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BACKGROUND AND PURPOSE 

Fibroblast growth factor 21 (FGF21) has emerged as a therapeutic strategy for treating type 2 

diabetes mellitus due to its antidiabetic effects, and this has led to the development of FGF21 

long-acting analogs. These compounds have some limitations, including requiring 

subcutaneous injection and their prolonged pharmacodynamic effect compared with native 

FGF21, which might be responsible for their reported side effects.  

EXPERIMENTAL APPROACH 

We have previously demonstrated that intraperitoneal administration of heme-regulated 

eukaryotic translation initiation factor 2α (eIF2α) kinase (HRI) activators increases hepatic 

and circulating levels of FGF21. In this study, we examined the effects of oral administration 

of a new HRI activator, EPB-53, on high-fat diet (HFD)-induced glucose intolerance, hepatic 

steatosis, and hypertriglyceridemia, compared with metformin. 

KEY RESULTS 

Administration of EPB-53 administration for the last two weeks, to mice fed a HFD for 10 

weeks, reduced body weight gain, improved glucose intolerance, and prevented hepatic 
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steatosis and hypertriglyceridemia; whereas metformin only ameliorated glucose intolerance. 

Moreover, EPB-53, similarly to the reported effects of FGF21, reduced lipogenesis in 

cultured human hepatocytes and in the liver of mice fed a HFD. Administration of EPB-53 to 

Fgf21-knockout mice had no effects, demonstrating that its efficacy is dependent on this 

hormone.  

CONCLUSIONS AND IMPLICATIONS 

Overall, the findings of this study demonstrate that oral administration of HRI activators is a 

promising strategy for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver 

disease by increasing FGF21. 

 

Abbreviations: Acox, acyl-CoA oxidase; AMPK, AMP-activated protein kinase; ATF4, 

activating transcription factor 4; BTCtFPU, 1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-chloro-3-

(trifluoromethyl)phenyl)urea; BTdCPU, 1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(3,4-

dichlorophenyl)urea; Chop, C/EBP homologous protein; Cpt-1α, carnitine palmitoyl-

transferase 1 α; eIF2eukaryotic translation initiation factor 2 FGF21, fibroblast growth 

factor 21; HFD, high-fat diet; Hmgcs2, 3-hydroxy-3-methylglutaryl-CoA synthase 2; HRI, 

heme-regulated eIF2kinase; Hsd3b5, 3--hydroxysteroid dehydrogenase type 5; Mcad, 

medium-chain acyl-CoA dehydrogenase; Mup1, major urinary protein 1; NAFLD, non-

alcoholic fatty liver disease; PGC-1PPAR co-activator 1 PPAR peroxisome 

proliferator-activated receptor.  

Keywords: HRI activator; FGF21 inducer; glucose intolerance; fatty liver. 
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Bullet point summary 

 

What is already known: Targeting FGF21 is an emerging therapeutic strategy for treating 

type 2 diabetes mellitus. 

What this study adds: Oral administration of HRI activators improved glucose intolerance 

and prevented hepatic steatosis by increasing FGF21. 

Clinical significance: The use of an oral drug to induce endogenous FGF21 levels might 

have advantages over FGF21 analogs 

 

Introduction 

Fibroblast growth factor 21 (FGF21) is a secreted protein belonging to the FGF19 subfamily 

(Goetz et al., 2007). It elicits actions through binding to a plasma membrane receptor 

complex consisting of the FGF receptor 1c isoform (FGFR1c) and β-klotho co-receptor 

(Goetz et al., 2007; Ogawa et al., 2007). Circulating FGF21 is liver-derived (Markan et al., 

2014), and serum FGF21 levels correlate with hepatic expression (Hale et al., 2012). FGF21 

was originally identified as a fasting-induced hormone that promotes increased glucose 

uptake in adipocytes (Kharitonenkov et al., 2005). Later studies demonstrated that 

pharmacological administration of FGF21 to animal models of obesity and/or diabetes 

improved glucose tolerance and insulin sensitivity, reduced hepatic and serum triglyceride 

levels, and caused weight loss (Kharitonenkov et al., 2005; Ding et al., 2012; Coskun et al., 

2008; Inagaki et al., 2007; Xu et al., 2009). Despite these pharmacological effects, serum 

FGF21 levels are paradoxically increased in obesity, both in rodents (Hale et al., 2012; Zhang 

et al., 2008; Muise et al., 2008; Fisher et al., 2010; Satapati et al., 2008) and humans (Chavez 

et al., 2009; Chen et al., 2008; Mraz et al., 2009), and especially in type 2 diabetes mellitus 
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(T2DM) (Badman et al., 2009; Zhang et al., 2008). The presence of high endogenous FGF21 

levels in obesity has led to this condition being considered as an FGF21-resistant state (Fisher 

et al., 2010). However, this assumption is controversial, since, as mentioned above, 

exogenous pharmacological administration of FGF21 is effective in genetic and diet-induced 

animal models of obesity (Hale et al., 2012). The increase in circulating FGF21 levels in 

obesity and other metabolic alterations probably reflects deposition of fat in liver (Hale et al., 

2012; Maratos-Flier, 2017) and, consistent with this, serum FGF21 levels correlate with non-

alcoholic fatty liver disease (NAFLD) in humans (Dushay et al., 2010; Yilmaz et al., 2010). 

This assumption is also supported by the fact that administration of exogenous FGF21 

reduces its expression in liver as plasma and hepatic triglyceride levels decrease, or as 

adiposity and insulin resistance improve in animal models of obesity and insulin resistance 

(Hale et al., 2012).  

 

The beneficial effects of pharmacological administration of FGF21 have led to the 

establishment of FGF21 as a therapeutic target for the treatment of metabolic diseases 

(Gimeno and Moller,  2014; Kharitonenkov and DiMarchi, 2015). This has encouraged the 

development of FGF21 analogs to treat human metabolic disorders such as obesity, 

dyslipidemia, and T2DM (Reitman, 2013; Talukdar et al., 2016; Kim et al., 2017). However, 

because of their peptidic origin, these analogs require parenteral administration and, therefore, 

there is a need for more convenient orally available drugs targeting FGF21 to treat metabolic 

disorders. In addition, native FGF21 has a short half-life and, to overcome this issue, long-

acting FGF21 analogs, with prolonged pharmacodynamics compared to native FGF21, have 

been designed (Huang et al., 2007, Weng et al., 2015). However, prolonged activation of the 
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FGF21 receptor by these long-acting FGF21 analogs might be responsible for their side 

effects, including bone loss (Talukdar et al., 2016), and increases in blood pressure and heart 

rate (Kim et al., 2017).  

