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1 INTRODUCTION 

This document is a summary of the first steps of my journey into academic 
research. The dissertation provides in-depth analysis of the theoretical basis 
of the British National Institute for Clinical Excellence (NICE) priority 
setting to the neonatal consequences of obstetricians’ tiredness. From being 
NICE to being tired aims to provide a quantitative perspective of four 
relevant multidisciplinary topics in health economics. It contains a piece of 
theoretical work with simulation exercises, a piece of methodology testing 
with an application to experimental data and two pieces of applied work, one 
focused on prediction and the other on causal effects. All articles are oriented 
towards informing public healthcare policies, with the hope that they will 
inform, someday, somehow, decision-making over the topics covered here.  

In the aftermath of the applied economics revolution that academic 
economics has undergone since the 1970’s, the boundaries between 
disciplines have changed. Theoretical models are nowadays built with 
testable explanations and predictions in mind, while theory-free causal 
inference papers are the most prevalent study designs in economics. Health 
economics has been no exception to this pattern. Inter-disciplinary science, 
at the core of health economics, has emerged as the shifting paradigm.  

The way healthcare is organized, financed and provided has been a topic of 
interest for economists since the mid 70’s, see; Culyer (1972;1977) and 
Culyer and Wiseman (1977). The scope of analysis has been usually split 
between macro, mezzo and micro levels. These conceptual frameworks are 
usually linked to methodological approaches. Macro studies of healthcare 
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provision tend to depart from a theoretical framework. Within the health 
economics discipline, given the obvious limited resources, priority setting 
has been the main topic of interest started by Newhouse and Culyer. The 
common rationale in the literature is the following, given the prevalence and 
incidence of diseases in the population, the cost and effectiveness of available 
treatment options and a closed public budget, in order to maximize the health 
of the population, treatments should be ranked in their ratio of health gain to 
costs and provided until the available budget is exhausted.  

This common result also depends upon the market environment. Universal 
public healthcare is the most common form of provision in developed 
countries. Enforced in different ways across systems, whether compulsory 
private insurance, social security system or national health service, have 
different implications for priority setting as discussed in Rissanen (1999); 
Menon et al. (2007); Robinson et al. (2012) and Drake (2014). Equity 
consequences of priority settings in healthcare have been studied in a wide 
arrange of settings, Martin et al. (2003); Oxman et al. (2006); Kapiriri et al. 
(2007); Lettieri et al. (2009); Burke et al. (2013) and Nuti et al. (2017). 
However, there is still room for significant contributions in the interaction of 
public healthcare provision, priority setting and healthcare markets. 
Meanwhile, the coexistence of private healthcare markets in UHC settings, 
usually accounting for 10 to 25% of overall health spending across nations, 
must be considered. The first chapter of this thesis aims at providing an 
algorithmic contribution to the theoretical framework acknowledging both 
vertical and horizontal equity concerns, cost-effectiveness of available 
treatments and the existence of a private healthcare markets within each 
health system. 

Meanwhile, effectiveness of available treatments (crucial to the efficiency in 
the health provision), interventions, guidelines and diagnostic technologies 
is subject to the principles of both causal inference and predictive modelling. 
Extensive efforts in terms of methodological development have also been 
exhorted worldwide. From the first randomised controlled trial in 1943 
published in the Lancet examining the effects of patulin on common cold, 
Stansfeld et al. (1943), to applications of bandit learning in adaptive clinical 
trials, Aboutalebi et al. (2019). Most pharmacological innovations are subject 
to the gold standard of causality to obtain market authorization, randomized 
controlled trials. The way trials are designed and evaluated is key to 
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understand the implications of their findings. However, trials are not always 
feasible. Whether for ethical, logistic or budgetary reasons, there are still big 
questions to be answered. Applied economics has only been recently starting 
to apply randomized trials to solve policy-oriented questions, Chattopadhyay 
et al. (2004). Despite the slow adoption of such designs, causal inference 
using observational data has always been at the core of economics. 
Paradoxically, the same year that the first randomized trial was published, 
Haavelmo published a paper that most economists consider the foundation of 
causal policy analysis, Haavelmo (1943;2006); Heckman et al. (2015). Yet, 
it was not until the 70-80’s decade when specific mathematical language and 
calculus started to emerge by Rubin (1974) and Pearl (1983) to deal with 
causality. There have been since, two competing models of causality; the 
potential outcomes framework developed by Rubin and the structural causal 
model developed by Pearl. While certainly the Rubin causal model dominates 
the econometrics field, Pearl’s has been more widely used in political, 
sociology and epidemiological sciences. Both models are equivalent 
representations of causal problems, however one is focused in counterfactual 
reasoning while the other uses directed acyclical graphs to lay out explicit 
and implicit assumptions. 

Statistical power, understood as the probability of rejecting the null 
hypothesis when a specific alternative hypothesis is true, remains an ignored 
feature of empirical research in economics. The relation between statistical 
significance, sample size and the pre-specified effect size of the alternative 
hypothesis has been a central topic in statistics. In fact, as stated by 
McCloskey in 1985; “Statisticians routinely advise examining the power 
function, but economists do not follow the advice”. Power can also be 
understood as the precision the researcher has in estimating a concrete 
hypothesis.   

There is also a key question in causality, will this treatment work for this 
patient? Which regions will benefit from this policy? While standard causal 
models can answer the question for the average patient or region enrolled in 
a trial or policy adoption, the heterogeneity in their effects has only been 
recently addressed in a formal way. The second chapter of this thesis lays out 
the theoretical foundations and provides an application of one of the most 
recent methods for identification of heterogeneity in causal effects. Using the 
first International Stroke Trial of 1991, I examine the effectiveness of oral 



 

4 

anticoagulant therapy as primary prevention of successive cerebrovascular 
events in heterogenous populations defined by a machine learning method. 

While causal methods have been at the core of applied economics studies, 
predictive problems have been mostly ignored in the economics literature, 
Kleinberg et al. (2015). The understanding and explanation of a problem 
requires causal and counterfactual reasoning, while prediction maps features 
to outcome with the sole aim of predicting. However, there are lots of settings 
where prediction is crucial to ensure efficiency through prevention. Imagine 
for instance, a ranking system of candidate patients for a hip replacement. 
The expected benefit of the intervention not only depends on the 
effectiveness of the surgery, but also on the expected survival of patients. 
Devoting resources to patients with an expected survival of less than one year 
clearly harms efficiency in the provision. Similar instances can be imagined 
elsewhere, from predicting a medical diagnostic to forecasting markets or 
doing prognosis. Regarding this topic, chapter 4 empirically addresses the 
prediction of which birth deliveries arriving to a hospital will end up with an 
emergency cesarean section. For that purpose, several statistical methods are 
employed. From logistic regression to random forest algorithms. Traditional 
econometric methods underperform when compared to learning models,  
Breiman (1993). In our specific case, the gain is achieved through non-linear 
interaction detection.   

