our hypothesis space {p(x; θ)}θ∈Θ to match 1.4 once we
have made an assumption about the distribution of our observations. We also point that

6Here fθ is expressed as the Radon-Nikodym derivative of the probability distribution. This let us define a
likelihood function even if the model has not an absolute continuous probability distribution
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we consider our observations x(i) to be i.i.d. Then, as we only care for the parameters that
maximize the likelihood function for every x we can express 1.4 as follows:

θML = arg max
θ∈Θ

n

∏
i=1

p(x(i); θ) (1.5)

And since we aim to maximize this, and therefore we will be interested in differentiate
this function, we can apply over it a log-transformation to make the differentiation part
easier:

θML = arg max
θ∈Θ

n

∑
i=1

l(x(i); θ) (1.6)

Where l(x; ·) = log p(x; ·). Notice that doing this transformation does not change the
maximum we are looking for since the log() function is a monotonically increasing func-
tion. Now, if we divide by a constant n, without changing the maximum, we obtain the
following expression:

θML = arg max
θ∈Θ

1
n

n

∑
i=1

l(x(i); θ) (1.7)

We are almost done, but before showing the last expression of 1.4 we have to present a
new variable with a particular distribution:

Definition 1.5. Let Y = (y(1), y(2), . . . , y(m)) be a sample of size m where y(1), y(2), . . . , y(m) are
the m observations from this sample. The empirical distribution of the sample Y is a function
F : X → [0, 1] defined as:

F(y) =
1
n

n

∑
i=1

1{y(i)≤y}

Where 1{y(i)≤y} is the indicator function.

Taking now Definition 1.5 we have that for a fixed x(i) we can set P(X = x(i)) =

F(x(i))− F(x(i)−) = 1
n with X following the empirical distribution. Thus, we can substi-

tute this in 1.7 and we get:

θML = arg max
θ∈Θ

n

∑
i=1

P(X = x(i)) l(x(i); θ) (1.8)

Which is the same as

θML = arg max
θ∈Θ

EX∼ p̂r l(x(i); θ) (1.9)

This last equation shows the relation that exists between finding the MLE estimator and
reducing the cross-entropy. This cross-entropy and can be expressed as:

H(p, q) = Eq[− log(p(x))] (1.10)
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If we take both functions and compare them, we see that maximizing the log-likelihood
function p(x; θ) to match fθ(x) is equivalent to minimize the cross-entropy between a para-
metric distribution function pθ and the empirical data distribution p̂r. We will introduce
more explicitly this cross-entropy function in Chapter 3, where we give the definition of the
KL-Divergence. For now we just need to be aware of the equivalence between these two
procedures since the usual practice is to set the loss function of a model as the cross-entropy
and then, look for its minimum.

In order to set this clear we now introduce one of the other most common examples of
Machine Learning model. In this case we are going to proceed by the MLE method to find
the solution.

Example 2: Logistic Regression

The Logistic Regression model is very useful for binary classification problems, despite
of its name. In this new scenario we aim to estimate P(Y = 1 | X = x) and since we
look for a probability, we are looking for a function σ : X → [0, 1]. Let us introduce the
hypothesis space that is used in this model as {σθ(z)}. Where z = θ>x. The function σ

has the name of logistic sigmoid function.

σ : Z −→ [0, 1]

z 7−→ 1
1 + e−z

This function has some interesting properties. Its value tends to 0 when z → −∞ and
tends to 1 when z→ +∞. It is also a differentiable function, which is essential to minimize
the cost function. Now we suppose that P(Y = 1 | X = x) = σθ(z). Since there are no
more possibilities, P(Y = 1 | X = x) must be 1− σθ(z). Then we can give the conditional
distribution of Y given X as

P(Y | X) = σθ(z)y(1− σθ(x))1−y

.
Now we follow the steps we followed in [*referencia]. First with the assumption of our

observations to be i.i.d we can define the likelihood function as follows

p(θ) = ∏
i

σ(θ>x(i))y(i)(1− σ(θ>x(i)))1−y(i)

And therefore, the log-likelihood as:

log(p(θ)) = ∑
i

y(i) log(σ(θ>x(i))) + (1− y(1)) log(1− σ(θ>x(i)))

This equation has not a closed solution like in the MSE example, in fact, this does not
happen very often. In the next section we present the basis of how to approximate to the
minimum of this kind of functions, and we will have finished this preliminary chapter.
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1.4 Gradient Descent

The purpose of this section is to briefly give the Gradient Descent algorithm. This al-
gorithm is used to find local or global minimums of functions. It is a first order iterative
method, which means that it needs to compute the first derivative of the function to min-
imize, and also it works on an iterative way. This algorithm has an enormous importance
in Machine Learning and it is used to find local minimums of the loss functions.

Gradient Descent

Input: f : Rn → R differentiable
x(0) an initial solution

Initialize: k← 0
while ‖∇ f (x(k))‖ ≥ 0 do

x(k+1) = x(k) + ε∇ f (x(k))
k← k + 1

end
Return: x(k)

Algorithm 1: Gradient Descent Algorithm

This algorithm is the base for the algorithms that are used in Machine Learning, and
specially its subset: Deep Learning. When working in the last field we face a huge number
of observations, and applying this algorithm get us a significant computational burden.
In order to avoid this there have been designed some variations of Gradient Descent.

The most important to mention are the Stochastic Gradient Descent (SGD) and the Mini-
Batch Gradient Descent. The first one computes the gradient taking one observation each
iteration 7. The Mini-Batch, by the other side, let us to compute the gradients for fixed
sized batches, or sets, of observations.

7The Batch Gradient Descent represent the opposite method, it takes all the observations for each iteration



Chapter 2

Deep Learning

In this chapter we introduce a special kind of machine learning models: Neural Net-
works. We aim to show how these specific models have evolved trough time to the current
days. By showing this evolution we are able to introduce briefly all the important concepts
associated with Neural Networks. It also let us define a closed terminology to follow in a
field whose concepts are sometimes interchangeable, then avoiding possible misconcep-
tions. Also we show in this chapter that this kind of models are extremely useful for the
task of function approximation by proving the Universal Approximation Theorem. Finally
we give the algorithm that is used to making the training process possible.

2.1 The Perceptron

Although the name of neural network seems a bit pretentious it is not if we look at
its first apparition. The ’Perceptron’ was introduced in [3] by Rosenblatt, who was a psy-
chologist, in his attempt to give a mathematical model to the brain human cells: neurons.
In this section we introduce a few concepts that will be required for explaining what a
Perceptron does, and also to understand its limitations.

We are going to start by defining the Perceptron model. Let us take θ = (θ1, · · · , θn)

and x = (x1, · · · , xn), both from Rn. Also we need to define a function:

h(x) = sign(θ>x), where sign(z) =
{

1 z ≥ 0
−1 z < 0

Now we can give a visual representation of this Perceptron model. This kind of repre-
sentations are known as graph representations. The cause for this to happen is that some-
times these models are considered as directed acyclic graphs. That means that can be repre-
sented as graphs without cycles where each node or edge represent some operations. Usu-
ally we see that the edges represent the linear transformations of the elements comming
from the previous node. The nodes represent the composition of these linear transforma-
tions with a non-linear function, usually named g but in our example we named it h. Note

9



10 Deep Learning

that a directed acyclic graph will always have at least 1 leaf node, those nodes correspond
to the output nodes, in our example from below the output node is represented as O(1).

x1Input 1

x2Input 2
h(a1) O(1)

θ1

θ2

Where

a(1) =
2

∑
i=1

θixi + b, b ∈ R (2.1)

O(1) = h(a(1)) = {1,−1} (2.2)

Omiting the bias or intercept term for simplicity, and considering O(1) = h(a(1)) =

hθ(x) = sign(θ>x) and making use of the concepts from the previous chapter we see that
what we are facing is a supervised binary classification problem. The way of training
here, however, is a bit different. For updating the weights of our model what we do is just
follow a simple rule every new training observation (x(i), y(i)). That rule is the following:

θj ← θj −
ε

2
(
hθ(x(i))− y(i)

)
x(i)j (2.3)

Looking at this function we can see that for every time that the output is the correct one,
the parameters do not change. We also note that when the output is not correct we have
the following:

θj ← θj + εy(i)x(i)j (2.4)

The training process of this model is equivalent to finding a separator hyperplane
between the two classes of x labeled by y as {−1, 1} and here is were we face it most
important limitation. Let us give a definition first for the following part:

