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We study the electrophoretic flow of suspensions of charged colloids with a mesoscopic method that

allows us to model generic experimental conditions. We show that for highly charged colloids their

electrophoretic mobility increases significantly and displays a mobility maximum on increasing the

colloidal charge for all salt concentrations. The electrophoretic mobility of highly charged colloids is also

enhanced significantly when ion advection is dominant, leading to a strong heterogeneity in the local

electrophoretic response especially at low-salt concentration, when ion diffuse layers overlap.
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Effective electrostatic interactions between charged col-
loidal particles in solution play a fundamental role in
determining the macroscopic phase and rheological prop-
erties of colloidal suspensions that are pivotal for many
applications in material science [1,2]. In particular, the
response of these systems to applied electric fields enhan-
ces the degree of experimental control and tunability of
suspensions down to the nanoscale and provides a natural
means to design and operate nanodevices. As a result,
electrokinetic techniques are pragmatically exploited to
control fluid flow at small scales, as, for example, in nano-
fluidic molecular sorting [3,4], nanomedicine protocols
[5], or micropattern assembly [6].

A theoretical and quantitative knowledge of electro-
phoresis is still not complete, as understanding the
electrophoretic flow (EF) of the solvent and the charged
components (ionized macromolecules, counterions, and
salt ions) requires the combined treatment of solvent flow
coupled to the diffusion and advection of the dissolved
electrolyte in the presence of charged colloids. The dy-
namical coupling between suspended charged components
through hydrodynamics, leading to effective electrostatic
interactions, does not allow for exact solutions; analytic
predictions are restricted to the linear regime, and either
numerical or simulation studies are required to assess the
interplay between electrostatics and hydrodynamics that
results in the EF. The relevant length (time) scales involved
in EF range from the nanometer (nanosecond), character-
istic of the charge distribution around the particles, to the
colloidal size itself, up to the micrometer (microsecond).
This disparity of scales complicates the computational
modeling because molecular dynamics is practically lim-
ited to the detailed resolution of the smallest nanoscales.
Mesoscopic modeling [7–9], which includes the appropri-
ate solvent dynamics at a coarse scale, overcomes the
difficulties of handling multiscale simulations of a charged
colloidal suspension EF. Mesoscopic modeling has been
recently used to study the nonequilibrium dynamics of a
variety of complex charged heterogeneous systems [10]
and, therefore, offers a valuable way to obtain theoretical

predictions for a comprehensive EF, in primis the funda-
mental EF of a charged spherical particle.
In this Letter, we study the electrokinetic response of

charged colloids and examine the relevance of nonlinear
coupling and ion specificity for different types of EF due to
charge density deformations induced by applied electric
fields. We do so by taking advantage of a novel mesoscopic
simulation technique that naturally includes appropriate
boundary conditions and does not require any assumption
beyond Poisson-Boltzmann. We then capture the signifi-
cant physical couplings between charges, colloids, and
solvent, accounting for the nonlinear response of the elec-
trolyte rearrangements to the applied field. Moreover, our
model can be used under general experimental conditions
of salt concentration, ion diffusivity, and colloid surface
charge density.
A charged macromolecule in solution is surrounded by a

counterion and salt ion cloud, which screens the colloidal
charge depending on the salt concentration cs and the
solvent dielectric properties. Applying an electric field E
causes the electrolyte and macromolecule to move. The
limiting particle velocity at the steady state, vl, develops
as a result of the balance between the electrostatic and
viscous forces. However, the deformed charge distribution
of coions and counterions around the macromolecule,
which gives rise to an electric double layer (EDL) around
the object, is hard to derive analytically even in thermody-
namic equilibrium, and usually solutions are known for
low electrostatic potentials at the colloid surface (referred
to as the � potential), when linear electrostatics holds
[1,11]. Moreover, nonlinear EDL distortion due to the
external electric field leads to further difficulties in its
analytic understanding.
O’Brien and White (OW) [12] have integrated numeri-