Using the same data, in chapter 5, causal analysis become the focus. The 
main bulk of medical literature exploring the relation between the use of 
emergency cesarean delivery and neonatal outcomes does not specifically 
address treatment selection bias in their estimations. Cesarean sections have 
been linked increased neonatal morbimortality. In parallel, the fetal origins 
hypothesis developed in epidemiology by Barker (1995), was explored in the 
applied economics area. The hypothesis states that early life circumstances 
and shocks, as early as while gestation, may have a negative impact over 
outcomes later in life. In particular, the study focusses on the effects of 
emergency cesarean sections over immediate neonatal health. Note that while 
chapter 4 focuses on the prediction of treatment choice in order to prevent it, 
chapter 5 focuses on the effects of the precise treatment on health outcomes. 
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2 PRIORITY SETTING IN HEALTH 
CARE USING CATASTROPHIC 
EVENTS BY INCOME AND DISEASE: 
A FEASIBILITY STUDY* 

2.1 Introduction 
There is a widespread presumption amongst economists that priority setting 
grounded on pure cost-effectiveness is the single and more important 
contribution of health coverage to welfare as a form of health maximand e.g.  
Culyer (2016). It has also been traditionally recognized that “specific 
egalitarianism”, Tobin (1970), might be better managed by the use of specific 
subsidies on goods and services when there are what some authors have 
termed ”Pareto-relevant” externalities, Buchanan and Stubblebine (2000). 
Whether the reason for wanting to enhance the use of services (of which 
health care is commonly regarded as one) is to internalize an externality (an 
efficiency reason) or to rectify an injustice (an equity reason), the question 
arises of selecting an efficient and/or fair division of the costs between the 
consumer and the subsidizer. The efficiency/equity of charges versus general 
taxes in health care has been the subject of passionate debates, Culyer and 
Evans (1996); Gerdtham and Johannesson (1996); Johnson et al. (1997); 
Motheral and Henderson (1999); Wagstaff et al. (1999); Lopez-Casasnovas 
and Puig-Junoy (2000); Morgan et al. (2006). We discuss here neither the 
optimal mix of taxes and charges in the finance of health care nor the 
combination of in-kind versus in-cash forms of provision.  

*The paper in this chapter is co-authored with Guillem López-Casasnovas (Center for 
Research in Health and Economics, Pompeu Fabra University, Catalonia, Spain) and 
Anthony J. Culyer (Department of Economics and Related Studies and Centre for Health 
Economics, University of York, York, UK.) We are thankful for the reviews and helpful 
comments from Vicente Ortún, Beatriz González López-Valcarcel, Adam Wagstaff and 
Peter Zweifel. 
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We take however from optimal taxation theory, Stiglitz (1987), that taxing 
consumption and different tax rates according to types of consumer can be 
both efficient and equitable, once the policy-relevant characteristics of 
people and the presence of a private health market are taken into account.  

The use of differential out of pocket payments and socially regulated 
complementary private insurance has been usually treated as inconsistent 
with “universal health coverage” (UHC) usually through a public insurance 
package of defined health care benefits, Wagstaff (2014). Two issues 
evidently arise. One concerns the desirability of differential charges or 
coverage (on either efficiency or equity grounds, or both) when a country is 
in transition from a situation with no public insurance to one when public 
insurance is comprehensive both in its coverage of the population and in the 
inclusivity of the range of benefits. The other concerns the desirability of 
copays in a steady state of UHC but where there is also a private health 
insurance scheme with private health care providers, who may be contracted 
to supply services for publicly insured persons.  Both transitional 
arrangements delay the achievement of universal health care coverage. 
Subsidies for private health insurance are then generally concluded to be bad 
for welfare, Wagstaff (2014). The question of the desirability of copays or 
differential coverage is thus of significance for both low- and middle-income 
countries as they transition to UHC. It is also a matter of continuing concern 
for much richer countries like Spain and the UK in which well-developed 
public and private health insurance systems coexist with an important private 
provision of health care available to the public.   

We explore whether there is an optimal design for differential charges and 
health care coverage based on cost effectiveness prioritization alone. A 
characteristic apparent violation of horizontal equity occurs in a transitional 
phase where eligible persons are in the public insurance scheme and have 
access to services free of charge while ineligible persons’ access care at the 
full price charged by providers (whether public or private) and pay either out 
of pocket or purchase private health insurance.  Consider the case of two 
individuals (or families) who are identical in all respects save that the health 
needs of one are covered by the public scheme while the (equally serious) 
health needs of the other are not. The unfairness (not all authors accept this 
as unfair: Zweifel (2016) arises both from the unequal treatment of equal 
health needs and from the unequal financial burden placed on people who 
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have identical financial circumstances and who choose to purchase the care 
they need. We assume for the sake of simplicity that there are no quality 
differentials between care purchased privately and that provided under the 
public insurance scheme. Is it possible to devise a scheme that would enhance 
equity without damaging efficiency and that would avoid the inherent 
unfairness of the binary division, whether during a transition to UHC or even 
in a steady state? 

With the current rise of inequality in income, Bor et al. (2017), even in 
European countries, Devaux (2015), and the accumulation of causal evidence 
of its influence over health status, Pickett and Wilkinson (2015), our 
theoretical model tries to approach the significant issue of health provision 
with a novel methodology. The improvement in health information systems 
and the potential linkage to individual or household income taxation data, 
AQuAS (2017), allows us to devise a potentially valid provision scheme. 

Our model begins with the decomposition of the population according to risk 
of disease and levels of income. This generates an incidence-income-group 
matrix, consisting of a count of individuals affected with one or more specific 
diseases according to their income group. We then introduce the economic 
burden for each of the individuals. This includes subtracting the cost of 
treatments to the final economic outcome for that person if the disease is not 
treated. We define a “catastrophic event” (CTE) as one occurring when the 
individual economic burden relative to income is judged, say by the 
government, to be unbearable for the individual. The threshold thus 
determined will be a publicly set criterion and is plainly a social value 
judgment. We then minimize these CTE by optimally exhausting the budget 
through the relative cost-effectiveness of the available treatments. In section 
2.2 we develop the model. Section 2.3 analyses the simulated results of 
various scenarios applying both the standard health maximization and what 
we call Catastrophic Events by Income and Disease (CEID)-minimization in 
terms of both relative efficiency and equity. Relative efficiency is the ratio of 
provision with the new scheme relative to that pertaining under the standard 
health maximization approach, and equity is taken as the concentration index 
of health services provided to specific income groups, Wagstaff (1991; 
2005).  Section 2.4 discusses the policy implications and the potential barriers 
to implementation. 
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2.2 A simulation model 

2.2.1 Incidence-income-group matrix 
We first set up the dimension of the problem by specifying the prevalence of 
disease and the categories of socio-economic groups. Note that we are 
delineating the problem as a static one, a dynamic approach will also involve 
the incidence of the disease. We have a vector  of the prevalence of each 
disease affecting the population group. We have a vector  containing the 
number of individuals in each socio-economic group. Values of  are:  

 

By combining both we obtain what we call the incidence-income-group 
matrix (IID), classifying affected individuals according to income-groups. 

 

 

Figure 1. Representation of the incidence-income-group matrix with 
simulated values of D and W 

There are three axes in Figure 1.  “Income” has five income groups , sorted 
from right to left. The second axis refers to the disease group , 5 diseases 
in this case. The vertical axis is the prevalence of the disease as a discrete 
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function of d and w. Each vertex represents the value of prevalence as a 
discrete function of income and disease.  

2.2.2 Effectiveness and cost of treatments 
Each disease has a treatment with an associated average cost and average 
effectiveness. We assume that the most cost-effective treatment is always the 
one provided. We thus have two given vectors with a cost and effectiveness 
for each disease. We assume that neither the cost (C) and effectiveness (E) 
are independent on income group. 

     

    

The effectiveness of each treatment lies between 0 and 1, where 0 indicates 
complete ineffectiveness and 1 complete effectiveness of the treatment.  

2.2.3 Catastrophic events 
To define CTE, the value judgement underlying the threshold (α) defining 
catastrophic events, k, is a function of income (w) and private health care 
cost (c) for the ith individual and the jth disease: 

 

Where  takes binary values depending on   the threshold value that 
depends on the income group and for now we will consider it as given.  The 
threshold value could be interpreted as the minimum basic income it is judged 
that a household ought to have. We assume the financial burden to be 
determined only by treatment’s cost and income, understanding cost as the 
given price in the private health care market for a specific treatment. We do 
not take into consideration whether if it is out of pocket payment, insurance 
or copayment. 

2.2.4 CEID matrix 
By multiplying  and  we obtain the CEID (catastrophic events by 
income and disease group) matrix. Since  takes only Boolean values, the 
original IIG (incidence-income group) matrix is transformed into the CEID 
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matrix, which identifies income-disease populations at risk of suffering 
CTEs:  

 

     *  

 

 

 

illustrates a CEID matrix with 5 diseases and 5 income groups represented as 
line intersections. Income groups are ordered ascending from right to left. 
We can observe how CTEs follow the principle of monotonicity; there is 
never a richer income-group affected by specific disease with a higher 
catastrophic level (unless size of population is larger in richer groups, 
somewhat incompatible with the current levels of income and health 
inequality). 