 

Recently, we reported that intraperitoneal administration of a heme-regulated eukaryotic 

translation initiation factor 2α (eIF2α) kinase (HRI) activator increases hepatic Fgf21 

expression and reduces lipid-induced hepatic steatosis and glucose intolerance in mice fed a 

high-fat diet (HFD) (Zarei et al., 2016). Those effects were dependent on FGF21, since they 

were abolished in Fgf21-null mice (Zarei et al., 2016). The activation of HRI resulted in the 

phosphorylation of eIF2α and the subsequent increase in the activity of activating 

transcription factor (ATF) 4, which is essential for Fgf21-induced expression (De Sousa-

Coelho et al., 2012). This converts HRI activators, which are small molecules, into potential 

candidates for an orally administered treatment of T2DM. In this study, we compare the oral 

effects of a new HRI activator, EPB-53 (Figure 1A), and metformin, on glucose tolerance, 

hepatic steatosis, and hypertriglyceridemia in mice fed a HFD. Our findings show that EPB-

53 treatment reduces body weight gain, glucose intolerance, hepatic steatosis, and 

hypertriglyceridemia and that these effects are dependent on FGF21. 

 

Methods 

Reagents 

N,N’-diarylureas, 1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(3,4-dichlorophenyl)urea (BTdCPU) 

and 1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-chloro-3-(trifluoromethyl)phenyl)urea 

(BTCtFPU), were synthesized as previously described (Zarei et al., 2016). Synthesis of EPB-

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2015
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2015
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53 is included in Supplementary Materials and Methods. Triglyceride (Sigma-Aldrich, 

Madrid, Spain), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) 

(Spinreact, Girona, Spain) and FGF21 (Millipore, Bedford, MA) levels were measured using 

a commercial kit. 

 

Mice  

Male C57BL/6 mice (10-12 weeks old) (Harlan Ibérica S.A., Barcelona, Spain) were housed 

and maintained under a constant temperature (22 ± 2°C) and humidity (55%). The mice had 

free access to water and food and were subjected to 12 h light-dark cycles. After 1 week of 

acclimatization, mice were randomly distributed in two experimental groups (n=6 each) and 

either received one daily oral gavage of vehicle (2% w/v, (2-hydroxypropyl)-β-cyclodextrin) 

or one daily oral dose of 300 mg · kg-1 · day-1 of the HRI activator EPB-53 dissolved in the 

vehicle (volume administered 1 ml kg-1) for 4 days. This high dose was selected because of 

the presence of two parameters that may lower efficacy, the poor solubility of the compound 

(ClogP=5.5) and its high plasma protein binding (99.85%). In a second study, male C57BL/6 

mice (10-12 weeks old) were randomly distributed into four experimental groups (n=6 each) 

and fed either standard chow (one group) or HFD (45% fat mainly form hydrogenated 

coconut oil, Product D08061110, Research Diets Inc.) for ten weeks. Mice fed standard chow 

and one of the groups of mice fed the HFD received one daily oral gavage of vehicle (2% 

w/v, (2-hydroxypropyl)-β-cyclodextrin)), meanwhile the remaining two groups fed the HFD 

received one daily oral dose of either the HRI activator EPB-53 (300 mg · kg-1 · day-1) or 

metformin (150 mg · kg-1 · day-1) (YS Kim et al., 2017), for the last 2 weeks. In a third study, 

male Fgf21 knockout (Fgf21-/-) mice (8-10 weeks old) (B6N;129S5-Fgf21tm1Lex/Mmcd, 
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obtained from the Mutant Mouse Regional Resource Centre; MMRRC) and their wild-type 

littermates (Fgf21+/+) were randomly distributed into three experimental groups (standard 

chow, HFD, and HFD+EPB-53; n=5 each) and fed the different diets for three weeks. The 

standard chow and HFD groups received one daily oral gavage of vehicle (2% w/v, (2-

hydroxypropyl)-β-cyclodextrin)), whereas the HFD+EPB-53 group received one daily oral 

administration of the HRI activator EPB-53 (300 mg · kg-1 · day-1) for the last week. These 

last conditions were reproduced for the dose-response study, where male C57BL/6 mice (10-

12 weeks old) fed a HFD for three weeks were treated during the last week with EPB-53 

(100, 200 and 300 mg · kg-1 · day-1).  

For the glucose tolerance test (GTT), animals received 2 g · kg-1 body weight of glucose by 

intraperitoneal injection, and blood was collected from the tail vein after 0, 15, 30, 60 and 120 

min.  

The research complied with the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All 

procedures were approved by the University of Barcelona Bioethics Committee, as stated in 

Law 5/21 July 1995 passed by the Generalitat de Catalunya. The animals were treated 

humanely, and all efforts were made to minimize the animals' suffering and the animal 

numbers. Animal studies are reported in compliance with the ARRIVE guidelines (McGrath 

and Lilley, 2015). 

 

Pharmacokinetics 

CD-1 male mice were treated with EPB-53 via the oral route at a single dose of 20 mg · kg-1. 

Plasma samples were obtained from cava vein at 0, 0.5, 1, 3, 5, and 24 hours post-
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administration (3 mice/point). Analytical measurements were performed by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). Pharmacokinetic parameters were 

calculated by means of non-compartmental analysis, Phoenix 7.0 (WinNonlin 6.3). 

 

Cell culture 

Human Huh-7 cells [RRID:CVCL_0336] (a kindly gift from Dr Mayka Sánchez, of the Josep 

Carreras Leukaemia Research Institute) were cultured in DMEM supplemented with 10% 

serum, at 37°C/5% CO2. Hepatocytes were exposed to a concentration of 10 µM of each 

diarylurea, as previously reported (Chen et al., 2011). 

 

RNA preparation and quantitative RT-PCR 

The relative levels of specific mRNAs were assessed by real-time RT-PCR, as previously 

described (Zarei et al., 2016). The results for the expression of specific mRNAs were 

normalized to the expression of a control gene to avoid unwanted sources of variation. The 

primer sequences used are displayed in Supplementary Table 1.  