cally the electrokinetic equations for the EF of an infinitely
diluted spherical colloid in the linear regime. Their results
indicate that the particle electrophoretic mobility � ¼
vl=E depends on the colloid radius a, salt concentration
cs, and dielectric properties of the solvent at temperature T

through the Debye screening length �D ¼ ð8�lBcsz2þÞ�1=2
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[for a symmetric electrolyte of valence zþ, here zþ ¼ �1,
in a solvent with Bjerrun length lB ¼ e2=ð4��kBTÞ [11],
with e the electron charge and kB the Boltzmann factor]
and � , predicting either mobility saturation or a maximum
for high-� values. Using different mesoscopic models,
Kim, Nakayama, and Yamamoto [13] were able to confirm
OW predictions [12] for low cs, while Lobaskin et al.
[14,15] showed that the electrophoretic behavior of
salt-free systems can be systematically mapped to a corre-
sponding low-salt suspension. Both cases, however, ad-
dress the restricted case of small � and cs, where OW
predictions are expected to hold.

Our mesoscopic representation of charged colloidal sus-
pensions builds on a continuous description of the electro-
lyte, characterized in terms of the anion and cation local
densities ��. These densities evolve according to the
electrokinetic equations, which read

@�k

@t
¼ � ~r � �k ~vþ ~r �Dk½ ~r�k þ e�zk�k

~r’�; (1)

@� ~v

@t
¼ �r2 ~v� ~rpid þ �

X

k

ezk�k
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r2’ ¼ � 1

�

X

k

ezk�k; (3)

where Dk; zk; k ¼ þ;� are the diffusivities and valences
of positive and negative ions, �, ~v, pid, and � correspond
to the solvent density, velocity, ideal pressure, and shear
viscosity, respectively, ’ is the electrostatic potential, and
� is the solvent permittivity. Equation (1) expresses ion
mass conservation as a result of diffusion and advection,
while the solvent motion [Eq. (2)] evolves according to the
Navier-Stokes equation for a viscous fluid accelerated by
electrostatic forces due to local charge density. Finally, the
Poisson equation enforces the electrostatic coupling be-
tween the charged species and the macromolecules.

The solvent motion emerges from a discrete lattice for-
mulation of Boltzmann’s kinetic equation [8] coupled to a
discrete solution of the convection-diffusion equation for
the dissolved charged ion species [16]. Hence, we regard
the counterions and salt ions as scalar fields within the
Poisson-Boltzmann level [11]. The colloidal macromole-
cules are individually resolved, embedded on the lattice,
and coupled to the fluid through appropriate kinetic rules
applied on their boundaries [17]. The hydrodynamic forces
exerted by the fluid on the suspended particles, together
with the electrostatic and dispersion forces, determine the
motion of the macromolecules in the fluid [18]. The finite
resolution of the colloidal particles on a lattice requires a
proper calibration to identify the effective size where � is
consistent with the colloidal charge [19]. The electrostatic
potential drop around the colloids emerges consistently
as a result of the ionic dynamics coupled to the fluid
flow without further assumptions. Although such an ap-
proach disregards ion correlations, it provides a general
framework to address electrokinetics at weak and strong

couplings and identifies the relevant competing physical
mechanisms in charged driven fluids.
We start by analyzing the electrophoretic mobility� of a

crystal of spherical colloids of charge Ze and radius a as a
function of cs, � , and volume fraction � ¼ 4�a3=3L3,
where L stands for the system size. In order to compare
with experimental and numerical results, we introduce

the dimensionless mobility ~� ¼ 6���lB
e and � potential

~� ¼ e�
kBT

. The units in the simulations ensure that the

relevant scales keep the right ordering and are properly
resolved on the lattice [20]. We take 	a ¼ 0:5 and 8.0, with
	 ¼ 1=�D, representative of low- to high-salt concentra-
tions [12], covering 2 orders of magnitude in molarity,
�10�4–10�2M, when mapping our simulation systems to
polystyrene spheres with a radius of 17 nm [21]. The
applied electric field is tuned to remain in the linear re-

sponse regime E � ~�=�D.