Figure 2. Representation of the CEID matrix with simulated values of D, W, 
C, E, β and α 

2.2.5 Minimization problem 
The objective function is to minimize the predicted CE in a population 
constrained to a given, exogenous, closed budget . The decision variable is 
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 and can be interpreted as the amount of specific treatments given to an 
income group suffering the same illness: 

 

      

The first restriction ensures that the budgetary restriction is fulfilled while 
the second ensures that the amount of treatment given to any income-disease-
group does not exceed the size of the actual sick population.  

There are no derivable optimal conditions within this minimization problem 
since it is basically a discrete choice problem frame worked as a discrete 
minimization problem. The added value of the model lies in the process itself. 

Figure 3. CEID matrix before and after minimization process 

Figure 3 represents the catastrophic events by income group and disease 
before and after the minimization process. It can be seen that some diseases 
are left untreated because of the budget constraint even though they are 
effective treatments, Culyer (2016). For instance, for diseases 3 and 4, the 
same income groups were at risk with fairly similar populations. The 
minimization routine found it to be optimal to invest resources for disease 4 
but not for disease 3 given the treatments characteristics. The process thus 
identifies all health problems having economic consequences and then 
optimizes the provision of public resources to minimize catastrophic events. 
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The customary health maximization approach would exhaust the public 
budget with the most cost-effective instruments available regardless of which 
income group receives the benefit. 

2.3 Results 
The dynamics of the process in different scenarios can now be explored. In 
2.3.1 we explore three different simulations. 2.3.2 compares CEID 
minimization and standard health maximization. 2.3.3 compares relative 
efficiencies and 2.3.4 compares distributional results. 

2.3.1 Simulation 
Table 1. Parameter Values of model simulations 

Sim. N` 
Nº 
Diseases 

Nº IG Pop. α Incidence Cost Effect Β 

1 10 10 80K 100 0.005-0.01 300-3k 0.33-0.95 1.5M 

2 15 15 150K 200 0.005-0.01 300-3k 0.33-0.95 1.5M 

3 15 15 150K 300 0.005-0.01 300-3k 0.33-0.95 1.5M 

 

The results are presented in figures 4, 5 and 6. Each has three ordered 
elements: (1) Disease incidence by income group matrix, (2) CE by Income 
group and Disease and (3) Minimized CEID matrix. The graphs represent the 
three steps of the process, the construction of the IDC matrix, the 
identification of catastrophic events within the population and the final 
outcome after the minimization process. The final public health provision is 
the difference between the CEID matrix and the minimized matrix. It can be 
observed that this procedure targets individuals at risk taking into 
consideration not only the feasible health gain per public dollar invested, but 
also the economic or health consequences of not receiving appropriate 
treatment.  
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Figure 4. Simulation 1 Results 

Figure 5. Simulation 2 Results 

Figure 6. Simulation 3 Results 

2.3.2 CEID minimization vs health maximization 
We compare the health provision results of a health maximand approach with 
our CEID minimization approach. The values of the simulation are presented 
in table 2. 
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Table 2. Parameter simulation values 

Sim. N` Nº 
Diseases 

Nº 
IG 

Pop. α Incidence Cost Effectiv
eness 

Β 

4 10 10 150K 100 0.005-0.01 
300-
3,000 

0.33-
0.95 

6M 

In order to be able to compare the results of our model with the results of a 
health maximand model we create first a model that maximizes health. 
Health maximization is equivalent to the minimization of the IDC matrix 
subject to the budget and the individual constraint. Note that the IDC matrix 
has not been classified by the catastrophic events classifier. For this case, we 
take the Z matrix and minimize it subject to budget, effectiveness and cost 
constraints. 

Figure 7. CEID minimization Simulation 4 

Figure 8. IDC Matrix - Health Maximization Process Simulation 4 
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2.3.3 Model efficiency 
The health maximization process achieves greater efficiency by providing 
more treatments to sick individuals. We performed 10,000 simulations with 
the parameters in table 2 to analyze the reduction in impact on the burden of 
disease of our model compared with health maximization.  

The relative efficiency of the two approaches is obtained by the ratio of 
number of treatments in health maximization between the number of 
treatments in CEID minimization. 

Figure 9. Histogram of Relative Efficiency CEID vs. Health Maximization 

 

Health maximization maximizes the impact of any given budget on health by 
treating each individual equally (e.g. a QALY is a QALY for everybody). In 
situations where the public budget is not sufficient to cover the basics needs 
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of the population our simulation demonstrates that it is possible to break 
poverty cycles of households  though at the expense of some reduced impact 
on the overall burden of disease, Mcintyre et al. (2006). 

In order to analyze the distributional effects of such a policy there is a need 
to compare how treatments are distributed among income groups.  

2.3.4 Model’s Distributional Effects 
To study the distributional effects, we introduce a private sector. We assume 
arbitrarily that at least 50% of non-catastrophic events are covered through 
out-of-pocket payments or private insurance. We first subtract the CEID 
matrix from the IDC to obtain all the non-CE that can be covered by the 
private market. 

 

Then, we multiply those values by a constant fraction (those not considered 
to have a CE, this constant can be modeled later on as a demand function 
instead, in order to present the basic distributional effects of our model we 
won’t be covering this part.) to obtain the non-catastrophic private health 
market. We used an arbitrary 0.5 in this case. In order to compare the access 
to treatment for each income group we need to compute how many 
individuals do need treatment.  We define the maximum number of 
treatments as the sum of each row in the IDC matrix and subtract the 
combination of PM plus the optimal provision result of each model.  We use 
then the Gini coefficient transformation into concentration index to 
determine the inequality of health treatments received by each income group 
under both models. Then, we perform 10,000 simulations to explore the 
distribution of such an indicator by model. 

 

The difference between models increases with the constant parameter, 0.5 in 
our case, because it implies a rise in the private market, which implies more 
equal private health care provision environment under both models. 
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It can be observed in Figure 10 that the CEID minimization provides a more 
equal health provision regardless of income. We performed then a Welch two 
sample t-test. The mean statistic of the Gini coefficient related to CEID 
minimization is 0.06812, meanwhile for health maximization is 0.09829, t 
statistic is -24.888 and the p-value is approximately 2.2e-16.  

Figure 10. Distribution of Simulated Gini Coefficients 

2.4 Discussion 
We conclude that the CEID minimization strategy is a potentially useful 
theoretical basis for building public health provision in countries where the 
private health market accounts for a significant fraction of health care. CEID 
focuses on both the financial and the health consequences of leaving patients 
untreated when the private health sector provides effective services but ones 
that are not sufficiently cost-effective to be (as yet) included in a public health 
insurance scheme. This is due to the fact that the standard health 
maximization approach, which is the basis for the cost-effectiveness 
threshold, focuses only on health outcomes and not on the consequences of 
leaving people untreated. Our results are aligned with the intuition of a 
somewhat less efficient system while enhancing equity in the provision. 

In addition, under CEID minimization there is a decrease in the financial 
burden of disease compared with health maximization, with a significant 
decrease in health inequality among income groups. When the public health 
budget is not extensive enough to cover the whole range of basic needs of the 
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population CEID minimization could play therefore an important role for 
welfare.  

In terms of relative efficiency, the value judgment threshold mostly 
determines the potential welfare increase from CEID depending upon the 
social inequality aversion factor. Lower financial catastrophic thresholds will 
be associated with greater relative efficiencies up to the point where its value 
is zero, when both models are equivalent in inequality reduction. In terms of 
health equity, the CEID model deals better with wider gaps in income 
distribution of society than standard health maximization strategies. For this 
reason, the utilization in public health systems of income related copayments 
for selected treatments could lead, in addition, to some desirable 
distributional effects, improving the relative efficiency of the model.  