Definition 2.1. Let X1 and X2 be two separated set of points in Rn. We say that X1 and X2 are
linearly separable if there exist some w ∈ Rn and k ∈ R such that

n

∑
i

w>x < k, ∀x ∈ X1 and
n

∑
i

w>x > k, ∀x ∈ X2

This property of lineal separability holds for sure when facing two disjoint convex
sets, but usually lead us to problems when they are not. It was showed in [2] by Minsky
and Papert that the Perceptron were only capable of learn to classify between two classes
when given a linearly separable base space. They showed in their book its limitations by
remarking the failure of the Perceptron on learning the XOR function. In order to surpass
this problem this primitive model of a Neural Network evolved from the single perceptron
to the Multilayer Perceptron (MLP).
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2.2 Multilayer Perceptron

As we said at the end of the last section, the Multilayer Perceptron, or as we are going
to name it along the project: MLP, was the solution for skipping the linearly separation
limitations. We can see this model as an evolution of the previous one. What we do now
is to stack different perceptrons in one or more layers. Here we show graphically the
simplest MLP that exists:

x1Input 1

x2Input 2

g(z(1)1 )

g(z(1)2 )

z(2) Output

w(1)
1,1

w(2)
2,1

w(1)
1,2

w(2)
2,2

w(2)
1

w(2)
2

Hidden
layer

Input
layer

Output
layer

The elements of this graph are the following: x = (x1, x2) a single observation vector,
W(1) = (w(1)

1 , w(1)
2 ) a matrix, whose rows are the weight vectors of each neuron in the

hidden layer, i.e, w(1)
i = (w(1)

i,1 , w(1)
i,2 ) for i = 1, 2. We have a second linear transformation

over the outputs of the hidden layer with w(2) = (w(2)
1 , w(2)

2 ) being its weight vector. Lastly,
if we let g(·) be a non-linear function, lets say a sigmoidal one, we can express the elements
z(i) as follows

z(1)i =
2

∑
j=1

w(1)
i,j xj + b(1)i , i = 1, 2

z(2) =
2

∑
j=1

w(2)
j g(z(1)j ) + b(2)

This simple MLP model is proved to solve the XOR approximation task. It surpass the
problem of its predecessor by composing non-linear functions with lineal ones. Making
this enables the model to learn not only lineal functions 1, but a huge space of different
functions as we will show in Section 3. This non-lineal functions that are used on the
hidden layer, which name comes from the fact of it nor being the input nor the output one,
but an intermediate layer, are named activation functions. Even there are some activation
functions that are of common use, now the ReLU activation function 2 could be the most
popular, but taking the decision of choosing one over the others is still an active area of

1Note that if we let g(·) to be linear, the total composition of functions will give a linear function, and we can
not approximate a non-linear function with a linear one.

2ReLU stands for Rectifier Linear Unit, and we can represent it as: max[x, 0] for a given x



12 Deep Learning

research. On the graph we showed before we chose g to be a sigmoidal activation function,
this particular one, and the tahn(·) function are commonly used for classification tasks,
and were the two most popular until the apparition of ReLU. Every one of them has its
own benefits and limitations, we only need for them to be differentiable in order to get the
gradients during the training process as we will see later.

Let us introduce finally a formal generalization of a MLP. As we understand this model
now, the first step would be a linear transformation of some input vector x ∈ Rn.

A(1) : Rn −→ Rm

(x1, · · · , xn) 7−→ (z1, · · · , zm) (2.5)

Where A(1)(x) = W(1)x + b(1) = z for W being a m× n matrix, with m denoting the
number of hidden units that has the hidden layer 1, and b is a m-dimensional vector for
the bias term. Now if we retake equation 2.5 and compose it with a non-lineal function
applied element wise we get

g(1) : Rm −→ Rm

(z1, · · · , zm) 7−→ (h1, · · · , hm) (2.6)

With h = g(1)(z) = (g(1) ◦ A(1))(x). We can see these compositions as the functions
that resume the process of passing from one layer to the next. The important point to note
here is that we can express an MLP model just as a differentiable function f . This function
must be, of course, a composition of functions such as F(i) = (g(i) ◦ A(i)). With this we can
define a differentiable f = (Fn ◦ · · · F2 ◦ F1) that resumes our MLP model. Now we give a
more general and formal definition of a neural network by defining its components. We
will use this notation the following sections.

Definition 2.2. Given x ∈ Rn a vectorized observation. Let be (W(l), b(l)) the pair consisting in
the weight matrix and the vector intercept for the layer l where 1 ≤ l < L. Then we can define a
MLP with L layers by defining its components as follows:

For 1 ≤ l < L

– We define the hidden layers as h(l) = g(z(l)). Where z(l) = W(l)h(l−1) + b(l) and
g(·) is usually a non-linear real valued function.

And for l = 0 and l = L

– The first layer is defined as h(0) = x. This is why it is usually also called input layer.

– The last layer is defined as h(L) = F(h(L−1)). Where F is called output function and
that is the reason for knowing this last layer as output layer.

As we have seen what a MLP is, let us show how this parametric family of functions
performs in the task of being used as approximator functions.
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2.3 Universal Approximation Theorem

In this section we aim to proof the Universal Approximation Theorem. This theorem gives
a theoretical proof of how MLP are capable of approximate a wide variety of functions.
We also want to make clear that our work is not centered in giving a deep analysis of
this theorem, and then, we are going to give only an intuition behind the theorems used
during the proof, instead of proving them too. It is worth pointing out that we are going
to follow the version of the proof that was given in [4]. This proof is based on sigmoid
activation functions, a more general proof can be obtained in [5]. Let us present the two
theorems that we will use later.

Theorem 2.3. Hahn-Banach Theorem. Let X be a real vector space, p a subliner functional on X,
M ⊂ X and f a linear functional on M such that f (x) ≤ p(x), ∀x ∈ M. Then there exists a
linear functional F on X such that F(x) ≤ p(x) for all x ∈ X and F|M = f .

This theorem is used as a generalization of the hyperplane separator theorem to topologi-
cal vector spaces and it is an important tool in functional analysis. We do not aim to proof
it but to give its intuition in our problem scenario. It is shown in [14] that given the con-
ditions of X being a normed space and d(x, M) > 0 3 there exists a functional F defined
over X with F 6= 0 but F|M = 0. This is essentially what is used during the proof, and
since we will proof the existence of this functional, we will represent it as the following
theorem states.

Theorem 2.4. Riesz-Markov-Kakutani Representation Theorem. Let X be a locally compact Haus-
dorff space and Cc(X) the space of compact support functions defined on X. For any positive linear
functional I on Cc(X), there is a unique regular Borel measure µ on X such that

I( f ) =
∫

X
f (x)dµ(x)

We do not attempt to give any details here as the theory that underlie this theorem is
far beyond of the purpose of our work.

Definition 2.5. We say that σ ∈ C(Im) is discriminatory relative to a signd Borel measure µ if∫
σ(y>x + θ)dµ(x) = 0

∀y ∈ Im and θ ∈ R, implies that µ = 0.

The point about this definition is to note σ as a non-destructive function. The basic
idea is to understand that if we pass some x to σ, there would exist some y and θ such that
the linear transformation of y>x + θ could be send to a non-zero measure set, if not, it is
the measure µ itself which is 0. This help us to prevent losing information by applying
this kind of functions when designing a MLP. In annex 7 we have given the proof of every
bounded sigmoid function being discriminatory. We have moved it to the Annex because

3Here d represents the uniform norm
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we have not notions of some mathematical concepts that involve those proves (Fourier
Transform).

Theorem 2.6. Let σ be a bounded, discriminatory sigmoid function. Let C(Im) be the space of
real-valued continuous functions on Im = [0, 1]m. Then given ε > 0 and any function f ∈ C(Im),
there exist N ∈N, βi, ci ∈ R, wi ∈ Rm for i = 1, · · · , N with which we may define:

F(x) =
N

∑
i=1

βiσ(w>i x + ci) (2.7)

such that

| F(x)− f (x) |< ε, ∀x ∈ C(Im). (2.8)

In other words, functions of the form F(x) are dense in C(Im).

Proof. We start by defining N ⊂ C(Im) as the space of functions of the form 2.7. It is easy
to see that N is a linear subspace of C(Im). We aim to prove that N is dense in C(Im), i.e
N = C(Im). In order to prove that we are going to suppose the opposite.

Let suppose then N 6= C(Im). We have that the closure of N is a closed, proper
subspace of C(Im). Here we make use of Theorem 2.3 (Hahn-Bach Theorem) to assert the
existence of a bounded linear functional L on C(Im) such that L|N = 0 but with L 6= 0.
It is obvious that L|N = 0 implies L|N = 0. Now, using Theorem 2.4 we know that this
functional can be represented as

L(h) =
∫

Im
h(x)dµ(x) (2.9)

for some µ ∈ M(Im) and ∀h ∈ C(Im). In particular, as ∀F ∈ N ⊂ Cc(X) we have L|N = 0,
and then, we can say the following

L(F) =
∫

Im
F(x)dµ(x) =

∫
Im

σ(y>x + θ)dµ(x) = 0 (2.10)

for all y and θ.