 

Immunoblotting 

Isolation of total protein extracts was performed as described elsewhere (M Zarei et al., 

2016). Proteins (30 g) were separated by SDS-PAGE on 10% acrylamide separation gels 

and transferred to Immobilon polyvinylidene difluoride membranes (Millipore). Western blot 

analysis was performed using antibodies against ATF4 (sc-390063), GAPDH (sc-32233), 

HRI (sc-365239) (RRID:AB_10843794), VLDLR (sc-18824) (Santa Cruz Inc., Heidelberg, 

Germany), VLDLR (AF2258) (R&D Systems, Minneapolis, MN), AMPK (2532), p-AMPK 
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Thr172 (2535), eIF2α (9722), phospho-eIF2α (Ser51) (9721) (Cell Signaling Technology Inc., 

Danvers, MA), β-actin (A5441), and tubulin (T9026) (Sigma-Aldrich). Detection was 

performed using the Western Lightning® Plus-ECL chemiluminescence kit (PerkinElmer, 

Waltham, MA). The equal loading of proteins was assessed by Ponceau S staining. The size 

of detected proteins was estimated using protein molecular mass standards (Bio-Rad, 

Barcelona, Spain). The results for protein quantification were normalized to the levels of a 

control protein to avoid unwanted sources of variation. 

 

Hematoxylin-eosin and Oil Red O staining 

We performed hematoxylin-eosin and Oil Red O (ORO) staining as previously reported 

(Zarei et al., 2016).  

 

Statistical Analysis 

The data and statistical analysis comply with the recommendations on experimental design 

and analysis in pharmacology (Curtis et al., 2015; Curtis et al., 2018). For in vivo 

experiments animals were randomly distributed between groups and experimenters blinded 

for liver analysis purposes. Results are expressed as means  S.D. Significant differences 

were established by ANOVA, using the GraphPad Prism program (V6.01) 

(RRID:SCR_002798) (GraphPad Software Inc., San Diego, CA). When significant variations 

were found by one-way ANOVA, the Tukey-Kramer multiple comparison post-test was 

performed only if F achieved P<0.05 and there was no significant variance inhomogeneity. 

Differences were considered significant at p<0.05. 
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Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017). 

 

Results 

EPB-53 increases FGF21 expression in human Huh-7 hepatocytes, and in liver and serum of 

mice 

It has previously been reported that N,N’-diarylureas, including BTCtFPU and BTdCPU, are 

activators of HRI and induce eIF2α phosphorylation (Chen et al., 2013). We demonstrated 

that intraperitoneal administration of both BTCtFPU and BTdCPU increased mouse hepatic 

and serum FGF21 levels (Zarei et al., 2016). Then, we synthesized a series of compounds 

featuring a diarylurea scaffold and screened these new compounds for their capacity to 

increase FGF21 expression in human Huh-7 hepatocytes. Of all these new compounds, we 

selected EPB-53 as the best candidate for in vivo studies, since it showed a significant 

increase in FGF21 mRNA levels compared to the previous HRI activators BTCtFPU and 

BTdCPU (Figure 1B), and it displayed a good pharmacokinetic profile in mice 

(Supplementary Table 2). Notably, the half-life of the elimination phase of EPB-53 by oral 

administration was 5.4 h in mice, thus allowing for a substantial period of activity after 

administration.  

As a first step to check the effects of EPB-53 on mice, we examined whether acute oral 

administration of EPB-53 for 4 days activated the HRI-eIF2α-ATF4 pathway and increased 
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hepatic expression and serum levels of FGF21. HRI is activated by autophosphorylation (Lu 

et al., 2001) and EPB-53 increased hepatic phospho-levels of HRI, compared to those of mice 

treated with the vehicle alone (Figure 2A). Consistent with the eIF2α kinase role of HRI, 

EPB-53 significantly enhanced phospho-eIF2α and ATF4 levels in liver (Figure 2A). 

Likewise, EPB-53 increased the hepatic expression and serum levels of FGF21 (Figure 2B 

and C).  

Next, we analyzed the expression of two additional ATF4-target genes: very-low-density 

lipoprotein receptor (VLDLR) (Jo et al., 2013) and CCAAT/enhancer-binding protein 

homologous protein (CHOP). VLDLR binds apolipoprotein E (apoE) triglyceride-rich 

lipoproteins such as chylomicrons, VLDL, and intermediate-density lipoproteins, leading to 

lipid entry into the cell. Notably, hepatic VLDLR upregulation plays an essential role in the 

triglyceride-lowering effect of fenofibrate (Gao et al., 2014). Meanwhile CHOP induces cell 

cycle arrest and apoptosis (Zinszner et al., 1998). EPB-53 treatment significantly increased 

the expression of Vldlr, but it did not affect Chop mRNA levels (Figure 2D).  

It has been suggested that acute administration of FGF21 upregulates the expression of the 

transcriptional co-activator PGC-1α (Fisher et al., 2011), which in turn controls the activity of 

the master regulator of hepatic fatty acid oxidation, PPARα (Kersten and Stienstra, 2017). 

Consistent with the increase in FGF21 levels following EPB-53 treatment, Pgc-1α expression 

tended towards upregulation, but the differences did not reach statistical significance. 

Although expression of Pparα was not affected, the increase in the expression of its target 

genes, Cpt-1α and Mcad, suggested an increase in its activity (Figure 2E). Moreover, it has 

been reported that FGF21 controls hepatic triglyceride content in liver by reducing de novo 

lipogenesis (Xu et al., 2009; Zhang et al., 2011). Consistent with the increase in FGF21 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=593
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levels, the expression of the lipogenic gene fatty acid synthase (Fas) was downregulated 

(Figure 2E).  

 

EPB-53 administration improves glucose intolerance, hepatic steatosis and 

hypertriglyceridemia in mice fed a HFD 

Next, we examined the effects of EPB-53 on mice fed a HFD, a model of diet-induced 

obesity and T2DM. First, mice were fed the HFD for 10 weeks and the last 2 weeks they were 

treated with either the vehicle alone, EPB-53 or metformin. Mice treated with EPB-53 did not 

show any sign of discomfort or toxicity. We compared the effects of EPB-53 with metformin, 

the first-line drug treatment for T2DM. Mice fed the HFD for 10 weeks showed an increase 

of 17.2±1.6 g in body weight, compared to the 7.6±0.8 g observed in mice fed the standard 

diet (Figure 3A). EPB-53 treatment significantly reduced body weight gain (10.9±1.3 g); 

whereas the reduction observed with metformin was of lower intensity (14.3±1.8 g) (Figure 

3A). Drug treatment did not affect food intake (Supplementary Figure 1A). HFD feeding also 

increased basal glucose levels and this was prevented by EPB-53 and metformin (Figure 3B). 