The CEID approach opens further research areas on the benefits of reducing 
inequalities, say by estimates of the quantitative reduction of the financial 
burden of disease according to the type of treated illnesses. Similarly, the 
effects can be calibrated according to whom those treatments are made 
available, their cost, relative effectiveness and the consumers’ reaction or 
elasticity to those changes.  The CEID strategy may also show the 
distributional consequences of increasing the budget for public health care, 
other care remaining constant. This will have an impact on financial burden, 
whose size will be dependent on the type of private services previously 
accessed by the population. Further, the CEID model can be used to set 
copays in ways that are least damaging to equity.  Finally, further research 
may help to explore the effects of increasing the number and nature of the 
treatments covered by the public scheme, ceteris paribus, given the price gaps 
between care under public and private provision. 

2.4.1 Barriers to implementation 
We acknowledge the proposed model far from being implementable. There 
are several constraints that limit is current applicability. The first, and 
perhaps most controversial, is the judgement value on what a CTE is, Zweifel 
(2016). Some authors defined a CTE as an out-of-pocket expenditure that 
pushes down consumption below the poverty line, Xu et al. (2003). However, 
depending upon pure social preferences, a country-specific definition could 
be achieved. Another limitation not explored in the present study is the 
correlation between diseases, namely multimorbidity. The fact that sicker 
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individuals tend to suffer from several chronic conditions at the same time 
and that those are interconnected expands the multiplicity problem faced in 
our proposed solution.  

Information on income for every household of a society is virtually 
impossible in low- and middle- income countries, where registries on taxes 
and healthcare are not interconnected, or even existent. However, for 
developed countries, where centralized registries are used to determine 
copayments or premiums could serve as a base ground to such a scheme. 
Real-world application requires dynamic solutions to the problem. 
Epidemiological information then ought to be not only a registry but also of 
a predictive nature to efficiently distribute the future resources. Finally, the 
trade-off between efficiency and equity in the provision of healthcare must 
be inferred from social preferences.  

2.5 Conclusion 
We present a novel theoretical approach to tackle the efficiency and equity 
outcomes of public healthcare provision. Unlike standard welfarist economic 
models, we solely focus on the provision of services by income, disease, cost-
effectiveness of the available instruments and a given budget in an 
algorithmic way. There is still a huge gap between the presented approach 
and what could be used in real-world settings, nonetheless, we believe that 
the economic modelling of public-private healthcare provision can offer 
some hindsight to future researchers and policy makers alike. 
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3 ARCHAEOLOGY IN MEDICAL 
RESEARCH: STROKES AND 
HETEROGENEOUS CAUSAL 
EFFECTS* 

3.1 Introduction 
Contemporary drug developments are required to fulfil the highest standards 
of causal evidence prior to market authorization, O’Neill (1993); Sampson 
and Kenett (2012). After discovery of a target molecule or compound, 
extensive in vitro and in vivo testing is required, Henderson et al. (2013); Hill 
et al. (2016). Causal inference continues to carry on in phase I to III 
randomized controlled trials (RCTs). Credible causal claims relay on both 
testable and untestable assumptions. RCTs represent the highest standard of 
causal designs, OCEBM Levels of Evidence Working Group (2009;2011). In 
clinical settings, RCTs can be understood as means to keep a complex 
environment stable except for the explicit and controlled manipulation 
treatment and observation of the outcome of interest.  

Identification of heterogeneity in causal effects conditional on observable 
features of the studied population seems an intuitive and worthwhile idea to 
pursue. Does the treatment have a negative average treatment effect (ATE) 
in a specific subpopulation? Is the ATE under-or-overestimated for certain 
subgroups?  These two questions, apparently similar, display significant 
differences in their nature. The first one, of qualitative nature (in kind) and 
the second of quantitative one (in degree). This conceptual distinction was 
already made explicit in the 80’s by Gail and Simon (1985) and later explored 
with greater depth in Yusuf et al. (1991). In general terms, quantitative 
interactions have greater odds of being replicated than qualitative 
interactions.  

*I am grateful to all attendants to the CRES-UPF seminar in December 2017 and the 
somewhat overlapped participants to the AES conference in June 2018 for their useful 
thoughts and comments. 
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Another apparent issue arises when trying to assess heterogeneity of 
treatment effects or conditional average treatment effect (CATE): sample 
size, statistical power and multiple hypotheses testing. RCTs are generally 
carefully designed in terms of inclusion, exclusion criteria, expected ATE 
and sample size. RCTs are generally powered at an 80% level and at a 5% 
significance level. Using a simulation study, Brookes et al. (2004) report how 
trials with 80% power fall to 29% when trying to identify four CATEs of 
about the same size.  

RCTs biggest threat to validity of results is unobservable treatment selection, 
confoundedness, Sedgwick (2015). Researchers routinely underestimate the 
chance of confounding when creating subgroups of a defined trial population, 
Sun et al. (2014). Balance across observable characteristics is exponentially 
jeopardized by the subgroups or interactions that conform the hypothesis 
space. 

Misuse of CATEs in clinical causal studies has been widely reported, 
Assmann et al. (2000); Kravitz et al. (2004); Lagakos (2006); Imai and 
Ratkovic (2013) and Sun et al. (2014). Social, Heckman and Vytlacil (2001);  
Ioannidis et al. (2017)  and behavioural,  Sharma et al. (1981); Boyd et al. 
(2011); Cortina et al. (2017) sciences are not immune to this problematic.  
Notwithstanding all the mentioned threats, recommendations and lack of use 
in the applied science environment, an exponential growth of methods for the 
identification of CATEs has been developing during the last decade.  

This explosion of literature, Chipman et al. (2010); Taddy et al. (2016); Su 
et al. (2009); Rosenblum and van der Laan (2011); Rolling (2014); Craig et 
al. (2014); Willke et al. (2012); Imai and Strauss (2011); Crump et al. (2008), 
feeds from developments in the machine learning (ML) field such as 
recursive partitioning Breiman (1984). The main difference between 
traditional ML approaches and the new ones lies in the partial shift from pure 
curve-fitting to counterfactual reasoning needed when potential outcomes are 
unobservable by definition and must be inferred, Bottou (2014); Pearl (2009); 
Pearl and Bareinboim (2011).  

Perhaps the simplest proposal to estimate even more granular conditional 
effects is the virtual twins algorithm, Foster et al. (2011). The authors argue 
that after fitting independent predictive models to both treatment and control 
arms, under the assumption of unconfoundedness, Imbens and Rubin (2017), 
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the difference in predictions of an outcome for a single unit classified to both 
algorithms is the individual treatment effect (ITE)  

In this paper we explore the potential heterogeneous treatment effects 
contained in the 1997 International Stroke Trial (IST), International Stroke 
Trial Collaborative Group (1997), by means of the latest developments in 
methodology for subgroup treatment heterogeneity identification, Athey and 
Imbens (2016), while addressing the most common statistical concerns of 
power, balance, qualitative, quantitative heterogeneity and overfitting. We 
also provide some out-of-the envelope estimates on the potential research and 
economic gains of such structured approach. Section 3.2 presents the 
materials and methods related to this chapter, with the trial design, 
identification of heterogeneous treatment effects, qualitative and quantitative 
heterogeneity, statistical power and balance. Section 3.3 presents the results 
regarding each of the previous points and section 3.4 concludes. 

3.2 Materials and methods 
In an attempt to illustrate with an empirical application all the mentioned 
concepts in subgroup analysis we make use of the IST database, Sandercock 
et al. (2011). The IST was one of the largest, multicentric, RCTs performed 
(between 1991-1996) in acute stroke to test the effectiveness of aspirin 
intake, heparin, both or neither administrated as soon as possible (<48h) after 
onset of an acute ischaemic stroke. The primary outcome was the proportion 
of patients who were dead or dependent at six months after treatment 
randomization. We reanalysed the primary data to carry a complete 
assessment of the potential CATEs and their plausibility. We only investigate 
the CATEs related to aspirin intake, as heparin had no effect and treatment 
arms were completely orthogonal.  