We started the proof following the assumption that σ was a discriminatory function.
Thus, we must have now µ = 0. But this follows a contradiction with the fact of L 6= 0
since given µ = 0 we have ∫

Im
h(x)dµ(x) = 0, ∀h ∈ C(Im). (2.11)

Hence, N must be dense in C(Im)

This Theorem we have just proved implies that a MLP big enough will be able to
represent almost every function we are interested in learning. The Theorem, however, do
not guaranty that the algorithm will be to learn that function. Maybe because the algorithm
used to find the optimal parameters fails or maybe because we face an Overfitting problem.
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This Theorem also do not say anything about the structure of a MLP. It assures that a
large enough MLP can reproduce any continuous function over a compact set, but do not
say anything about the number of units or layers 4.

2.4 Backpropagation Algorithm

In this section we present the algorithm that makes possible the training process of
a MLP model: the Backpropagation Algorithm. Let us remember that we will work on a
Machine Learning problem, hence our goal is to make our algorithm to learn. In Chapter 1
we gave the definition of a cost function, when working with Neural Networks we usually
chose the cross-entropy as our cost function. This scenario is now not as simple as when we
tried to find the optimal of a lineal regression, we are facing now very complex functions,
defined over huge parameter spaces, and obviously not convex. Although there are a lot
of gradient based methods (SGD, MiniBatch Gradient Descencent...) to find local optimums
of the cost function the problem here is to compute all the derivatives with respect to
thousands of parameters, and Backpropagation is the solution.

Let us first give the intuition of the algorithm and then we will proof its functionality.
If we imagine the first step of our process to be the input going trough the MLP until it
is transformed to the output as goign forward, then it will be easy to understand what
to do when going backwards. Once we have computed the output, the backpropagation
algorithm does the inverse to compute the error of each layer from the output one until
the input layer 5.

Let us define δ
(l)
j = ∂h(l)j /∂z(l)j as the error of neuron j in layer l. We are going

to show that by using this definition of the error it is possible to construct an iterative
method of computing the error of each neuron of the network. Later on we will use this
errors to compute our main objective which are the partial derivatives with respect to the
parameters of the network.

Proposition 2.7. Let L be the cost function (or loss function) for our MLP network and let δ
(l)
j be

the error of neuron j in layer l as we defined it before. Then, following the notation introduced in
Definition 2.2, we can compute the error for each neuron j in every layer l by using the following
iterative method:

For the last layer ( l = L )

δ
(L)
j =

∂L

∂h(L)
j

σ′(z(L)
j ) (2.12)

And for 1 ≤ l < L

δ
(l)
j = ∑

k
δ
(l+1)
k W(l+1)

k,j σ′(z(l)j ) (2.13)

4The proof given by [5] is not reduced only to one layer like the one of [4]
5Which is not being considered as the input does not have any error to compute
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Proof. We are going to proof equation 2.12 in first place. Following the definition of δ
(l)
j

and making use of the Chain Rule of Calculus it is immediate that:

δ
(L)
j =

∂L

∂z(L)
j

=
∂L

∂h(L)
j

∂h(L)

∂z(L)
j

=
∂L

∂h(L)
j

σ′(z(L)
j ) (2.14)

The only thing we needed here was to remember the definition of h(L), and that is
h(L) = σ(z(L)). Now, given that we know how to compute the error for the last layer we
can compute the rest in terms of their next. Using again the Chain Rule of Calculus we
get

δ
(l)
j =

∂L

∂z(l)j

= ∑
k

∂L

∂z(l+1)
k

∂z(l+1)
k

∂z(l)j

(2.15)

Now we just have to study the two terms separately. We know by definition that
∂L/∂z(l+1)

k = δ
(l+1)
k . Retaking the definition of z(l+1)

k we can see its relation with z(l) as
follows

z(l+1)
k = W(l+1)

k σ(z(l)) + b(l+1) = ∑
j

W(l+1)
k,j σ(z(l)j ) + b(l+1) (2.16)

From this we see that its partial derivative with respect to z(l)j will be 0 except for j-th

element of σ(z(l)j ). Thus

∂z(l+1)
k

∂z(l)j

= ∑
k

W(l+1)
k,j σ′(z(l)j ) (2.17)

Lastly, we just have to bring equations 2.16 and 2.17 together to conclude the proof:

δ
(l)
j = ∑

k

∂L

∂z(l+1)
k

∂z(l+1)
k

∂z(l)j

= ∑
k

δ
(l+1)
k W(l+1)

k,j σ′(z(l)j ). (2.18)

Once we have shown the process to compute all the error terms of our MLP it is time
to use them to compute the partial derivatives with respect to the parameters.

Proposition 2.8. Given L the cost function (or loss function) for a MLP network on which we
hace calculated the error terms δ

(l)
j for all l and j, we can compute the partial derivatives of L with

respect to its parameters as follows:

∂L

∂w(l)
i,j

= δ
(l)
i h(l−1)

j (2.19)

∂L

∂b(l)j

= δ
(l)
j (2.20)
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Proof. We will proof the first and we will show that prove the second is equivalent to it.
First we want to retake the definition of z(l)k

z(l)k = ∑
j

W(l)
k,j σ(z(l−1)

j ) + b(l)k . (2.21)

It is easy to see from 2.21 that ∂z(l)k /∂w(l)
i,j = 0 for every k 6= i. Now, using again the

Chain Rule of Calculus we get

∂L

∂w(l)
i,j

= ∑
k

∂L

∂z(l)k

∂z(l)k

∂w(l)
i,j

(2.22)

From what we said in the above paragraph we have ∂z(l)k /∂w(l)
i,j = 0 for every k 6= i

and ∂z(l)k /∂w(l)
i,j = σ(z(l−1)

j ) = h(l−1)
j if k = i. Then, the expression 2.22 can be rewritten

as:

∂L

∂w(l)
i,j

=
∂L

∂z(l)i

∂z(l)i

∂w(l)
i,j

= δ
(l)
i h(l−1)

j (2.23)

The intercept (or bias) part is analogous, we just have to compute the partial derivative
with respect to b(l)j but from the definition of z(l)j = W(l)

j σ(z(l−1)) + b(l)j we know that

∂z(l)k /∂b(l)j = 1 for all l and j when k = j and it would be 0 if not. Then:

∂L

∂b(l)j

= ∑
k

∂L

∂z(l)k

∂z(l)k

∂b(l)j

=
∂L

∂z(l)j

∂z(l)j

∂b(l)j

= δ
(l)
j (2.24)

With this last proof we have everything we need to use a MLP model in order of
solving a machine learning problem. Essentially we have shown that MLP’s are a family
of differentiable functions that are extremely useful for function approximation. Also we
have seen that given a cost function L, such as cross-entropy, we can compute its partial
derivatives to adjust its parameters with a gradient descent method. In the following
chapter we will discuss a special kind of neural network model which is based in MLP
functions.
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Chapter 3

Generative Adversarial Models

Let us introduce this chapter with a little metaphor of what are we going to repro-
duce. Imagine you have a two player non-cooperative game between a cop and a criminal,
whose crime is to counterfeit currency. The cop job is to become good on distinguishing
fake coins over the legal ones. By the other side, the criminal is trying to make coins
that are difficult to distinguish in order to pass them as legal ones. This is the exactly
philosophy of this model. First in this chapter we will present two ways of calculating the
divergence between two distribution probability functions OJO NAME. Then, we will give
a theoretical analysis of the Generative Adversarial Model (GAN). It is worth pointing out
that we refer to this analysis as theoretical because we are not going to consider the model
as a parametric one, but we are going to show a convergence analysis in the probability
density functions space.

3.1 Theoretical Framework

In this section we present two methods to quantify the similarity between two proba-
bility distribution functions. In fact, we have spoken of one of them in Chapter 1. These
methods will be used later to understand what are we doing and why, when training the
Generative Adversarial Model.

Definition 3.1. Given p and q two probability distributions of a continuous random variable we
define the Kullback-Leibler Divergence as follows:

DKL(p || q) =
∫ +∞

−∞
p(x)

log p(x)
log q(x)

dx. (3.1)

If we remember the definition of cross-entropy from Chapter 1 we can see now that it
comes from here:

DKL(p || q) =
∫ +∞

−∞
p(x)

log p(x)
log q(x)

dx =
∫ +∞

−∞
p(x) log p(x)−

∫ +∞

−∞
p(x) log q(x)

If we consider this equation as a sum, the right component can be rewritten as:

19
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Ep[− log(q)]

Which is, indeed, the cross-entropy definition. That means that minimizing the cross-
entropy lead us to minimize the KullbackLeibler Divergence, i.e., the dissimilarity between p
and q.

Proposition 3.2. DKL is always non-negative and DKL = 0 if and only if p = q almost every-
where.