In addition, glucose intolerance caused by the HFD was prevented by EPB-53 and by 

metformin (Figure 3C).  

 

Interestingly, EPB-53 administration abolished the hepatic steatosis caused by HFD feeding, 

as demonstrated by ORO and hematoxylin-eosin staining, and quantification of hepatic 

triglyceride levels (Figures 4A and B). In contrast, the trend towards a reduction in the 

accumulation of hepatic triglycerides caused by metformin did not reach statistical 

significance. Likewise, the 106% increase in serum triglyceride levels caused by the HFD was 
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nearly completely abolished by treatment with EPB-53; whereas metformin merely tended 

towards a slight reduction which was not significant (p<0.05 vs. mice fed the standard diet). 

Consistent with the reduction in hepatic triglyceride levels caused by EPB-53, this compound 

also prevented the increase in serum ALT and AST caused by the HFD, whereas metformin 

only significantly reduced ALT (Figures 4D and E). 

 

When we examined the HRI-eIF2α pathway, we observed that EPB-53 increased the levels of 

phospho-HRI and phospho-eIF2α, indicating that this compound activated this pathway, 

whereas metformin did not (Figure 5A). As expected, feeding mice a HFD increased the 

expression and serum levels of FGF21, and this was exacerbated in mice fed the HFD and 

treated with metformin (Figures 5B and C), which is consistent with the reported effects of 

metformin on FGF21 in liver and plasma (Kim et al., 2013). Surprisingly, mice fed the HFD 

and treated with EPB-53 showed Fgf21 mRNA and serum levels similar to those present in 

the control group (Figures 5B and C). However, this is consistent with the lack of hepatic 

steatosis in both groups, since FGF21 levels reflect deposition of fat in liver (Hale et al., 

2012; Maratos-Flier, 2017). Moreover, when we assessed the expression of two FGF21 target 

genes negatively regulated by this hormone, 3-β-hydroxysteroid dehydrogenase type 5 

(Hsd3b5), and major urinary protein 1 (Mup1) (Inagaki et al., 2008), we observed that the 

expression of these genes was reduced in the liver of mice fed the HFD and treated with EPB-

53 (Figures 5D and E), suggesting a previous increase in the activity of FGF21. In contrast, 

the increase in FGF21 in mice fed the HFD or the higher increase in mice fed the HFD and 

treated with metformin did not reduce the expression of these genes, suggesting the presence 

of FGF21 resistance.  
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Metformin acts via AMP-activated protein kinase (AMPK)-dependent mechanisms, although 

additional mechanisms have been reported (Rena et al., 2017). Consistent with this, treatment 

with this drug increased hepatic phospho-AMPK levels (Figure 5F). EPB-53 did not 

significantly affect AMPK phosphorylation, but it increased the protein levels of the ATF4 

target gene VLDLR (Figure 5F). Neither HFD feeding nor drug treatment affected the 

expression of the ATF4 target genes Trb3 or β-klotho (Supplementary Figure 1B and C). In 

contrast, EBP-53 significantly reduced the mRNA levels of Chop and both the HFD and 

EPB-53 reduced the expression of Fgfr1c (Supplementary Figure 1D and E, respectively). 

When we examined the expression of genes involved in fatty acid oxidation, the mRNA 

levels of Pparα and Cpt-1α were upregulated by the HFD, whereas the expression of the latter 

gene was not further increased by either EPB-53 or metformin treatment (Figure 6A). These 

findings suggest that an increase in fatty acid oxidation is not involved in the effects of EPB-

53 in hepatic steatosis. When we examined the expression of lipogenic genes, we observed 

that mice fed the HFD and those fed the HFD and also treated with metformin showed an 

increase in the mRNA levels of the lipogenic transcription factor Srebp1c (Figure 6B); 

whereas this was not observed in mice treated with EPB-53. Interestingly, EPB-53 treatment 

reduced the expression of the lipogenic genes stearoyl-CoA desaturase 1 (Scd1), Fas and 

glycerol phosphate acyltransferase (Gpat) (Figure 6B). EPB-53 also reduced the expression of 

the transcription factor carbohydrate-responsive element-binding protein (ChREBP): a major 

mediator of glucose action on lipogenic gene expression and a key determinant of lipid 

synthesis in vivo (Postic et al., 2007). Consistent with the increase in hepatic triglycerides, 

levels of the protein FAS were increased in the liver of mice fed the HFD, but this increase 

was attenuated by EPB-53 (Figure 6C). Moreover, the protein levels of PPARγ and its target 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1540
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2608
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=595
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gene CD36, both involved in lipid accumulation, were increased in the livers of mice fed the 

HFD, and this increase was prevented by EPB-53, but not by metformin. The effects of EPB-

53 seemed not to be mediated by the reduction in body weight, since when we treated 

cultured human Huh-7 hepatocytes with EPB-53, a strong reduction in FAS and CD36 

expression was observed (Figure 6D), which is consistent with the strong increase in FGF21 

observed in these cells following exposure to EPB-53 (Figure 1B). Exposing hepatocytes to 

EPB-53 also increased expression of VLDLR (Figure 6D). 

 

Effects of EPB-53 on glucose intolerance, hepatic steatosis and hypertriglyceridemia are 

dependent on FGF21. 

Next, to examine whether EPB-53 displayed dose-response behavior, we fed mice with a 

HFD for three weeks and the last week mice were treated with three different doses of EPB-

53 (100, 200 or 300 mg · kg-1 · day-1). EPB-53 showed a dose-response trend in the 

parameters assessed (glucose intolerance, liver triglyceride content, hepatic Fgf21 and Fas 

expression) (Figure 7A-D).  

Finally, we examined whether the effects of EPB-53 were dependent on FGF21 by taking 

advantage of the use of Fgf21-knockout mice. In this experiment both wild-type and Fgf21-

knockout mice were fed a HFD for 3 weeks, the last week of which they were treated with 

either the vehicle alone or EPB-53. This shorter period of treatment was selected to examine 

whether EPB-53 increased the expression and serum levels of FGF21 in mice fed a HFD. In 

fact, the HFD increased the mRNA levels of FGF21 in the liver of wild-type mice and also 

the serum levels of this hormone (Figure 8A), but these changes were even higher in mice fed 

the HFD and treated with EPB-53. When we examined glucose intolerance (Figure 8B) and 
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hepatic steatosis by quantification of hepatic triglyceride levels and ORO and hematoxylin-

eosin staining (Figures 8C and D), we observed that EPB-53 ameliorated these conditions in 

wild-type mice fed a HFD, but not in Fgf21-knockout mice. Similarly, the reduction observed 

in serum triglycerides in wild-type mice fed the HFD and treated with EPB-53 compared with 

mice fed the HFD and treated with the vehicle alone, disappeared in Fgf21-knockout mice 

(Figure 8E). Finally, EPB-53 attenuated the increase in serum levels of ALT and AST (Figure 

8F and G) caused by the HFD in wild-type mice; but this effect was absent in mice lacking 

FGF21.  