 All analysis were performed in R, R core Team (2016), data is publicly 
available, Sandercock et al. (2011). 

3.2.1 Trial design, data and primary published results 
The IST had 6 treatment arms described in Table 3 and included N=19,435 
patients. No trial arm had less than 99% follow-up at 6 months after 
randomization and compliance was closely monitored with 90-94% of 
patients being compliers. 467 hospitals in 36 countries participated in the 
study.  
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Sample size was specified according to the study protocol, where “at least 
20,000 patients to ensure that the risk of a false negative trial is negligible” 
were enrolled. Given an expected prevalence of deaths in the control group 
around 10%, an expected risk reduction of 15% and a sample size around 
10,000 patients per arm the trial, the trial was initially powered at a 99.9% 
two-sided level with a 5% significance threshold. 

 

 

Table 3. IST Trial arms allocations and patients’ follow-up (n=19,435) 

Allocation 1 Asp  Asp  Asp  No Asp No Asp No Asp 

Allocation 2 Hep 12.5 Hep 5 No Hep Hep 12.5 Hep 5 No Hep 

Baseline 2,430 2,432 4,858 2,426 2,429 4,860 

14 days FU 100% 99.99% 100% 100% 100% 99.99% 

6-M FU 99.30% 99.10% 99.10% 99.40% 99.10% 99.30% 

ASP: aspirin 300; Hep 12.5: heparin medium dose; Hep 5: heparin low dose; FU: follow-
up 

 

 

All available baseline covariates by treatment arm are presented in table 4 
indicating perfect balance at baseline. The trial was analysed with an 
intention-to-treat (ITT) and two-sided p values.  No significant effect was 
found in the heparin group in any outcome, while for aspirin, only a 
significant effect of 14 (SD 6, 2p=0.03) deaths and disabilities prevented per 
1000 was reported. Deaths from any cause at 6 months were not significant 
in the aspirin group, ATE=9 (SD 6, 2p=0.13) deaths prevented per 1000 as 
presented in Fig 1.  Heterogeneous treatment effects (HTE) were given a 99% 
CI threshold of significance and were reported for each treatment arm. No 
evidence of HTE or CATE was found in the predefined subgroup analysis 
and the study reported accordingly. 
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Table 4. Balance across IST baseline covariates by aspirin and no aspirin 
arms 

 No Aspirin arm Aspirin arm p. 
value     N=9715      N=9720    

Delay of randomization (hours) ‡ 20.1 (12.5) 20.1 (12.4) 0.888 
Consciousness at arrival (%) * 22.2 22.2 0.998 
Female (%) * 45.9 47 0.14 
Age (years) † 71.7 (11.6) 71.7 (11.6) 0.817 
Symptoms noted while awake (%) * 70.5 71 0.493 
Atrial fibrillation (%) * 83.2 82.4 0.151 
CT scan before randomization (%) * 32.8 33.2 0.499 
Infarct visible on CT (%) * 66.7 67.3 0.332 
No Heparin 24 hours before (%) * 97.7 97.7 0.804 
No Aspirin 24 hours before (%) * 78.5 78.7 0.751 
Systolic blood pressure (mmHg) † 160 (27.5) 160 (27.7) 0.429 
Face deficit (%) * 72.8 72.3 0.775 
Arm/hand deficit (%) * 85.7 85.6 0.428 
Leg/foot deficit (%) * 75.8 75.3 0.6 
Dysphasia (%) * 43.7 43.9 0.637 
Hemianopia (%) * 16.1 15.8 0.82 
Visuospatial disorder (%) * 16.4 16.3 0.935 
Brainstem/cerebellar signs (%) * 11 11.1 0.97 
Non-specified deficit (%) * 6.31 6.23 0.873 
Stroke subtype (%) *   0.961 
LACS 24 23.9           
PACS 40.5 40.3           
POCS 11.4 11.5           
TACS 23.8 23.9           

CT: computerized tomography; LACS: lacunar syndrome; PACS: partial anterior 
circulation syndrome; POCS: posterior circulation syndrome; TACS: total anterior 
circulation syndrome. *Categorical variables tested with chi-squared test; †Normally 
distributed variables tested with t-test; ‡ Continuous non-normal variables tested with the 
Kruskall-Wallis test. 

 

RCTs are rarely designed for the task of HTE estimation. We estimate the 
power function of the IST according to its sample sizes, observed ATE, 
prevalence and a level of significance dependent on multiple hypothesis 
testing (MHT). MHT requires statistical considerations on its own Wason, et 
al. (2014). Type-1 error or false positive likelihood increases with the 
addition of simultaneous untested hypothesis. Several methods for correction 
have been proposed to address this issue, Holm (1979); Henning and Westfall 
(2015). We apply the most common corrections to the power function to 
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quantitatively assess the power of the results obtained from the CATE 
estimates. 

Figure 11. Average treatment effects of aspirin intake over 6-month 
mortality 

 
ATE estimates of aspirin by estimation procedure. C1: controlling for delay of 
administration; C2: additional control for consciousness; C3: additional control for age and 
gender, C4: additional control for previous treatment, neurologic deficits and stroke 
subtype; C5: additional control for hospital fixed effects. 

3.2.2 Identification of THE 
We make use of the recursive partitioning for heterogeneous causal effects 
algorithm proposed by Athey and Imbens (2016). To the best of my 
knowledge, it is currently the only process where unbiasedness and 
consistency of the estimates has been proven, even under cross-validation 
conditions. The algorithm allows to estimate valid confidence intervals, even 
under multiplicity of covariates.  

The setup is derived from the traditional potential outcomes framework, 
Rubin (2005); Little and Rubin (2000), and classification and regression trees 
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(CART) Breiman (1984), with the addition of the stable unit-treatment value 
assumption (SUTVA) and the unconfoundedness assumption. It requires first 
to split the sample into estimation and treatment effects partitions. In this 
way, the subgroups obtained from the estimation sample have their CATE 
inferred from the “testing” sample. The final resulting model is a causal tree, 
analogous to a CART but with CATEs in the leafs instead of lay predictions. 
The approach is deemed as honest estimation. We apply the honest 
estimation procedure to obtain a causal tree with a prespecified number of 
subgroups derived from the power analysis. 

We start by specifying the baseline features, table 4, of the trial population 
upon which the partition space is going to be determined. We then proceed 
to simultaneously split the sample by each potential covariate value for the 
treated and control population while storing the root mean squared error of 
the average treatment effect. After the split has been performed recursively 
through each potential interaction, we prune the tree structure up to the pre-
specified 10 subgroups.  

3.2.3 Unconfoundedness 
The creation of subgroups in the analysis of RCTs, apart from adequate 
statistical power dependent on sample size, requires the mentioned 
assumptions. SUTVA is rarely empirically tested due to the difficulty in the 
observation process. Unconfoundedness, Imbens and Rubin (2017), 
however, is a balance across observables and unobservables requirement. 
Since it can only be empirically tested for observables, univariate balance 
tables such as Table 4 across arms are usually the only piece of suggestive 
evidence on balance across unobservables. Partitioning the original sample 
increases the likelihood of unbalance in a similar fashion than type-1 errors 
in MHT. 

We evaluate balance across covariates in each of the subsets created by the 
search of subgroups with appropriate univariate statistical tests depending 
upon covariate format. Categorical baseline covariates were evaluated with 
chi-squared test, numerical variables are distinguished between normal and 
non-normal with the Shapiro-Wilks at a 0.05 threshold and then t-test or 
Kruskall-Wallis test is performed according to each label. Unbalanced 
subgroups are not considered candidates for valid CATE inference.  
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3.2.4 Qualitative and quantitative heterogeneity 
Qualitative heterogeneity in treatment effects across subsets was tested with 
standard qualitative interaction techniques, Gail and Simon (1985). 
Quantitative heterogeneity or differential effect size is tested by means of 
standard adjusted hypothesis testing. It is nowadays widely accepted that 
qualitative interactions are the less likely outcome of a RCT. We also explore 
graphically the properties of the subgroup estimates by means of 
bootstrapped coefficients while considering statistical power and potential 
confounders. 