Figure 1 shows the dimensionless mobility ~� against ~� .

For small values ~� & 3, we observe an excellent agreement
with the OW theoretical prediction [12], which holds in

the linear regime for low values of ~� . Our data show that

increasing ~� leads to an enhancement of ~� with respect to

OW. Such a deviation increases with ~� and with the amount
of charge in the system up to 50% for narrow double layers,
	a ¼ 8:0. Although the theoretical predictions from OW
display a maximum outside the linear regime and only for
thin double layers (	a * 2:75), the maxima observed in
Fig. 1 appear at higher-� potentials and develop for any 	a.
Therefore, these results indicate that care has to be taken
when using OW curves to compare with experimental
results.
The model described reproduces quantitatively experi-

mental data for low-~� , salt-free colloidal suspensions. In
Fig. 2, we show that agreement with experimental data is
obtained for latex particles suspended in water [14,21] for
colloid volume fractions � * 0:001. For very low �, the
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FIG. 1 (color online). Dimensionless electrophoretic mobility
for a spherical colloidal particle, ~�, versus the dimensionless �
potential ~� . Results from simulations (filled symbols) and OW
[12] (empty symbols) for ka ¼ 0:5 (0.8), triangles down (up).
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ionic contribution due to water dissociation is relevant [14]
and the mobility dependence on � vanishes. Figure 2 also
displays simulation results where counterions are resolved
individually [14]. The agreement shows that the electro-
phoretic response observed experimentally can be captured
through the counterion density and that ionic finite-size
electrostatic correlations are subdominant.

Even if in many situations individual ion resolution is
irrelevant, its diffusion may affect significantly the electro-
kinetic response of charged colloids. We have analyzed the
effect of ion diffusion for symmetric monovalent electro-
lytes, D ¼ D�, and have quantified the importance of
electrolyte diffusion to flow advection in terms of the
Péclet number Pe ¼ av0=D, where the characteristic
fluid velocity is induced by the colloid and reads v0 ¼
eZE=6��a. Figure 3 shows the dimensionless steady state
velocity vl=v0 for a colloidal crystal at �� 10�2 as a
function of Pe for different salt concentrations cs, 	a ¼
0:5; 1:0; 8:0, covering from narrow to wide EDL at a fixed

colloidal charge density ~� � 5:0 in the nonlinear regime.
The results show that for strong ion diffusivity the mobility
is not affected by advection, while at larger Pe a significant
increase in the colloidal mobility, departing from the high
diffusivity regime at Pe ¼ 0, is observed. The inset in
Fig. 3, where we display ~� as a function of the colloidal
~� for regimes where ion diffusivity is either subdominant
or relevant, indicates that the competition between ion
diffusion and advection by the incoming flow becomes
quantitatively significant in the nonlinear regime. The
mobility enhancement reported at small electric fields
arises from ion advection, therefore differing from the
mobility enhancement associates to charge stripping under
strong applied fields [22]. Although we cannot discard that
a maximum in ~� develops asymptotically, for the range

of ~� accessible experimentally, ~� & 10 [1,12], we do
not observe a saturation of ~�. Results in Figs. 1 and 2

correspond to the small Pe� 10�3 regime to compare with
theories and experiments where diffusivity is dominant;
however, the results of Fig. 3 indicate that diffusion can
become a relevant variable because a wide range of
Pe can be reached experimentally. For example, for a
colloidal particle of radius a� 0:1 �m, charge density