 

Discussion 

FGF21 is a potential new target for obesity, T2DM and associated co-morbidities (Gimeno 

and Moller, 2014). This has raised interest in the potential of FGF21 to treat metabolic 

diseases. However, the use of wild-type native FGF21 is challenging as it has several 

limitations. One of these limitations is its short half-life ( Kharitonenkov et al., 2007), which 

has led to the development of long-acting FGF21 analogs with prolonged pharmacodynamic 

effects compared to native FGF21 (Huang et al., 2013; Hecht et al., 2013). However, this 

increase in the potency of long-acting FGF21 analogs may exacerbate some of the unwanted 

effects of FGF21, such as the reported increase in bone loss caused by this hormone (Wei et 

al., 2012). In fact, concerns raised following treatment with potent long-acting FGF21 

analogs in humans include changes in multiple markers of bone turnover (Talukdar et al., 

2016) and an increase in both blood pressure and heart rate (Kim et al., 2017). Another 

limitation to the use of FGF21 in humans is the need for subcutaneous administration, 

because, due to its simplicity and convenience, oral administration improves patient 
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compliance. Orally bioavailable drugs that increase the levels of native FGF21 might 

overcome all these limitations. We have previously reported that intraperitoneal 

administration of HRI activators increases hepatic and plasma levels of FGF21 through 

activation of the eIF2α-ATF4 pathway (Zarei et al., 2016). Based on those findings, we have 

developed new orally bioavailable HRI activators with enhanced potency, to increase FGF21 

expression in human hepatocytes; and we selected EPB-53 for an in vivo proof of concept. 

Administration of EPB-53 for 4 days to normal mice increased the hepatic expression and 

circulating levels of FGF21, and slightly upregulated the expression of genes involved in fatty 

acid oxidation; whereas the expression of the lipogenic gene Fas was markedly 

downregulated. In mice fed a HFD for 10 weeks, administration of EPB-53 for the last 2 

weeks attenuated body weight gain caused by the HFD. This effect is consistent with the 

well-known reported effect of FGF21 administration on body weight (Xu et al., 2009).  

 

Treatment with EPB-53 also reduced the serum levels of these lipids, whereas metformin did 

not. The reduction in serum triglycerides caused by EPB-53 might be dependent, at least 

partially, on the increase in the levels of the ATF4-target gene VLDLR (Jo et al., 2013). In 

fact, the upregulation of hepatic VLDLR via PPARα is required for the triglyceride-lowering 

effect of fenofibrate (Gao et al., 2014). Thus, we can envisage that the upregulation of hepatic 

VLDLR by EPB-53 increases the delivery of triglycerides transported by VLDL to the liver, 

reducing the availability of these lipids to be delivered to peripheral tissues, such as white 

adipose tissue. This action may contribute to the reduction in body weight. Notably, hepatic 

VLDLR upregulation following EPB-53 treatment does not result in hepatic steatosis, 
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suggesting that the uptake of triglycerides from plasma cannot compensate for the reduction 

in lipogenesis.  

 

Both EPB-53 and metformin also reduced glucose intolerance in mice fed a HFD. However, 

whereas metformin did not prevented either hepatic steatosis or hypertriglyceridemia, EPB-53 

prevented both alterations completely. The reduction in hepatic steatosis in these mice seems 

to be the result of inhibition of hepatic lipogenesis, which is consistent with the effects 

observed following FGF21 administration (Wei et al., 2012). This effect of EPB-53 was also 

observed in vitro in human hepatocytes. This finding rules out the possibility that the 

reduction in lipogenesis observed in vivo is secondary to body weight reduction. However, 

when we examined the levels of hepatic Fgf21 expression and serum levels in EPB-53-treated 

mice, no changes were observed compared to control mice, although the phosphorylated 

levels of HRI and eIF2α were increased. The lack of an increase in FGF21 in mice treated 

with EPB-53 for 2 weeks might be explained by the following mechanism. As mentioned 

above, administration of FGF21 reduces its expression in liver, as plasma and hepatic 

triglyceride levels decrease (Hanle et al., 2012). This suggests that a similar mechanism might 

also operate with EPB-53. Since EPB-53 reduced hepatic triglyceride accumulation to values 

similar to those present in control mice, once the normal hepatic lipid content is achieved, the 

effect of EPB-53 on FGF21 upregulation would be attenuated. In fact, a similar effect has 

been reported with inhibitors of fibroblast activation protein (FAP) (Sánchez-Garrido et al., 

2016). This enzyme cleaves FGF21 and its inhibition increases FGF21 levels, thereby 

lowering body weight and improving glucose tolerance in mice fed a HFD; but these effects 

are much less intense in lean mice (Sánchez-Garrido et al., 2016). Moreover, the reduction in 
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the hepatic expression and serum levels of FGF21 might be explained by the presence of 

negative feedback by which enhanced levels of FGF21 inhibit the eIF2α-ATF4 pathway 

(Jiang et al., 2014). This negative feedback mechanism would control FGF21 levels thereby 

avoiding excessive production of this hormone following EPB-53 administration when 

plasma and hepatic triglyceride levels reach normal values. Notably, this feedback mechanism 

might avoid the development of side effects (Talukdar et al., 2016; Kim et al., 2017) reported 

with long-acting FGF21 analogs due to overactivation of the FGF21 receptor. Surprisingly, 

and in contrast to EPB-53, metformin treatment was accompanied by increased hepatic and 

circulating levels of FGF21; although this increase resulted neither in an amelioration of 

hepatic steatosis nor affected the expression of genes negatively regulated by FGF21, such as 

Hsd3b5 and Mup1, which were downregulated by EPB-53. The increase in FGF21 levels 

following metformin treatment has been demonstrated to be dependent on the inhibition of 

mitochondrial complex I activity and the subsequent activation of the PKR-like endoplasmic 

reticulum (ER) kinase (PERK)-eIF2α-ATF4 pathway (Kim et al., 2013). We currently have 

no explanation for the lack of effect of the increase in FGF21 levels caused by metformin 

compared to EPB-53, although changes in the levels of total and intact serum FGF21 caused 

by differences in the activity of FAP might be implicated (Sánchez-Garrido et al., 2016). 