We make use of bootstrapped distributions of the CATE with 2000 
repetitions with replacement and kernel density smoothing. The optimal 
bandwidth of the kernel density estimates is selected by means of minimizing 
the mean integrated squared error. 

3.3 Results 

3.3.1 Statistical power 
To assess the power function of potential CATEs, expected effect, number of 
hypothesis and sample size must be considered. Recall the trial was initially 
designed to offer a 99.9% power.  

Given the uncontrolled result covered in figure 11, and given the variance in 
the outcome, we estimate the Cohen’s D, Cohen (1988), effect size being 
2.15%, i.e. a relative risk reduction of 3.98%. Given the final sample sizes 
per arm, 9,644 and 9,635, and the Cohen’s D effect size, the ultimate power 
obtained in the IST was 32.1%. Figure 12 plots the power function for the 
primary endpoint analysed. A limiting initial statistical power due to the 
overestimation in relative risk reduction, from 15% to 3.98% and an overall 
death prevalence underestimation from 10% to 22%, provides little room for 
the exploration of CATEs.  

When trying to determine the optimal number of subgroup comparisons, false 
discovery rate (FDR) or the rate of false positives must be included in the 
power calculations. We use the strict Bonferroni correction to assess an 
assumed 2-fold increase in any CATE, yielding an expected Cohen’s D of 
4.3%. A minimal sample size per subgroup of 1000 patients was selected 



 

 

     29 

arbitrarily. Statistical power was estimated to lay between 16% to 2% 

depending upon the ultimate number of subsets.  

Figure 12. Power function of the IST on 6-month mortality 

3.3.2 Causal tree 

The resulting causal tree identifying covariate-based splits is presented in 

Figure 13. A minimum size of the nodes was set at 1000 patients, with the 

expected 3.1% power. Cross-validation by matching patients in baseline 

characteristics and an honest split approach. The resulting hierarchical 

structure of the model offers suggestive evidence on the structure of CATEs. 

The first node represents the ATE of the whole sample. According to the 

conditional structure of the model, starting at the highest nodes, if the next 

condition is satisfied then the following left node follows. If not, it goes to 

the right. 4 successive splits were estimated to be optimal with a complexity 

parameter of 0.000003236812. After the first node, if delay at randomization 

was equal or higher than 10 hours, then the CATE with 70% of the sample 

population increased from 9 to 19 deaths prevented per 1,000 patients. If 

delay was lower than 10 hours, then the effect changed from -9 to 14 deaths 

caused per 1,000 patients. Delay at randomization is a variable that is 

discussed further for the implications. Successive splits offered a range of 
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results ranging 53 deaths prevented to 35 deaths caused. Final nodes sample 

size varied from 12 to 30% of the original sample. A total of 10 subgroups 

were identified in the algorithm. 

Figure 13. Causal tree 

RDELAY: delay at randomization (hours); STYPE: stroke subtype; RSBP: systolic blood 

pressure at randomization (mmHg). Integers within nodes represent CATE in terms of 

prevented deaths per 1,000, % represent relative sample size in each node. 

3.3.3 Balance 

Each of the 10 subgroups was further tested for balance of baseline 

prognostic factors. 4 out of 10 nodes had statistically significant differences 

in baseline covariates. Table 5 presents the results of the tests. Although 

likely to happen by pure chance, they clearly violate the unconfoundedness 

assumption required for the credibility of the claim in a completely 

underpowered environment. 
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Table 5. Baseline balance hypothesis testing by causal node of CATE 

 
Causal nodes 

 
1 2 3 4 5 6 7 8 9 10 

Delay at Rx ‡ 0.48 0.56 0.54 0.72 0.85 0.45 0.78 0.44 0.38 0.33 

Consciousness * 0.89 0.92 0.95 0.99 0.79 0.98 0.89 1 0.09 0.2 

Female * 0.21 0.45 0.44 0.26 0.81 0.39 0.85 0.23 1 0.78 

Age † 0.93 0.54 0.56 0.12 0.35 0.9 0.14 0.14 0.01 0.92 

Symptoms awake * 0.96 0.22 0.81 0.71 0.6 0.04 0.98 0.71 0.17 0.33 

Atrial fibrillation * 0.21 0.45 0.32 0.54 0.64 0.62 0.55 0.22 0.95 0.56 

CT scan before * 0.5 0.68 0.38 0.51 0.48 0.79 0.46 0.67 0.57 0.65 

Infarct visible CT *  0.57 0.18 0.28 0.32 0.13 0.83 0.31 0.77 0.34 0.55 

No Heparin 24 h * 0.97 0.58 0.79 0.69 0.48 1 0.57 0.73 0.96 0.53 

No Aspirin 24 h * 0.34 0.41 0.45 0.42 0.39 0.76 0.41 0.98 0.19 0.95 

SBP † 0.36 0.98 0.98 0.02 0.74 0.75 0.58 0.32 0.14 0.76 

Face deficit * 0.63 0.45 0.57 0.97 0.06 0.1 0.61 0.45 0.56 0.71 

Arm/hand deficit * 0.27 0.99 0.15 0.24 0.34 0.3 0.15 0.76 0.01 0.9 

Leg/foot deficit * 0.7 0.72 0.73 0.09 0.45 0.93 0.78 1 0.14 0.61 

Dysphasia * 0.98 0.19 0.82 0.34 0.27 0.06 0.8 1 0.94 0.58 

Hemianopia * 0.41 0.21 0.24 0.68 0.23 0.7 0.23 1 0.08 0.32 

Visuospatial * 0.86 0.96 0.68 0.75 0.64 0.57 0.69 1 0.05 0.86 

Brainstem * 0.62 0.4 0.73 0.38 0.98 0.2 0.75 1 0.39 0.55 

Another deficit * 0.49 0.06 0.78 0.38 0.36 0.02 0.77 1 0.97 0.74 

Stroke subtype * 0.8 0.33 0.74 0.79 0.4 0.41 0.59 1 0.08 0.82 

Balance X X X 

 

CT: computerized tomography; LACS: lacunar syndrome; PACS: partial anterior 
circulation syndrome; POCS: posterior circulation syndrome; TACS: total anterior 
circulation syndrome. *Categorical variables tested with chi-squared test; †Normally 
distributed variables tested with t-test; ‡ Continuous non-normal variables tested with the 
Kruskall-Wallis test. 
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The interpretation of the whole table leads to a broader picture on quantitative 
heterogeneity for further nodes, but also on que relation between extreme 
effects and balance. Figure 14 presents the bootstrapped estimates of CATE 
by hierarchical partitions of the algorithm. All panels present the 
bootstrapped distributions of the conditional treatment effects by levels of 
partition. Blue-shaded distributions present suggestive evidence of 
qualitative heterogeneity, red do not reject the null and grey shaded 
distributions do not satisfy the unconfoundedness. The upper panel I presents 
the CATE of the first split for each respective subgroup, and lower II-IV 
panels for successive splits of the causal tree. Estimates were drawn from 
2,000 bootstrapped draws and optimal bandwidth. 