Proof. From the definition of DKL we can rewrite equation 3.1 as:

DKL(p || q) =
∫ +∞

−∞
p(x)

log p(x)
log q(x)

dx = Ep(x)

[
log

p(x)
q(x)

]
. (3.2)

Now let A = {x | p(x) > 0}. Thus:

DKL(p || q) =
∫

A
p(x)

(
− log

q(x)
p(x)

)
dx ≥ − log

∫
A

p(x)
q(x)
p(x)

dx ≥ − log
∫

X
q(x)dx. (3.3)

Here we have used the Jensen’s Inequality on the first inequality, which stands that
g(E[X]) ≤ E[g(X)] for any convex function g. Now, since q is a probability distribution
function we have:

DKL(p || q) ≥ − log
∫

X
q(x)dx = − log 1 = 0. (3.4)

With this we have proved DKL ≥ 0. Since the function − log() is strictly convex we
can see from equation 3.2 that for the first inequality, the equality only holds when q(x)

p(x) =

c, ∀x. Therefore: ∫
A

q(x)dx = c
∫

A
p(x)dx = c. (3.5)

Also the last inequality from the same equation 3.2 turns equality when:∫
X

q(x)dx = c
∫

A
p(x)dx = c. (3.6)

Therefore, c = 1 and we have that DKL = 0⇔ p = q almost everywhere.

We have seen a very interesting property of the KL Divergence. However, it is important
to notice that it is asymmetric. We can think of it when p(x) is close to 0 but q(x) is not. To
fix this symmetry problem we present a different way of measuring similarities between
distributions:

Definition 3.3. Given p and q two probability distributions and let DKL(p || q) be their KL
Divergence we can define the Jensen-Shannon Divergence as:

DJS(p || q) =
1
2

DKL(p || p + q
2

) +
1
2

DKL(q ||
p + q

2
)
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Observation 3.4. It is worth pointing out that DJS(p || q) ≥ 0 from its definition. Even more,
we can say that DJS(p || q) = 0 if and only if p = q almost everywhere. We have just to look at
the DKL divergences, they are 0 only if and only if

p =
p + q

2
=⇒ 2p = p + q =⇒ p = q almost everywhere.

3.2 Generative Adversarial Networks

This is the main section of this chapter. Its purpose is to formulate a Generative
Adversarial Network (GAN) model and to give a theoretical analysis of what it does. Its
first apparition was in [1] by the hand of Goodfellow (2014). We will follow this paper in
order to show its theoretical behaviour.

The main objective of a GAN model is, as its name says, to generate an specific output.
When we face a generative problem what we are saying is that we aim to estimate a join
distribution function of the form P(X, Y), where X is the dataset and Y are the targets,
or labels. The examples we have seen until now were all examples of discriminative
models. A discriminative model can be seen as a model whose objective is to estimate
a conditional distribution P(Y | X). This kind of models have been extremely useful for
image generation, and it may be the model on which the most significant advances this
recent yeas. In order to just show the potential of this models let us show the following
figure.

Figure 3.1: Hyperrealistic fake images generated by NVIDIA, from [17]

Now, retaking the metaphor we gave in the introduction of this chapter, we will define
a model with two MLP networks: one will play the role of the cop, and the other as the
criminal. Given that we aim to generate fake inputs it is this last one on which we are
interested. Let us introduce them as follows:



22 Generative Adversarial Models

Discriminador

Let D(x, θd) be a differentiable function expressed as a MLP network with parameters
θd. Usually when working with GAN models we are going to treat with images, hence
x will be a vectorized image such that x ∈ Rn for some n. We will name this function
Discriminator. Its output will be a scalar that lies on [0, 1]. This scalar can be seen as
the probability of x coming from the real distribution Pr rather than from the distribution
that we are going to generate.

Generator

Let G(z, θg) be a differentiable function expressed as a MLP network with parameters
θg. Here, the input z will be a noise variable on which we will define some prior pz(z)
(we will always consider this z to follow a normal distribution, so z ∼ N). This function
is known as Generator. The objective of this function G is to reproduce an estimation
Pg = P̂r over the real data distribution Pr. In simpler words, we aim to get our generator
to learn a probability distribution function Pg such that Pg ≈ Pr.

Now that we have presented the two agents of our model it is time to explain how
they interact, or specifically, how they compete. The acronym of a GAN model includes
the word Adversarial, that is why we say compete, and that is what we are going to show.
On one side we have said that our discriminator function D returns the probability of x
coming from Pr instead of Pr. So, given x ∼ pr(x), where pr(x) denotes here the distri-
bution function of the real data, we will be interested in our discriminator to maximize
Ex∼pr(x)[log D(x)]. By the other side, given what we will call a fake observation, G(z) with
z ∼ pz(z), our discriminator is supposed to output a low probability for it being real, what
is the same to say that our discriminator will like to maximize Ez∼pz(z)[log(1−D(G(z)))].

If we look now to the generator, we will see that its objective is the opposite to the
discriminator for the second part. Our generator function is interested in making the
discriminator function D to output a close to 1 value. Saying this is equivalent to say that
our generator will try to minimize Ez∼pz(z)[log(1− D(G(z)))].

Wrapping all this together we arrive to a non-cooperative two player zero-sum game in
which the Generator is trying to fool the Discriminator. Making use of the min-max
formulation for a zero sum non-cooperative two players game we formalize this as:

min
θg

max
θd

L(G, D) = Ex∼pr(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (3.7)

Or what is the same:

min
θg

max
θd

L(G, D) = Ex∼pr(x)[log D(x)] + Ex∼pg(x)[log(1− D(x))] (3.8)

Essentially, what we are going to show is that effectively the generator G ends up
defining a distribution function pg over the fake observations G(z) obtained with z ∼
pz. Now we will give a theoretical analysis of this. We want to make clear that this is,
indeed, a theoretical analysis, and it means that we are not going to consider this model
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to be parametric but we are going to give a convergence analysis in a density probability
functions space. We are going to start by giving the following proposition:

Proposition 3.5. Given a fixed generator G, the optimal discriminator D is:

D∗G(x) =
pr(x)

pr(x) + pg(x)
(3.9)

Where pr denotes the real distribution of our data and pg the estimation from G.

Proof. Given any generator G the goal of the discriminator D is to maximize L(G, D).

L(G, D) =
∫

x
pr(x) log(D(x)) + pg(x) log(1− D(x))dx (3.10)

Sine the integral is going trough every value of x we can omit it to find the maximum.
Also we are interested in D(x), so we propose the following:

Let x∗ = D(x), A = pr(x), B = pg(x). Therefore, and considering log as the logarithm
in base e we have:

f (x∗) = A log x∗ + B log(1− x∗)
∂ f (x∗)

∂x∗
= A

1
x∗
− B

1
1− x∗

. (3.11)

Now we just have to set ∂ f (x∗)
∂x∗ = 0 and undoing the change of names we did before

we obtain:

D(x) = x∗ =
A

A + B
=

pr(x)
pr(x) + pg(x)

. (3.12)

Notice that in 3.11 we are safely differentiating with respect to D(x) because our dis-
criminator do not need to be defined outside the union of the supports of pr or px. Also
we have to remember that D outputs a probability and this probability never takes the
value of 0 but values that are close to it.

Now, considering this optimal discriminator D∗ we define what we call the virtual
training criterion for G as follows:

C(G) = max
D

Ex∼pr(x)[log D∗(x)] + Ex∼pg(x)[log(1− D∗(x))]

= max
D

Ex∼pr(x)
[

log
pr(x)

pr(x) + pg(x)
]
+ Ex∼pg(x)

[
log

pg(x)
pr(x) + pg(x)

]
. (3.13)

Theorem 3.6. The global minimum of the virtual training criterion C(G) is achieved if and only
if pg = pr. At that point, C(G) takes the value − log 4.
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Proof. To begin with this proof we retake definition 3.3 from section 3.1.