Confirmation of the dependence of EPB-53 effects on FGF21 was obtained using Fgf21-

knockout mice. In mice deficient in FGF21, the effects of EPB-53 were abolished. Oral 

administration of EPB-53 for 1 week upregulated hepatic expression and serum levels of 

FGF21, supporting the notion that in shorter treatments EBP-53 increases the levels of 

FGF21, whereas in longer treatments (2 weeks), upregulation of FGF21 is attenuated.  
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Overall, the findings of this study demonstrate that oral administration of HRI activators is a 

potential strategy for the treatment of T2DM and NAFLD since it increases FGF21. It 

remains to be studied via long-term treatment whether the use of HRI activators to increase 

FGF21 levels avoids the side effects reported with long-acting FGF21 analogs. In the clinical 

setting, the use of an oral drug to induce endogenous FGF21 levels might have advantages 

over FGF21 analogs for the treatment of insulin resistance, type 2 diabetes mellitus and 

NAFLD.  

 

Financial Support. This study was partly supported by funds from the Spanish Ministry of 

the Economy and Competitiveness (SAF2015-64146-R to MVC and SAF2014-55725 to FV) 

and European Union ERDF funds. CIBER de Diabetes y Enfermedades Metabólicas 

Asociadas (CIBERDEM) and CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERObn) 

are Carlos III Health Institute projects. TQL is supported by a CONACyT (National Council 

for Science and Technology in Mexico) PhD scholarship. EP thanks the Institute of 

Biomedicine of the University of Barcelona (IBUB) for a PhD grant. 

 

Author’s contributions: MZ, EB, XP, TQL, JPD, and MVC performed the experiments; EP, 

and SV synthesized the compounds; MVC and FV analyzed the data and revised the results; 

MZ and MVC designed the experiments and revised the results; MVC was primarily 

responsible for writing the manuscript. All authors contributed to manuscript editing and 

approved the final version.  

 



 

 
This article is protected by copyright. All rights reserved. 

Acknowledgements: We would like to thank the University of Barcelona’s Language 

Advisory Service for revising the manuscript. 

 
This Declaration acknowledges that this paper adheres to the principles for transparent 

reporting 

and scientific rigour of preclinical research as stated in the BJP guidelines for Design & 

Analysis, Immunoblotting and Immunochemistry, and Animal Experimentation, and as 

recommended by funding agencies, publishers and other organisations engaged with 

supporting research. 

 

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14207
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14207
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14208
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14206


 

 
This article is protected by copyright. All rights reserved. 

References 

Alexander SPH, Kelly E, Marrion NV, Peters JA, Faccenda E., Harding SD, et al. 

(2017). The Concise Guide to PHARMACOLOGY 2017/18: Overview. Br J 

Pharmacol 174: S1–S16. 

 

Badman MK, Kennedy AR, Adams AC, Pissios P, Maratos-Flier E (2009). A very 

low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice 

independently of weight loss. Am J Physiol Endocrinol Metab 297: E1197-204.  

 

Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D 

(2009). Circulating fibroblast growth factor-21 is elevated in impaired glucose 

tolerance and type 2 diabetes and correlates with muscle and hepatic insulin 

resistance. Diabetes Care 32: 1542-1546.  

 

Chen T, Takrouri K, Hee-Hwang S, Rana S, Yefidoff-Freedman R, Halperin J, et al. 

(2013). Explorations of substituted urea functionality for the discovery of new 

activators of the heme-regulated inhibitor kinase. J Med Chem 56: 9457-9470.  

 

Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, et al. (2008). Circulating FGF-21 

levels in normal subjects and in newly diagnose patients with Type 2 diabetes 

mellitus. Exp Clin Endocrinol Diabetes 2008;116: 65-68.  

 

Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. (2008). 

Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149: 6018-6027.  

 

Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA, et al. 

(2015) Experimental design and analysis and their reporting: new guidance for 

publication in BJP. Br J Pharmacol 172: 3461-3471. 

 

Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. 

(2018). Experimental design and analysis and their reporting II: updated and 

simplified guidance for authors and peer reviewers. Br J Pharmacol 175: 987-93. 

 

De Sousa-Coelho AL, Marrero PF, Haro D (2012). Activating transcription factor 4-

dependent induction of FGF21 during amino acid deprivation. Biochem J 443: 165-

171.  

 

Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, et 

al. (2012). βKlotho is required for fibroblast growth factor 21 effects on growth and 

metabolism. Cell Metab 16: 387-393. 

 

Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, et al. 

(2010). Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver 

disease. Gastroenterology 139: 456-463.  

 



 

 
This article is protected by copyright. All rights reserved. 

Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, et al. 

(2010). Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59: 

2781-2789.  

 

Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, et al. (2011). 

Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in 

vivo. Endocrinology 152: 2996-3004. 

 

Gao Y, Shen W, Lu B, Zhang Q, Hu Y, Chen Y (2014). Upregulation of hepatic 

VLDLR via PPARα is required for the triglyceride-lowering effect of fenofibrate. J 

Lipid Res 55: 1622-1633. 

 

Gimeno RE, Moller DE (2014). FGF21-based pharmacotherapy--potential utility for 

metabolic disorders. Trends Endocrinol Metab 25: 303-311. 

 

Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, et al. 

(2007). Molecular insights into the klotho-dependent, endocrine mode of action of 

fibroblast growth factor 19 subfamily members. Mol Cell Biol 27: 3417-3428.  

 

Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, et al. (2012). 

Lack of overt FGF21 resistance in two mouse models of obesity and insulin 

resistance. Endocrinology 153: 69-80. 

 

Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S et al. (2018). 

The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to 

encompass the new guide to IMMUNOPHARMACOLOGY. Nucl Acids Res 46: 

D1091-D1106. 

Hecht R, Li YS, Sun J, Belouski E, Hall M, Hager T, et al. (2012). Rationale-Based 

Engineering of a Potent Long-Acting FGF21 Analog for the Treatment of Type 2 

Diabetes. PLoS One 7: e49345. 

 

Huang J, Ishino T, Chen G, Rolzin P, Osothprarop TF, Retting K, et al. (2013). 

Development of a novel long-acting antidiabetic FGF21 mimetic by targeted 

conjugation to a scaffold antibody. J Pharmacol Exp Ther 346: 270-280.  