3.4 Discussion 
The assessment of heterogeneity in causal effects requires caution. We have 
applied a novel methodology for the estimation of CATEs while evaluating 
the three pillars of validity: statistical power, balance, qualitative and 
quantitative heterogeneity. Delay at randomization is the most relevant 
source of potential qualitative heterogeneity. Within the IST trial, we 
interpret this prognostic factor as being a proxy for baseline stroke severity. 
Patients suffering from more severe strokes will, in principle, be admitted 
and treated in shorter time than less severe strokes where lesser symptoms 
like minor neurological deficits are present. Probably, the most efficient way 
to create valid inference of THE is an adequate experiment design. Statistical 
power is at the core of the problematic. Balance in subsets of interest has 
been historically resolved by means of stratified randomization Zelen (1974) 
with remarkable success in medicine, social and behavioural sciences, 
Cooper et al. (2010); Barnard et al. (2003a;2003b). Complementary findings 
in medical research reveal further evidence. In parallel to the IST the Chinese 
stroke trial, Chen (1997), was performed with similar results. Further 
evidence from subsequent studies, Rothwell et al. (2004;2005;2007;2011); 
Rothwell and Warlow (2005); Flossmann and Rothwell (2007); Harrison et 
al. (2005); Lovett et al. (2004); Carlsson et al. (2003); Lovett et al. (2003); 
Johnston et al. (2007), confirms that baseline stroke severity interacts with 
the effectiveness of recurrent ischemic transient attach (interaction p=0.04).  
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Figure 14. Bootstrapped distributions of CATE estimates by split 
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3.5 Conclusions 
I covered several dimensions of the problematic in subgroup analysis of 
causal inference, from the literature and from the reanalysis of one of the 
largest RCTs in medicine. It is worth noting that we did not extend our 
analysis in observational settings where the unconfoundedness assumption is 
surely violated more often than in controlled studies. 

Under the difficulties of severely underpowered inference we found 
suggestive patterns of evidence that were later confirmed in successive 
studies and metanalysis. In an archaeological manner, where no single piece 
of evidence is enough on its own to recreate the true reality of what is being 
studied, the gathering of multiple pieces may provide hindsight. By creating 
a reproducible framework that addresses the most common warnings of 
decades in statistical developments we hope to encourage a more transparent 
assessment of heterogeneity in causal effects. 
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4 PREDICTIVE MODELING OF 
EMERGENCY CAESAREAN 
DELIVERY* 

4.1 Introduction 
A worrisome issue in obstetrics and in public healthcare provision is the 
longstanding increase in cesarean section rates, as well as the unjustified 
variations in these rates in clinical practice across public and private hospitals 
worldwide, Zhang et al. (2010); Hamilton et al. (2015). This is particularly 
important in the case of emergency (i.e., unscheduled) cesarean section 
(ECS) rates, assuming that the appropriateness of indications for scheduled 
C-sections is reasonably acceptable and much higher than that for ECSs, 
Bailit et al. (1999); Kritchevsky et al. (1999); Librero et al. (2000); 
DiGiuseppe et al. (2001); Gregory et al. (2001); Fantini et al. (2006); Dhillon 
et al. (2014); García-Armesto et al. (2016), heterogeneity in clinical decision-
making should always be investigated when unjustified variations are 
suspected. Knowing the fetal, maternal, and contextual factors that drive the 
decision to perform an ECS at each hospital is paramount to designing and 
implementing hospital-tailored interventions specifically aimed at improving 
the appropriateness of indications for ECSs in order to avoid unnecessary 
ECSs and the associated complications and costs, Calvo-Pérez et al. (2007); 
Calvo et al. (2009); Chaillet and Dumont (2007); Ecker and Frigoletto 
(2007); Althabe et al. (2004); Walker, et al. (2002); Nils Chaillet et al. (2015); 
Sanchez-Ramos et al. (1990); Robson, et al. (1996); Myers and Gleicher 
(1993); Myers and Gleicher (1988). 

*This paper is co-authored with Carlos Campillo-Artero (Balearic Health Service, Palma 
de Mallorca, Spain) and Andrés Calvo-Pérez (Hospital de Manacor, Obstetrics and 
Gynaecology, Balearic Islands, Mallorca, Spain.) It was published in Public Library of 
Science January 23, 2018. 

https://doi.org/10.1371/journal.pone.0191248 
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Few current clinical guidelines and interventions target these objectives, 
Bloomfield (2004); Chittithavorn et al. (2006); Haberman et al. (2007); 
Lomas et al. (1991); Mugford, Banfield, and O’Hanlon (1991); Srisukho, 
Tongsong, and Srisupundit (2014); The American College of Obstetricians 
and Gynecologists. (2014). Those that do are neither based on a 
comprehensive set of proven fetal and maternal risk factors (RFs) with high 
discriminant accuracy (DA) nor designed to consider contextual factors that 
have been shown to be associated with both an increased rate of unnecessary 
ECSs and unjustified variations in clinical practice. Furthermore, most RFs 
for ECSs should be considered putative, since they have mainly been selected 
by means of logistic regression models that usually lack information 
regarding both their goodness-of-fit and their DA, Brennan et al. (2011); 
Coonrod et al. (2008); Ehrenthal et al. (2011); Heffner et al. (2003); 
Kominiarek et al. (2015); Kominiarek et al. (2010); Lynch et al. (2008); 
Pickhardt et al. (1992); Wilkes et al. (2003). Traditional measures of 
association alone are inappropriate to discriminate between who will suffer a 
given outcome and who will not. Therefore, interventions based on average 
risk estimates for people both exposed and unexposed to spurious RFs could 
be ineffective, inefficient, and even potentially harmful. 

To our knowledge, very few studies have sought to improve the ability to 
predict which women are at higher risk of ECS. Those that do are limited to 
nulliparas, include only a few of the putative RFs, and report no measures of 
either calibration or DA of the statistical models developed, Kominiarek et 
al. (2010); Lynch et al. (2008); Pickhardt et al. (1992); Wilkes et al. (2003). 
Our objective is not to build an explanatory model of the decisions to perform 
an ECS, but to increase the predictive accuracy regarding this type of delivery 
in order to provide more validated information with the ultimate view to 
improving the appropriateness of indications for ECS and thus preventing 
unnecessary C-sections. 

4.2 Material and methods 
The present study is part of a large multifaceted intervention intended to 
improve the appropriateness of the indications for ECSs in 22 public 
hospitals of the Spanish National Health Service launched by the Spanish 
Ministry of Health. Of those 22 participating hospitals, four (A, B, C, and D) 
were included in this study because their databases were the most reliable in 
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terms of consistency and coverage to ensure that robust predictive models of 
ECSs could be built. In size and complexity, the obstetric services of these 
four hospitals belong to level II (out of III) of the Spanish National Hospital 
Catalogue. They can be considered representative of about 42% of all 
obstetrics services of the Spanish National Health Service that belong to this 
level, since they all have a very similar case mix, and attend pregnant women 
with similar obstetric risk.  

The study population consisted of all 6,157 singleton births, with no 
exclusions, occurring in 2014 at four public hospitals located in three 
different autonomous communities of Spain. According to the Spanish 
National Institute of Statistics, these 6,157 births account for 1,5% of all 
yearly births in Spain (around 420,000/year). Hospitals A and B account for 
26,5% of all births occurring yearly in the Autonomous Community of the 
Balearic Islands, Hospital C for 12,6% of those occurring in Galicia, and 
Hospital D for 2,0% of those occurring in Valencia  

Data were collected prospectively over 2014 and registered in a specifically 
designed database that included the fetal, maternal, and contextual 
independent variables described in Table 6. All presentations were included 
in the analysis. All variables put forth in the medical literature as predictive 
variables (putative PFs) of the type of delivery were in principle considered 
in the study with few exceptions. Since birth weight is a post-delivery 
variable, it cannot be predictive of the type of delivery. The estimated preterm 
fetal weight could be considered a potential predictive variable. However, it 
is barely used given that its measurement is very imprecise (± 400 g).  

Unlike other predictive models published, we additionally included hospital 
fixed-effects and night-shift delivery as potentially predictive contextual 
independent variables. They are unobserved effects of hospital (contextual) 
characteristics that are not captured by any of the independent variables 
included in the models. They may be predictive of the type of delivery, 
account for a certain fraction of the medical variations (total variance) of 
ECSs often found in small area analysis and modify the strength of the 
associations of the independent RFs and the type of delivery. They are not 
explanatory of the type of delivery, but their association with it may be 
indicative of different entrenched, difficult to measure clinical practices 
across hospitals that are likely to influence the decision regarding the type of 
delivery and therefore they warrant further investigation. Night-shift delivery 
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was also included as an additional potentially predictive contextual 
independent variable. 