DJS(pr || pg) =
1
2

DKL(pr ||
pr + pg

2
) +

1
2

DKL(pg ||
pr + pg

2
) (3.14)

=
1
2

( ∫ +∞

−∞
pr(x) log

( 2pr(x)
pr(x) + pg(x)

)
dx +

∫ +∞

−∞
pg(x) log

( 2pg(x)
pr(x) + pg(x)

)
dx
)

=
1
2

(
2 log 2 +

∫ +∞

−∞
pr(x) log

pr(x)
pr(x) + pg(x)

dx +
∫ +∞

−∞
pg(x) log

pg(x)
pr(x) + pg(x)

dx
)

The two integrals from the equation above can be seen as:

∫ +∞

−∞
pr(x) log

pr(x)
pr(x) + pg(x)

dx = Ex∼pr(x)
[

log
pr(x)

pr(x) + pg(x)
]

(3.15)

∫ +∞

−∞
pg(x) log

pg(x)
pr(x) + pg(x)

dx = Ex∼pg(x)
[

log
pg(x)

pr(x) + pg(x)
]

(3.16)

Thus, taking equations 3.14 and 3.15, 3.16 we obtain:

DJS(pr || pg) =
1
2
(
2 log 2 + C(G)

)
. (3.17)

And finally:

C(G) = 2DJS(pr || pg)− 2 log 2. (3.18)

Now we have expressed the virtual training criterion C(G) in relation with the Jensen-
Shannon Divergence. The minimum of C(G) is achieved when the minimum of DJS is
achieved. Since we have observed in observation 3.4 DJS reaches its minimum if and
only if pr = pg almost everywhere, then we have the same for C(G). Also we know that
this minimum for DJS is 0 and therefore, looking at the equation 3.18 we obtain that the
minimum for C(G) takes the value −2 log 2 = − log 4

With this last theorem we have shown that the training process of a GAN model, and
in particular, trying to minimize the generator, is equivalent to minimize the JS-Divergence
between the real data distribution function and our estimate distribution function. This
lead us to a generator that can be represented as a distribution probability function, hence,
given some input it will map it to an output that will follow the same distribution as the
real data on which we have trained our model. We give the algorithm of this model in
annex 7.2.

3.3 Problems with GANs

Even though GAN models have been a really powerful tool in order to solve the task
of generate fake images than look very close to real ones, they have a very complicated
way of training. We have defined the training of a GAN model as a simultaneous training
between two models which compete with each other in a zero sum game. This will lead
us to some of the problems that will be discussed below.
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3.3.1 Gradient Descent techniques and Nash Equilibrium Problem

The idea of training a GAN model to the optimal model can be though to be the same
as finding a Nash equilibrium for a zero sum non-cooperative game. The discriminator
goal is to minimize the cost function JD(θD, θG) meanwhile, the generator is interested on
minimize JG(θD, θG). The solution for this game shoud be some point (θD∗, θG∗). At this
point either of the two cost functions JD, JG are minimum with respect to its associated
parameters θD, θG respectively.

In [6] the authors discussed about how the modifications over the parameters trough
the training process could affect the relations between the two cost functions JD and JG.
For doing so they present the following example that shows the non-convergence of a
zero-sum game in a specific scenario with JD = f1 and JG = f2:

Example 3.7. Let f1(x) = xy and f2(y) = −xy. Suppose that f1 is the cost function for
the first player which is trying to minimize with respect to x in a two zero sum non-
cooperative game. Suppose that f2 is the analogous cost function for the second player
that would be interested in minimizing it with respect to y. Then:

δ f1

δx
= y

δ f2

δy
= −x

If we now follow the method of Gradient Descent with a learning rate ε we have to
update x = x − ε and y = y + ε in one iteration. The paper states that at some point
the gradient descent algorithm lead us to a stable orbit rather than converging to the
equilibrium point x = y = 0.

This example shows that finding a Nash equilibrium with gradient descent is not as-
sured. Therefore, and keeping in mind that when we work with GANs we are working
with complex cost functions that are not convex, with continuous parameters and high-
dimensional parameter spaces, make this problem even bigger.

3.3.2 Perfect Discriminator Problem

Before presenting this problem we have to make clear that we are going to introduce
some mathematical concepts without going to delve into them. Also we are going to give
an informal definition for one of them. We will do so in order to not exceed something
that is nothing more than an example.

Definition 3.8. Given a function f whe define the support of f as:

Supp( f ) = {x | f (x) 6= 0}

Definition 3.9. Let D : X → [0, 1] be a differentiable function expressed as a MLP and two
different probability distribution functions Pr and Pg with disjoint supports. We say that D is a
perfect discriminator if:

Pr[D(x) = 1] = 1 and Pg[D(x) = 0] = 1

i.e. the discriminator always take the value 1 when evaluated on a set containing Supp(Pr)

and 0 if evaluated on a set containing Supp(Pg).
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Now we have defined what a perfect discriminator is we have to give the intuition of
why is it a problem. If during the training process we encounter an optimal discriminator
which is perfect (also it is said discriminator whith accuracy 1) the gradients generated
during back-propagation will be 0 almost everywhere, and therefore, there will not be
changes on the performance for the generator.

In [8] the authors discuss about the perfect discriminator problem in a context of man-
ifold learning. We are going to show what happens when the supports of our two Pr and
Pg are disjoint. In order to do so we first have to define what a manifold is. Since we
are looking for showing this as an example we are going to introduce the concept in an
intuitive way to avoid the formal construction of what a manifold is.

Definition 3.10. ( Intuitive definition ) Given a topological space X that can be locally identified
with a Euclidian space with dimension m we say that X is a n-manifold.

Now we can present and prove the following theorem: Ojo

Theorem 3.11. Given two probability distributions Pr and Pg such that their supports are con-
tained on two disjoint compact subsets M and Q respectively, there exists a smooth optimal dis-
criminator D∗ : X → [0, 1] that is perfect and ∇xD∗(x) = 0, ∀x ∈ M ∪Q.

Proof. Since M and Q are two disjoint compact sets we can set ε to be de distance between
them such that 0 < ε = d(M, Q). Now we can define:

M̂ = {x | d(x, M) ≤ ε/3}
Q̂ = {x | d(x, Q) ≤ ε/3}

Now, because of the definition of ε we have that M̂ and Q̂ are two disjoint compact
sets. Therefore, by Urysohn’s Lemma there exists a smooth function D∗ : X → [0, 1] such
that D∗(x) = 1 ∀x ∈ M and D∗(x) = 0 ∀x ∈ Q. If we now look at the equation that the
discriminator D is trying to maximize:

Ex∼pr(x)[log D(x)] + Ex∼pg(x)[log(1− D(x))]

We can observe that for the function D∗ we notice that is an example of a perfect
discriminator and therefore the above function always take the value 0.

Furthermore, if we take x ∈ M ∪ Q and we assume that x ∈ M -the proof is analo-
gous if we assume x ∈ Q- we know that there exist a neighbourhood B of x such that
B = B(x, ε/3) on which D∗(x) is constant ∀x ∈ B. Thus, ∇xD∗(x) = 0, ∀x ∈ M ∪ Q
concluding the proof.

3.3.3 Mode Collapse Problem

This problem is the last we are going to discuss and also is the problem we are in-
terested to fix in this work. The problem of Mode Collapse is originated when a GAN
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model is asked to generate different classes of objects, and takes place during the training
process of the Generator. The problem consist in that the generator tends to emit high
probability samples but just for a few classes, and then it reaches its objective of fooling
the discriminator without the necessity of generate what we can name difficult classes. To
make this concept clear we show a simple example:

Imagine we are interested in generating only 2 classes of images A and B. Assume
that the images from class A have a simple representation meanwhile the elements from B
are harder to replicate. The generator, trough its process of training, will tend to produce
much more elements from the class A than from B and therefore the results will not be
the desired.

In the following chapter we aim to propose a variation of the standard GAN model
that fixes this problem. We will see that during the model construction we will face too
the Perfect Discriminator problem and we will give a solution for it too.
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Chapter 4

TripletGAN

This chapter will be exclusively focused on the model we have worked on. Here we
aim to formally introduce the variation of the standard GAN model we have chosen to
reproduce in the practical part. This evolved GAN model takes the name of TripletGAN
model. It was introduced in [7] and it can be thought as a simple GAN model on which we
change the discriminator function 1 for a function with the name of Triplet Loss function. As
we mentioned in the final part of the last chapter this variant aims to fix the Mode Collapse
problem, and we will see how later on. Following the logic path we are going to give first
the definition of this new cost function and our motivation to use it. Then, we will enter
in detail on the TripletGAN model itself.

4.1 Triplet Loss function

The idea of this cost function, Triplet Loss, has its origin in [10]. In that paper the
authors discussed about a nearest-neighbour classification problem, which is a special kind
of unsupervised learning problem. Even though they did not use it in a Neural Net-
work context, there are several authors 2 that use this function, and its variations, as cost
functions for an embedding-designed neural networks.

Definition 4.1. We say that f : X → Rd is an embedding function that maps an input x into a
d-dimensional Euclidean space.

The motivation of an embedding is to map our input space X to a proper d-dimensional
Euclidean Space in which f (x) ∈ Rd are well represented. This notion of well represented
depend on each problem. In natural language processing embeddings are very popular. In
those scenarios the usual practice is to get a vectorized representation of words in order
to study the structure in an Euclidean space. We would expect words like London and
England to be close in that space, for example.

1The loss function of the original discriminator was the cross-entropy between the empirical distribution and
our estimated probability function

2Highlighting the work of [9]
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Going back to the Triplet Loss function we want to point out the reason of the Triplet
part in the Triplet Loss function name. When working with Triplet Loss we construct a
specific kind of triplets. Those triplets are defined as follows.