 

Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. (2007). 

Endocrine regulation of the fasting response by PPARalpha-mediated induction of 

fibroblast growth factor 21. Cell Metab 5: 415-425. 

 

Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA (2008). 

Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell 

Metab 8: 77-83. 

 

Jiang S, Yan C, Fang QC, Shao ML, Zhang YL, Liu Y, et al. (2014). Fibroblast 

growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein 



 

 
This article is protected by copyright. All rights reserved. 

response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J 

Biol Chem 289: 29751-29765.  

 

Jo H, Choe SS, Shin KC, Jang H, Lee JH, Seong JK, et al. (2013). Back SH, Kim JB. 

Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the 

hepatic very low-density lipoprotein receptor. Hepatology 57: 1366-1377. 

 

Kersten S, Stienstra R (2017). The role and regulation of the peroxisome proliferator 

activated receptor alpha in human liver. Biochimie 136: 75-84. 

 

Kharitonenkov A, DiMarchi R (2015). FGF21 Revolutions: Recent Advances 

Illuminating FGF21 Biology and Medicinal Properties. Trends Endocrinol Metab 26: 

608-617. 

 

Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et 

al. FGF-21 as a novel metabolic regulator. J Clin Invest 115: 1627-1635.  

 

Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, et 

al. (2007). The metabolic state of diabetic monkeys is regulated by fibroblast growth 

factor-21. Endocrinology 148: 774-781.774. 

 

 

Kim AM, Somayaji VR, Dong JQ, Rolph TP, Weng Y, Chabot JR, et al. (2017). 

Once-weekly administration of a long-acting fibroblast growth factor 21 analogue 

modulates lipids, bone turnover markers, blood pressure and body weight differently 

in obese people with hypertriglyceridaemia and in non-human primates. Diabetes 

Obes Metab 19: 1762-1772.  

 

Kim KH, Jeong YT, Kim SH, Jung HS, Park KS, Lee HY, et al. (2013). Metformin-

induced inhibition of the mitochondrial respiratory chain increases FGF21 expression 

via ATF4 activation. Biochem Biophys Res Commun 440: 76-81. 

 

Kim YS, Kim M, Choi MY, Lee DH, Roh GS, Kim HJ, et al. (2017). Metformin 

protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun 

492: 397-403.  

 

Lu L, Han AP, Chen JJ (2001). Translation initiation control by heme-regulated 

eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. 

Mol Cell Biol 21: 7971-7980. 

 

Maratos-Flier E (2017). Fatty liver and FGF21 physiology. Exp Cell Res 360: 2-5.  

 

Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et 

al. (2014). Circulating FGF21 is liver derived and enhances glucose uptake during 

refeeding and overfeeding. Diabetes 63: 4057-4063. 

 



 

 
This article is protected by copyright. All rights reserved. 

McGrath JC, Lilley E (2015). Implementing guidelines on reporting research using 

animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 

172: 3189-3193. 

 

Mraz M, Bartlova M, Lacinova Z, Michalsky D, Kasalicky M, Haluzikova D, et al. 

(2009). Serum concentrations and tissue expression of a novel endocrine regulator 

fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin 

Endocrinol (Oxf) 71: 369-375.  

 

Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, et al. (2008). 

Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-

activated receptor gamma and altered metabolic states. Mol Pharmacol 74: 403-412.  

 

Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, et al. (2007). 

BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl 

Acad Sci U S A 104: 7432-7437. 

 

Postic C, Dentin R, Denechaud PD, Girard J (2007). ChREBP, a transcriptional 

regulator of glucose and lipid metabolism. Annu Rev Nutr 27: 179-192. 

 

Reitman ML (2013). FGF21 mimetic shows therapeutic promise. Cell Metab 18: 307-

309.   

 

Rena G, Hardie DG, Pearson ER (2017). The mechanisms of action of metformin. 

Diabetologia 60: 1577-1585. 

 

Sánchez-Garrido MA, Habegger KM, Clemmensen C, Holleman C, Müller TD, 

Perez-Tilve D, et al. (2016). Fibroblast activation protein (FAP) as a novel metabolic 

target. Mol Metab 5: 1015-1024. 

 

Satapati S, He T, Inagaki T, Potthoff M, Merritt ME, Esser V, et al. (2008). Partial 

resistance to peroxisome proliferator-activated receptor-alpha agonists in ZDF rats is 

associated with defective hepatic mitochondrial metabolism. Diabetes 57: 2012-2021. 

 

Talukdar S, Zhou Y, Li D, Rossulek M, Dong J, Somayaji V, et al. (2016). A Long-

Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid 

Profile in Non-human Primates and Type 2 Diabetic Subjects. Cell Metab 23: 427-

440.  

 

Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, et al. (2012). 

Fibroblast growth factor 21 promotes bone loss by potentiating the effects of 

peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci U S A 109: 3143-

3148. 

 

Weng Y, Chabot JR, Bernardo B, Yan Q, Zhu Y, Brenner MB, et al. (2015). 

Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a 



 

 
This article is protected by copyright. All rights reserved. 

novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and 

leptin-deficient obese mice. PLoS One 10: e0119104.  

 

Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, et al. (2009).  Fibroblast 

growth factor 21 reverses hepatic steatosis, increases energy expenditure, and 

improves insulin sensitivity in diet-induced obese mice. Diabetes 58: 250-259.  

 

Yilmaz Y, Eren F, Yonal O, Kurt R, Aktas B, Celikel CA, et al. (2010). Increased 

serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 

40: 887-892. 

 

Zarei M, Barroso E, Leiva R, Barniol-Xicota M, Pujol E, Escolano C, et al. (2016). 

Heme-Regulated eIF2α Kinase Modulates Hepatic FGF21 and Is Activated by 

PPARβ/δ Deficiency. Diabetes 65: 3185-3199. 

 

Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, et al. (2008). Serum 

FGF21 levels are increased in obesity and are independently associated with the 

metabolic syndrome in humans.  Diabetes 57: 1246-1253.  

 

Zhang Y, Lei T, Huang JF, Wang SB, Zhou LL, Yang ZQ, et al. (2011). The link 

between fibroblast growth factor 21 and sterol regulatory element binding protein 1c 

during lipogenesis in hepatocytes. Mol Cell Endocrinol 342: 41-47. 

 

Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. 

(1998). CHOP is implicated in programmed cell death in response to impaired 

function of the endoplasmic reticulum. Genes Dev 12: 982-995. 

 

 

 

 

 

 



 

 
This article is protected by copyright. All rights reserved. 