� 8 � 10�2 C=m2, and an external field Eext �
103 V=m [21], Pe� 10�1 [1] for an electrolyte composed
of small ions with typical diffusivity D� 10�9 m2=s, Pe
can nevertheless increase 1 or 2 orders of magnitude
imposing strong electric fields or in the presence of bigger,
nanosized ions [23], which induce a greater EDL disrup-
tion. To characterize the EDL degree of distortion as a
function of Pe, we compute the dimensionless eigenvalues
~� of the charge density inertia tensor around the colloid

center, ~�i ¼ �i=ðZa2Þ, i ¼ x; y; z. If we apply the external
electric field along the x axis, the axisymmetric structure of
the EDL gives an asymmetry of the transverse eigenvalue
as Pe increases. Table I reports the magnitude of the three
eigenvalues for different values of Pe and cs. For all salt

concentrations ~�i increase with Pe, showing a larger spread
of the EDL that results in a lower screening of the colloid
charge, therefore raising its mobility at steady state. The

different values of ~�i show that the axisymmetric charge
distribution around the colloid develops a significant
departure from isotropy only when ion advection drag
becomes dominant, at experimentally high Pe.
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FIG. 3 (color online). Steady state colloidal velocity vl=v0

versus Péclet flow number for 	a ¼ 0:5; 1:0; 8:0. Inset:
Dimensionless mobility ~� versus dimensionless � potential ~� ,
for 	a ¼ 0:5, Pe �10�3 (filled circles), and Pe� 0:3 (filled
triangles).

TABLE I. Charge inertia matrix eigenvalues.

	a Pe ~�x
~�y

~�z ~�

0.5 2:54 � 10�3 1.626 848 1.627 185 1.627 185 4.42

0.5 3:12 � 10�1 1.676 013 1.676 420 1.676 420 6.81

8.0 6:63 � 10�3 0.756 485 0.756 834 0.756 834 4.34

8.0 8:60 � 10�1 0.764 143 0.764 346 0.764 346 5.62
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FIG. 2 (color online). Dimensionless electrophoretic mobility
~� for a colloidal particle with charge Z ¼ 30 and radius a ¼ 4:0
versus colloid volume fraction � (triangle left). No salt is added
to the system. Experimental (sphere and square symbols) and
simulation results (empty triangles) from Lobaskin et al. [14].
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Finally, we study colloidal suspensions at low-salt con-
centrations and at volume fractions when EDLs overlap.

We compare our results for ~� ¼ 2:0 with analytical pre-
dictions derived by Ohshima using single-particle charge
distributions and linear electrostatics [24]. Figure 4
shows that deviations from Ohshima’s theory develop for
� ’ 0:1, in agreement with the theoretical expectation that
EDL overlap for � � 	a=ð1þ 	aÞ3. We unveil also the
fundamental role played by advection-diffusion competi-
tion in EF, as Pe leads to an increase in the electrophoretic
mobility. Moreover, ion diffusivity is seen to alter con-
jointly the dispersion of vl in the linear regime for signifi-
cant EDL overlap, as depicted in the inset in Fig. 4.
Understanding the physical mechanisms underlying the
increase in ~� with � for highly diluted suspensions with
overlapping EDLs [21], �< 10�3, requires further inves-
tigation beyond current computational capabilities. The
probability distribution function of colloid velocities for
� ¼ 0:32, 	a ¼ 1:0 shows that on increasing Pe not only
does the mean vl shift to larger values but also the proba-
bility distribution function widens. As a result, an increase
in ion drag due to EF leads to larger spread in local vl,
enhancing the colloidal local electrophoretic response
heterogeneity.

In summary, we have comprehensively studied the elec-
trokinetic response of suspensions of charged colloids,
opening up new possibilities to fine-tune and extend cur-
rent electrokinetic techniques. We have shown that the
colloidal mobility develops a maximum due to the com-
petition between EDL distortion and the EF induced by
the applied electric field. We have revealed the importance
of ion diffusivity in identifying an experimental regime
of enhanced mobility and increased heterogeneity of
local electrophoretic response when the external driving
dominates over ion diffusion. At small ion diffusivities,
the overlap of EDL leads to a strong dynamic coupling

between colloids, causing strong heterogeneities in the
colloidal response.
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FIG. 4 (color online). Dimensionless mobility ~� versus vol-
ume fraction � for a suspension of particles with overlapping
EDLs, Pe� 1; 102. Inset: Probability distribution of particle
velocities vl when � ¼ 0:32, 	a ¼ 1:0 (overlapping EDLs).
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