Definition 4.2. Given xa, xp and xn tree points from X we can create a triplet T in the following
way:

T = (xa, xp, xn)

Where xa is called anchor, and xp, xn are called positive and negative respectively.

Here we suppose that each element have a class. This loss function is specially useful
when there are a lot of classes with few examples for class. The intuition here is to build
those triplets such that the anchor xa and the positive xp will be the same class and the
negative xn will be from another class. One can see now why this is useful when having a
lot of classes. The main objective here is to put together the same class points and moving
far away the rest. Doing this defines a space with separated sets of points, each set for one
class if the algorithm has done well its job.

Figure 4.1: Triplet Loss function intuition, from [10]

Hence, this is the scenario we are looking for:

|| f (xa)− f (xp) ||22 +α <|| f (xa)− f (xn) ||22
∀( f (xa), f (xp), f (xn)) ∈ T .

Where f is an embeddig between X and Rd for some appropriate d, || · ||2 is the
Euclidean norm, T is the set of all possible triplets in the training set. The element α ∈ R

is a margin that is imposed between two pairs in order to be less strict with the positive
pair distance.

Thus, the loss fuction is defined as:

L =
n

∑
i

[
|| f (xa

i )− f (xp
i ) ||

2
2 − || f (xa

i )− f (xn
i ) ||22 +α

]
+

.

Where
[
·
]
+

is the same as max(·, 0).

One thing more to point out of this model is one of its most important problems.
This problem is that, sometimes, when given random triplets, the model just consider the
easiest positives and the easiest negatives. That is, the losses may become 0 very soon and
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that prevent the gradients to update the parameters. This is usually solved by considering
only what is known as hard-triplets. Those are, given an anchor, we take as positive the most
different element of its class and for negative the most similar from a different one.

Integral Probability Metrics

This metric between two probability distributions is introduced in [16]. However, the
general definition of a IPM that we are going to introduce is not a metric but a pseudo-
metric, that is, the property of d(P, Q) = 0 if and only if P = Q is not assured. Our goal
in this subsection is to prove that in the case we are going to study the IPM is, indeed, a
metric.

Definition 4.3. Given (X,A) a probability space. Let F be the function set of measurable func-
tions defined on X, and P and Q two arbitrary distributions in (X,A), the IPM distance 3 between
them is defined as:

dF (P, Q) = sup
f∈F

∣∣∣∫ f dP−
∫

f dQ
∣∣∣

4.2 TripletGAN Model

Now we have defined everything we need to set the theoretical framework for our
model to do exactly what we want it to do, but before doing so, we are going to give
the intuition behind combining this two models. As we have seen in Section X. this
model aims to solve the Mode Collapse problem, and we will see why when explaining our
combined loss function. We will start showing what will be the structure of our model. For
doing so we will specify the structure that our generator and discriminator will have and
how they interact with each other in this specific scenario.

Discriminator
Our discriminator will be still a differentiable function expressed as a MLP with pa-

rameter space Θ f . In this specific case, this MLP will have the structure of an embedding.
For getting this structure it suffices to set the Triplet Loss function as the new cost function
of our previous discriminator. Also, in order to respect the notation that is introduced in
the paper we are going to call the discriminator f .

Generator
Our generator takes the same structure that it has in the standard GAN model. That

means that it will be a differentiable function expressed as a MLP with parameter space
Θg that takes some noise input z ∼ N and returns an element from the image space X.
We will name it G.

Unlike the Triplet Loss case we will have now only two classes of interest. These classes
will be the true class and the fake class. Following the paper the fake classes will be

3The IPM can be considered a distance just if we have considered before a proper set F , if not, we can not
say for sure that it is a distance
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Figure 4.2: TripletGAN visual representation, from [7]

chosen to be the anchor and positive classes of our triplets, the true classes then will be
the negative ones in those triplets. With all this information we are able now to formulate
min-max problem similar to the one we defined for a classic GAN.

min
Θg

max
Θ f
Lt

Where:

Lt = Ey∼Pr
z1∼N

|| f (y)− f (G(z1)) || −Ez1,z2∼N || f (G(z1))− f (G(z2)) || (4.1)

Now we can see what we said about the Mode Collapse problem at the beginning of this
section. If we look at equation 4.1 and specially focus on the generator objective, which
is making Lt minimum. We see that under this scenario the generator not only needs
to make ‖ f (y)− f (G(z1))‖ small, just as in the standard GAN model, now we have also
‖ f (G(z1))− f (G(z2))‖ and the generator is interested in making this large. For doing so
it will try to explore the other classes options to give the most different output. Following
this, it is logical to think that the generator will end up generating elements from a bigger
variety than the standard GAN. The reason is that in order to minimize the loss function,
the model is forced not only to make the outputs similar to the real ones but also because
it is forced to generate very different outputs for the given one, by exploring the other
classes.

If we now denote Sn = {x ∈ Rn+1 :|| x ||= 1} as the n-dimensional sphere, F = { f |
f : R → Sn, f measurable} and T = {|| f (x)− f (y) || | f ∈ F} and finally we retake the
definition of IPM on (X,A) between two arbitrary distributions P and Q with respect to
T we have:

dT (P, Q) = sup
g∈T

{
E(x,y)∼P g(x, y)−E(x,y)∼Q g(x, y)

}
= sup

f∈F

{
E(x,y)∼P || f (x)− f (y) || −E(x,y)∼Q || f (x)− f (y) ||

}
(4.2)

Let P be the independent join distribution of Pr and Pg where these two are the real
distribution of our data and the distribution that our generator is estimating respectively,



4.2 TripletGAN Model 33

and let Q be the independent join distribution of Pg and Pg. Now it can be seen that
minimizing the loss function 4.2 is equivalent to minimize the IPM between these two
independent join distributions.

Before we can say that minimizing this last loss function implies making Pg to become
equal to Pr, we first have to prove that dT (P, Q) implies P = Q. As we stated at the
introduction of this section, this property is not assured for a general IPM. We aim now
to prove this implication in order to show that minimizing the Triplet Loss function for a
GAN network yields the same result we had for a standard GAN model, which is making
Pg ≈ Pr.

Lemma 4.4. Given S a measurable set, with m(S) < ∞ and m(S) > 0 we can represent it as the
union of two disjoint measurable sets with positive measure. Here m denotes the Lebesgue measure.

Proof. We are going to follow the proof given in [7], in which the author only consider the
case m = 1 for it can be generalized. Once we have set m = 1 we consider

f : R→ R+, f (x) = m(S ∩ [−x, x]) (4.3)

It is easy to see that f is continuous and limx→∞ f (x) = m(S). If now we consider some
ε such that 0 < ε < m(S) we can say that there exist some c such that m(S ∩ [−c, c]) = ε

using the fact of f being continuous. Then, S ∩ [−c, c] and S ∩ (R \ [−c, c]) are the two
disjoint sets we wanted.

Theorem 4.5. Suppose P, Q are probability distribution functions over Rn. Let

• F = { f | f : Rn → Sn, f measurable}.

• dT (P, Q) = sup f∈F
{

Ey∼Px∼Q || f (x)− f (y) || −E(x,y)∼Q || f (x)− f (y) ||
}

.

Assume that p(x) and q(x) are the densities of P and Q respectively, then:

dT (P, Q) = 0←→ P = Q

Proof. The left to right implication is obvious so we are going to give the proof for the
right to left one. We suppose that P 6= Q, therefore we just have to find one f0 ∈ F such
that the distance is not equal to 0.

We start by looking at dT (P, Q):

dT (P, Q) = sup
f∈F

{ ∫
R×R

|| f (x)− f (y) || q(x)p(y) dx dy −

∫
R×R

|| f (x)− f (y) || q(x)q(y) dx dy
}

(4.4)

From this equation we can derive to:
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dT (P, Q) = sup
f∈F

{ ∫
R×R

|| f (x)− f (y) || q(x)(p(y)− q(y))dx dy
}

(4.5)

Now, looking to this last equation and knowing that, since p(x) and q(x) are measur-
able, we can define S1 = {p(y)− q(y) > 0} and S2 = {p(x) > 0} knowing that both are
measurable too. Now we are interested in those sets for reasons we will explain later:

First, since p(x) and q(x) are density functions we can say the following:

∫
R2

p(x)− q(x)dx =
∫

p(y)−q(y)>0
p(x)− q(x)dx +

∫
p(y)−q(y)<0

p(x)− q(x)dx = 0 (4.6)

That means that if m(S1) = 0 we will have that m(p(y)− q(y) < 0) = 0 too, and then,
we will be contradicting the fact that P 6= Q. The results for S2 are analogous.