 
 

Fig. 1. EPB-53 increases the expression of FGF21 in human Huh-7 hepatocytes.  A, 

molecular structure of EPB-53. B, FGF21 mRNA abundance in human Huh-7 hepatocytes 

exposed to 10 µM of BTCtFPU, CTdCPU, and EPB-53 for 24 h. mRNA levels are presented 

as the mean ± S.D. (n=6 per group). *p<0.05 vs. control (CT). #p<0.05 vs. BTCtFPU-treated 

cells. †p<0.05 vs. c BTdCPU-treated cells. 
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Fig. 2. Oral administration of the HRI activator EPB-53 for 4 days increases hepatic 

expression and serum FGF21 levels in mice. Mice received one daily oral gavage of vehicle 

(2% w/v cyclodextrin) or one daily oral dose of the HRI activator EPB-53 for 4 days. A, liver 

cell lysate extracts were assayed via Western blot analysis with antibodies against total and 

phospho-HRI, total and phospho-eIF2α, and ATF4. B, Fgf21 mRNA abundance in the liver. 

C, serum FGF21 levels. D, Vldlr and Chop mRNA abundance in the liver. E, Pgc-1α, Pparα, 

Cpt-1α, Mcad, and Fas mRNA abundance in the liver. Data are presented as the mean ± S.D. 

(n=6 per group) relative to control mice. *p<0.05 vs. control mice (CT). 
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Fig. 3. Oral administration of EPB-53 reduces body weight gain, and improves glucose 

intolerance in mice fed a HFD. Mice were fed standard chow, a HFD for ten weeks or a 

HFD for 10 weeks plus EPB-53 or metformin during the last two weeks. A, Body weight and 

body weight gain. B, basal glucose levels. C, glucose tolerance test and area under the curve 

(AUC). Data are presented as the mean ± S.D. (n=6 per group). *p<0.05 vs. control (CT) 

mice treated with the vehicle alone. #p<0.05 vs. mice fed a HFD and treated with the vehicle 

alone. 
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Fig. 4. Oral administration of EPB-53 prevents fatty liver in mice fed a HFD. Mice were 

fed standard chow, a HFD for 10 weeks or a HFD for 10 weeks plus EPB-53 or metformin 

during the last 2 weeks (n=6 per group). A, H&E and Oil Red O staining of livers. Scale bar: 

100 µm. B, liver triglyceride levels. C, serum triglyceride levels. D, serum ALT levels. E, 

serum AST levels. *p<0.05 vs. control (CT) mice treated with the vehicle alone. #p<0.05 vs. 

mice fed a HFD and treated with the vehicle alone. †p<0.05 vs. mice fed a HFD and treated 

with EPB-53. 
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Fig. 5. Oral administration of EPB-53 increases the hepatic levels of phospho-HRI and 

phospho-eIF2α in mice fed a HFD. Mice were fed a standard chow, a HFD for 10 weeks or 

a HFD for 10 weeks plus EPB-53 or metformin during the last 2 weeks. A, liver cell lysates 

extracts were assayed via Western blot analysis with antibodies against total and phospho-

HRI, and total and phospho-eIF2α. B, Fgf21 mRNA abundance in the liver. C, serum FGF21 

levels. D, Mup1 mRNA abundance in the liver. E, Hsd3b5 mRNA abundance in the liver. F, 

liver cell lysates extracts were assayed via Western blot analysis with antibodies against total 

and phospho-AMPK, and VLDLR. Data are presented as the mean ± S.D. (n=6 per group) 

relative to control mice. *p<0.05 vs. control (CT) mice treated with the vehicle alone. #p<0.05 

vs. mice exposed to a HFD and treated with the vehicle alone. †p<0.05 vs. mice fed a HFD 

and treated with EPB-53. 
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Fig. 6. Oral administration of EPB-53 decreases hepatic lipogenesis in mice fed a HFD. 

Mice were fed standard chow, a HFD for 10 weeks or a HFD for 10 weeks plus EPB-53 or 

metformin during the last 2 weeks. A, Pgc-1α, Pparα, Cpt-1α, Acox1, and Mcad mRNA 

abundance in the liver. B, Srebp1c, Scd1, Fas, Gpat, and Chrebp mRNA abundance in the 

liver. C, liver cell lysate extracts were assayed via Western blot analysis with antibodies 

against FAS, PPARγ, and CD36. Data are presented as the mean ± S.D. (n=6 per group) 

relative to control mice. D, FAS, CD36 and VLDLR mRNA abundance in human Huh-7 

hepatocytes exposed to 10 µM EPB-53 for 24 h. mRNA levels are presented as the mean ± 

S.D. (n=5 per group). *p<0.05 vs. control (CT) mice or control cells treated with the vehicle 

alone. #p<0.05 vs. mice fed a HFD and treated with the vehicle alone. †p<0.05 vs. mice fed a 

HFD and treated with EPB-53. 
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Fig. 7. EPB-53 shows a dose-response relationship. Mice were fed a standard chow or a 

HFD for 3 weeks, and the last week they received one daily oral gavage of the vehicle or three 

different doses of EPB-53. A, glucose tolerance test and area under the curve (AUC). B, liver 

triglyceride levels. Fgf21 (C) and Fas (D) mRNA abundance in the liver. Data are presented 

as the mean ± S.D. (n=5 per group). *p<0.05 vs. mice fed a standard diet and treated with the 

vehicle alone. #p<0.05 vs. mice fed a HFD and treated with EPB-53. 
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Fig. 8. The effects of the HRI activator on HFD-induced glucose intolerance and hepatic 

steatosis are dependent on FGF21. Fgf21-/- mice and their wild-type (WT) littermates 

(Fgf21+/+) were fed a standard chow or a HFD for 3 weeks, and the last week they received 

one daily oral gavage of the vehicle or  EPB-53. A, Fgf21 mRNA abundance in the liver and 

serum FGF21 levels. B, glucose tolerance test and area under the curve (AUC). C, liver 

triglyceride levels. D, H&E and Oil Red O staining of livers. Scale bar: 100 µm. E, serum 

triglyceride levels. Serum ALT (F) and AST (G) levels. Data are presented as the mean ± 

S.D. (n=5 per group). *p<0.05 vs. WT mice fed a standard diet and treated with the vehicle 

alone. #p<0.05 vs. WT mice fed a HFD and treated with the vehicle alone. †p<0.05 vs. Fgf21-

null mice fed a standard diet and treated with the vehicle alone. 

 

 