Now if m(S1 ∩ S2) = 0 we can choose f0 such that f0(x) = z0 for all x ∈ S1 and
f0(x) = −z0 for all x ∈ S2, where z0 ∈ Sn. For the rest of points we set f0(x) = 0. This
way, and retaking equation 4.5 we can set:

∫
R×R

|| f (x)− f (y) || q(x)(p(y)− q(y))dx dy

=
∫

S1×S2

|| f (x)− f (y) || q(x)(p(y)− q(y))dx dy∫
S2×S1

|| f (x)− f (y) || q(x)(p(y)− q(y))dx dy

=
∫

S1×S2

2q(x)(p(y)− q(y))dx dy∫
S2×S1

2q(x)(p(y)− q(y))dx dy > 0 (4.7)

Note that ‖z0‖ = 1. Equation 4.7 lead us to dT (P, Q) > 0 which is a contradiction
with our hypothesis. If we look now at the case where m(S1 ∩ S2) > 0 we first need to use
lemma 4.4 to guarantee the existence of two sets S∗1 and S∗2 such that S1 ∩ S2 = S∗1 ∪ S∗2 . If
we now proceed just like before, and we set f0(x) = z0, ∀x ∈ S∗1 and f0(x) = −z0, ∀x ∈ S∗s
and f0(x) = 0 for the rest of x ∈ Rn, this will yield a similar result with the previous
scenario.

Before finishing we have to face a common problem when training GAN models with
an IPM. This problem is known as the perfect discriminator problem and we have discussed
about it in Chapter 3. In [7] the author claims that the supports of Pr and Pg are disjoint
except for a 0 measurable set. Saying this is the same as say that the discriminator f is
able to separate the samples of both distributions in base space without failing. If we now
retake the loss function of our discriminator:

L f = Ey∼Pr
z1∼N

|| f (y)− f (G(z1)) || −E(z1,z2)∼N || f (G(z1))− f (G(z2)) || (4.8)
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We can see that maximizing this is equivalent to the following: For the first term, and
since our values of f lie on Sn, the function f has to map any point x0 to its antipodal
point in the n-sphere and for the second term would be maximized only if every point
coming from Pg is send to a fixed point in Sn. That will lead us to the following optimal
discriminator:

f (x) =
{

z0 x ∼ Pr
−z0 x ∼ Pg

(4.9)

In this situation we will have no gradients to update our generator G. The way of not
letting this to happen is to do the same thing we did in Section 4.1. We have to change a
bit our loss function to the following one:

L f = E y∼Pr
x1,x2∼P f

[
− || f (y)− f (x1) || + || f (x1)− f (x2) || +c

]
+

(4.10)

Now we have change the loss function we are ready to see if the problem remains or
not. When minimizing the new loss function we now expect that the distance between the
real embedding and the false embedding would be less than the distance between fake
embeddings by a margin of c. Since we are in the n-sphere we can say that if c is less than
π our discriminator would stop being a perfect discriminator but a mapping between two
clusters in S2, by the other side if c is greater than π this new loss function will perform
just as the old one. Hence, setting a threshold c < π solves the problem of the perfect
discriminator.

One of the main differences between the classic GAN model and ours is that when
training, if some triplets stop to pass gradient there may be other triplets that will do it. In
classic GAN model if the loss exceeds the threshold it will stop to pass gradient to every
sample coming from the same minibatch 4.

4Supposing that we are using Mini-Batch Gradient Descent, which is the usual
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Chapter 5

Experiments

This last chapter is centered in the application of the TripletGAN model. As we have
said in the previous chapter, we look for our algorithm to generate images, and this lead
us to the following poblem: The way of quantify the success of a generator algorithm is
usually complicated. For this reason we have decided for a qualitative evaluation. The
first part of this chapter is focused in giving a brief technical resume of the computational
framework we have worked on. In the other part we give the results of our models and we
also present the data we have chosen to generate and why. The codes for this experimental
part can be found in https://github.com/ricdomi/TripletGAN

5.1 Experimental Framework

For the experimental part we have chosen Python as the programming language. De-
spite of the fact that R is the most popular programming language in applied statistics
we can say that Python ha gained a huge popularity inside the Deep Learning community,
and one of the reasons may be the release of the TensorFlow [19] in 2015. This open source
library is specialized in representing computations as data flow graphs and it introduces
an special type of object which is the Tensor object. Also TensorFlow can run over multiple
CPU’s or GPU’s. It is precisely this structure which enables TensorFlow to automatically
compute gradients during the training process in parallel using the Automatic Differenti-
ation method, which is extremely useful for us, and it reduces the computing time in a
significant way.

Tensorflow

Although nowadays there are libraries that are capable of running on top of TensorFlow,
such as Keras [18], which is more user-friendly, we have chosen to work with TensorFlow
directly. This decision has been made following a personal preference.

Google Colab

As we said in Section 5.1 one of the advantages of TensorFlow is to be able to run using
GPU’s. As we do not have a GPU-based hardward we have chosen Google Colab as the
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cloud environment to work on. The Colab name stands for Google Colaboratory. This cloud
environment is Python supported, lets the user to freely use a GPU accelerator and it has
the main libraries installed so the user only needs to import them.

5.2 Arquitecture

In this section we introduce our model in a practical way. Here we show with details
the final structure of our networks (number of layers, nodes in each layer, etc.). It is worth to
point that our model consist in two neural networks, so we will give the structure for both
of them. We also present here the data we are going to work with. As it will be seen later,
we have chosen two simple datasets that are commonly used for academic purposes. We
will present first the MNIST images database, which can be though as the ’Hello, world!’
in the image recognition field. We will also use a similar dataset but with much complex
images in order to deal with a more realistic problem: FASHION-mnist. Lastly, we will
present the results of our application of a TripletGAN model when generating images from
these two mentioned datasets.

Discriminator

The discriminator D of the model has been defined as a MLP model with 256, 512
and 1024 nodes for the first, second and third layer respectively. It gets as input a vec-
torized gray scale image of size 28 × 28 pixels, which is the same as saying that it gets
a vector of dimension 784. The output of this model is an embedding of an image to a
4-dimensional space (R4). Hence, a 4-dimensional vector. We have used the leaky ReLU
activation function for each hidden layer and the simple linear activation for the output
layer.

Generator

The generator G has been defined as a MLP model with the discriminator inverse
structure. It has also 3 hidden layers, but now with 1024, 512 and 256 nodes for the firs,
second and third layer respectively. The input here is a noise vector z with dimension 128,
and with z ∼ N (0, 1). Lastly as we want to generate similar images as the real, the output
of the generator must be the same size the real images are. Hence, the output of our
generator should be a 784-dimensional vector[*]. The activation function also has been the
leaky ReLU function except for the output layer, where we have used the tahn(·) activation
function. Here we have also applied a batch normalization on the third hidden layer.

The training process consists in 100.000 training steps considering each time a batch
of size 128. The loss functions are the same as the loss functions L f and LG showed in
Algorithm X. The optimizer we have used is the Adam optimizer, with the same learning
rate and β1 parameter for both, lr = 5e− 4 and β1 = 0.5. Lastly, the leaky ReLU α value is
set at 0.2.
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5.3 Datasets and Results

MNIST

He have just said some properties of this dataset above. Let us resume them here:
Total number of observations: 70.000, splited in 60.000 for training and 10.000 for

testing. Every element x is consider as a gray scale image with size 28× 28 pixels. Every
image x represents a hand-written digit between 0 and 9. Every label y is represented as
a 10-dimensional vector where all the components are 0 except one, y = [0, 1, 0, · · · , 0] is
the label for the ’1’ image, y = [1, 0, 0, · · · , 0] for the ’0’ digit an so on.

Now we present our generated images in comparison with the real images from
MNIST dataset.

Figure 5.1: Fake images (Left) vs Real images (Right)
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The following figure can corroborate in an intuitive way that our generator has actually
well defined a distribution of our real images.

Figure 5.2: t-SNE visualization of real images (colorised) and fake images (black)

This figure is a visual representation of the output of a t-SNE algorithm over our
generated images and real images. This algorithm is a popular embedding algorithm in
Machine Learning community. It is used for visual representations in 2 or 3 dimensions of
high dimensional data. We do not attempt to explain what this algorithm do right now
but for those who want to know more [20] could be a good reference.

In Figure 5.2 we can see the different digits clusters separated by colors. The black dots
are our generated images, and since they are generated, they are not labeled. From the
image we see that our black dots are equally distributed along the different color clusters
so we know that there is no Mode Collapse problem. We also can see the nonexistence of
far, isolated dots. That means that our generator is correctly mapping its inputs with some
outputs that follow the real data distribution.

FASHION-mnist

In order to avoid showing only the hand-written generated digits we have used a
second, and a bit more complex, dataset. We have chosen the FASHION-mnist because it
preserves the properties of our originalMNIST, but now, instead of numbers, we have 10
different categories of clothing. We will resume its properties just like we did for MNIST:

The total number of observations is 70.000, splitted in 60.000 for training and 10.000
for testing. Every element x is consider as a gray scale image with size 28× 28 pixels.
Every image x represents a different clothing category: Shoes, shirts, etc. Every label
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y is represented as a 10-dimensional vector where all the components are 0 except one,
y = [0, 1, 0, · · · , 0] is the label for, for example, ’shirts’, y = [1, 0, 0, · · · , 0] for the ’shoes’ and
so on.

Here we show a comparison between a set of real images and our set of generated
images. We see that the generated ones are often more blurry . That could had been solved
by augmenting the complexity of our model functions but that would have implied more
training time and the definition of a different model. Since our intention was to show
that the model worked not only on MNIST but in other datasets, we have decided to not
improve it to do better in FASION-mnist.

Figure 5.3: Fake images (left) vs Real images (Right)
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Chapter 6

Conclusions

The main objective of this work was to analyze the Generative Adversarial Model, and
particularly, one of its variants: TripletGANs. In order to achieve that objective we have
introduced the topic from its basis. We started at general Machine Learning concepts to
finally end on TripletGAN.

Along the work we have found some difficult situations. The most common of them
was the lack formalities and strict definitions. We have noticed that the field of Deep
Learning is closer to engineering than it is to pure mathematics. Concretely, there are a lot of
publications that do not follow any rigorous methodology when proving their statements.
Although it has not been the usual case when searching for the most relevant publications,
it has been a problem when looking for more humble papers. The other main difficulty
has been the fact of learning a new programming language such as Python, even though,
learning it has been a great personal success.

As we have showed in the experimental part, we have achieved our goal of generating
fake images. This goal, however, has been conditioned to work just with gray scale images.
We were not fully satisfied with this, since our intention was to generate more realistic
images (colourised objects, faces, etc.). However, we are now aware of the training times
of more complex models, and that is why this problem is not so relevant for us now. This
work has been the perfect intersection between working with a complex Deep Learning
model thanks to do it with low resolution images.

This work can be extended in two ways. One of them is to continue the study of the
Triplet Loss function with other metrics, not just the euclidean. There are also variants of
the TripletLoss function that would be interesting to test. The other part focus the study
not in the loss function, but in the GAN model itself. As we said through the work there
exist wide variety of GAN-based models. Some of them are really interesting such as Deep
Convolutional Generative Adversarial Networks (DCGANs), which differs from the usual
GAN in the architecture of the networks, changing the MLP networks with Convolutional
Networks. Also WGANs are a pretty interesting variation of the GAN model, and follow
the same intuition that our variation: using an IPM distance known as Wasserstein Distance.
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Chapter 7

Annex

7.1 Lemma and Proposition from Chapter 3

Theorem 7.1. Lebesgue’s Dominated Convergence Theorem. Let { fn} be a sequence of real-valued
measurable functions on a measure space (S,A, µ). Suppose that the sequence converges pointwise
to a function f such that | fn(x) |≤| g(x) | with g being an integrable function ∀n and ∀x ∈ S.
Then f is integrable and:

lim
n→∞

∫
S
| fn − f | dµ = 0

Lemma 7.2. Any bounded, measurable sigmoidal function σ is discriminatory. In particular, any
continuous sigmoidal function is discriminatory.

Proof. Let σ ∈ C(Im) be a function such that∫
Im

σ(w>x + θ)dµ(x) = 0, ∀w ∈ C(Im) and ∀θ ∈ R

Now, for λ, φ ∈ R we define the function σλ as follows

σλ(λ(w>x + θ) + φ)


1 for w>x + θ > 0 as λ→ ∞,
0 for w>x + θ < 0 as λ→ ∞,
σλ(φ) for w>x + θ = 0 for all λ

We have to notice here that this family of functions has the same property that σ has,
hence: ∫

Im
σλ,φ((w>x + θ) + φ)dµ(x) = 0, ∀w ∈ C(Im) and ∀θ ∈ R

Observe that the family of functions {σλ,φ | λ ∈ R≥0} converges pointwise to Σ : Im →
R
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Σ(x)


1 for w>x + θ > 0,
0 for w>x + θ < 0,
σ(φ) for w>x + θ = 0

when λ→ ∞.

We can see that the mentioned family not just converges pointwise to Σ(x) but also is
dominated by it. Given a family of real-valued functions { fn} on a measure space, what
we understand for a function that is dominated by other integrable function g is that
| fn(x) |≤ g(x) for all x.

We now let Hw,θ = {x | w>x + θ = 0} be an affine hyperplane and also we let
HSw,θ = {x | w>x + θ > 0} be an open half-space. If we define g(x) = max(1, σ(φ))

and since | σλ(x) |≤| g(x) | we can apply the Theorem 7.1 to get:

0 = lim
λ→∞

∫
Im

σλ(x)dµ(x) =
∫

Im
lim

λ→∞
σλ(x)dµ(x)

=
∫

Im
Σ(x)dµ(x) = σ(φ)µ(Hw,θ) + µ(HSw,θ) (7.1)

On the last equality we just have to remember the form of Σ(x).

Now we define Jy as a compact interval containing {y>x | x ∈ Im} for a fixed y ∈ Rm.
Given that µ is a finite signed measure we can define F to be a bounded functional on
L∞(Jy). The intuition behind this last statement is that if we integrate over a compact with
respect to a finite measure, we are not able to get an infinite result. This functional F has
the following form

F(h) =
∫

Im
h(y>x)dµ(x)

If we consider now h = 1[θ,∞) the indicator function for the set [θ, ∞) we end up with:

F(h) =
∫

Im
h(y>x)dµ(x) = σ(φ)µ(Hy,θ) + µ(HSy,θ) = 0

.
That is because what we saw in 7.1 and also because the fixed y is a particularity of

one w ∈ Rm. In a similar way we will have also F(h) = 0 for h = 1(θ,∞). By linearity we
can extend F(h) = 0 to any indicator function of any interval, therefore for any simple
function1 Given that we know that simple functions are dense in L∞(Jy) we have F = 0.

In the original paper the author gives a particular pair of bounded measurable func-
tions s(u) = sin(α>x) and c(u) = cos((α>x) such that

F(s + ic) =
∫

Im
(cos((α>x) + i sin((α>x))dµ(x) =

∫
Im

ei(α>x)dµ(x) = 0

1A simple function f is a function of the form ∑i aiXAi , where XAi is known as indicator function
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for all α. This is a specific choice of h using the Fourier transform of µ. This being 0
implies that µ = 0 and, therefore σ is discriminatory. We are not going to detail this last
part but we wanted to show that there exists a particular function h that implied µ = 0,
even though the theory for constructing this Fourier transform is beyond the scope of this
project.
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7.2 Algorithms

Require: Generator Gθg ; noise z; Discriminator fθ f ; dataset S = {Xi}; learning rate
ε; batch size N; threshold c.

Initialize: θg, θ f ;
while TripletGAN has not converged do

Sample a minibatch from S, yield xi, i = 1 · · ·N ;
Sample a minibatch from z, yield zi, i = 1 · · ·N ;
Sample triplets from these two minibatchs, yield:
T = { ti,j | ti,j = (Gθg(zi), Gθg(zj), xi)}, i, j = 1 · · ·N
For simplicity we define:
di = ‖ fθ f (xi)− fθ f (Gθg(zi))‖
di,j = ‖ fθ f (Gθg(zi))− fθ f (Gθg(zj))‖
And then:
L f (θg, θ f )← 1

N(N−1) ∑N
i=1 ∑N

j=1 min(di − di,j, c)
θ f ← θ f + ε∇θ fL f (θg, θ f )

Lg(θg, θ f )← 1
N(N−1) ∑N

i=1 ∑N
j=1(di − di,j)

θg ← θg − ε∇θgLg(θg, θ f )

end
Algorithm 2: TripletGAN Algorithm

for number of training iterations do
for k steps do

Sample a minibatch of m noise samples {z(1), · · · , z(m)} from noise prior
pg(z) ;

Sample a minibatch of m examples {x(1), · · · , x(m)} from data generating
distribution pr(x) ;

Update the discriminator by ascending its stochastic gradient:
θd ← θd + ε∇θd

1
m ∑m

i=1
[

log D(x(i)) + log(1− D(G(z(i))))
]

end
Sample a minibatch of m noise samples {z(1), · · · , z(m)} from noise prior pg(z) ;
Update the generator by descending its stochastic gradient:
θd ← θd − ε∇θd

1
m ∑m

i=1
[

log(1− D(G(z(i))))
]

end
Algorithm 3: GAN Algorithm

Nota para parte ’4.1 DEFINICION’: https://math.stackexchange.com/questions/918509/more-
general-definition-of-expected-value
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