Table 6. Fetal, maternal, and contextual covariate definition and 
categorization 

Covariates Covariate categorization 

Age < 35 or  35 years 

Mother´s weight 

Mother´s height 

Mother´s Body Mass Index (BMI) 

Gestational age 

> 90 kg 

 1,5 m 

 35 or > 35 

 36 weeks 

Previous pregnancies No (0) or Yes (  1) 

Smoker Yes or No 

Previous C-section 0 or  1 

Comorbidity1 Yes (  1) o No  

Obstetric risk2 Yes or No 

Labor induction3  Used or Not used 

Intrapartum (scalp) pH < 7.20 or  7.20 

Night-shift delivery 

 

Fetus gender 

Yes (Delivery between 9 p.m. and 4 
a.m.) or No (Delivery between 4 a.m. 
and 9 p.m.) 

Male (0) female (1) 

1Defined as having one or more of the following comorbidities during pregnancy: anemia, 
asthma, heart disease, coagulopathy, type I and II diabetes in pregnancy, treated 
autoimmune disease, treated epilepsy, treated mental disease, treated neurological disease, 
treated renal disease, hemiplegia, treated liver disease, treated hyper and hypotiroidism, 
HIV infection, chronic hypertension, idiopathic thrombocytopenic purpura, malignant 
tumor, hepatitis C and B virus, amniocentesis, corial biopsy, cordocentesis, cannabis, 
cocaine, heroin, other drugs, disseminated intravascular coagulation, colesthasys, 
corioamnionitis, pathological Doppler result, chronologically prolonged pregnancy, fetal 
death, stained amniotic fluid, pathological non-stress test, oligoamnios, small for 
gestational age, pre-eclampsia, premature rupture of membranes, prolonged pregnancy. 
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2Defined as the presence during pregnancy of one or more of the following factors that 
increase the chance of an adverse pregnancy outcome: cholestasis, chorioamnionitis, 
diabetes insulin and non-insulin dependent, chronologically prolonged pregnancy, multiple 
pregnancy, hellp syndrome, hypertension, isoimmunization in pregnancy, stained amniotic 
fluid, fetal malformation, uterine malformation, fetal malposition, myomectomy, 
oligoamnios, previous preterm labor, placenta praevia, plyhydramnios, preeclampsia, 
premature rupture of membranes, siphylis, toxoplasmosis, previous c-section, repeated 
abortions, previous miscarriages, antepartum alteration of fetal wellbeing. 3All labors 
started by administering oxytocin or prostaglandins when indicated. 

 

Descriptive statistics were calculated for all fetal, maternal, and contextual 
variables. Scheduled, emergency, and overall (both scheduled and 
emergency) C-sections were estimated for the whole population and for each 
hospital with their corresponding 95% CI. 

The first step in our analytical approach to identify RFs for ECS was to 
calculate the prevalence of each putative RF in the overall population and in 
mothers delivering both by vaginal birth and by ECS, as well as their 95% 
CI. We then estimated the prevalence ratios of each RF (by dividing the 
prevalence of the RF by the prevalence of ECS). Finally, we estimated the 
positive likelihood ratios (LR+) of each RF and their 95% CIs. (A LR+ >10 
is considered high enough to rule in the outcome, 5-10 is considered 
moderate, and 2-5 is considered low, Wald et al. (1999); Deeks and Altman 
(2004); ; Pepe et al. (2004); Grimes and Schulz (2005); Eden et al. (2010); 
Juárez et al. (2014); Merlo and Mulinari (2015); Khoury et al. (2016).   

The second step was to build a logistic regression model for each of the four 
hospitals included in the study (A, B, C, and D), as well as a logistic model 
for the overall sample to find out which fetal, maternal, and contextual RFs 
(independent variables) were associated with the outcome (delivery type: 
vaginal or ECS), as well as the strength of the associations found. Model 
specification was performed based on stepwise top-bottom variable selection 
and taking into consideration the clinical relevance of each variable. Crude 
and adjusted ORs were obtained, as well as their 95% CIs. The models’ 
goodness-of-fit was compared by means of the -2log-likelihood ratios and 
the Akaike information criterion (AIC). Their DA was assessed through their 
areas under the receiver-operating-characteristic (ROC) curves (AUCs) 
along with their 95% CI. 

We then fitted a classification tree (CTREE or conditionally unbiased 
inference classification tree), a relatively new and useful predictive technique 
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for studying RFs and outcomes based on the unbiased recursive splitting of 
the study population sample into subgroups according to the independent 
variables, Hothorn et al. (2006). The underlying mathematical algorithm 
chooses which independent to split, their discriminatory value, and the order 
in which the splitting occurs. Outcome discrimination can thus be maximized 
at each step, making it possible to account for complex relationships between 
variables and their interactions and preventing both over-fitting and biased 
variable selection. The process develops a hierarchical tree structure that 
enables such simultaneous analyses and presents them in a clinically useful 
format.  

Unlike CART models, CTREE can handle datasets with both categorical and 
numerical variables without producing biased splits, and the interpretation of 
both odds ratios and likelihood ratios is straightforward. Therefore, we used 
dichotomous variables to enable comparisons with other published studies 
despite a small potential loss of information. All births were included in the 
analysis, and anonymity was preserved. A database was constructed by two 
computer engineers, who also managed the transfer of data. Database quality 
was periodically audited and was considered reliable in terms of consistency, 
coverage, and agreement. The database is available upon request. The 
Spanish Ministry of Health approved this study under the Strategy for 
Assistance at Normal Childbirth in the National Health System (PI/01445). 

We also developed a random forest model (RFM) that fits n classification 
trees by randomly selecting predictors for each tree. CTREE was used as the 
base learner, and 500 different trees were created by bootstrapping, rendering 
more accurate predictions than a single tree analysis. This algorithm allows 
to estimate the relative importance of each independent variable in the model 
(i.e. the contribution of each independent variable to the predictive power of 
the random forest). The methodology to compute relative importance of each 
variable (known as conditional permutation importance), and more 
information regarding CART, CTREE, and RFM can be found elsewhere  
Breiman (2001); Hothorn et al. (2006); Strobl et al. (2007a; 2007b); Strobl et 
al. (2009); Yoo et al. (2012). We also compared the models’ discriminatory 
performance by means of their corresponding ROC curves. Goodness-of-fit 
analysis across the abovementioned models was performed using in-sample 
(n = 6,157) data with ROC curves.  
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4.3 Results 
ECS rates varied from 8 to 15% across hospitals, whereas overall C-section 
rates were higher (12-21%). Table 7 presents the main results by hospital. 

Table 7. Emergency and overall (scheduled and emergency) cesarean rates 
by hospital 

  Number 
Emergency rate 
(%) 95% CI 

Overall  

rate (%) 

 

95% CI 

Hosp. A 1,923 8 7-9 14 13-15 

Hosp. B 893 9 8-10 12 11-13 

Hosp. C 2,458 15 14-16 21 20-22 

Hosp. D 883 11 10-12 15 14-16 

Total 6,157 11 11 17 17 

 

Descriptive statistics are shown in Table 8. Mothers delivering by ECS were 
slightly older, had higher BMIs and weight, were more likely to have had a 
previous C-section, had more comorbidity, presented greater obstetric risk, 
more often underwent labor induction and delivered during the night shift, 
and had a slightly lower gestational age, and intrapartum (scalp) pH than 
those who had eutocic deliveries. No differences were found regarding 
smoking during pregnancy.  

The prevalence of the putative RFs for ECS in the overall population, as well 
as in eutocic and ECS deliveries, is shown in Table 9. In the overall 
population, the RFs with the highest prevalence (over 40%) were previous 
pregnancies, night delivery, BMI > 35, and obstetric risk. The prevalence of 
all RFs except smoking and parity was higher in women delivering by ECS 
than in those with eutocic deliveries according to their 95% CI. All 
prevalence ratios were 6% or lower, and the LR+ of all individual RFs were 
low (4.14 or lower). The gender of the fetus was neither associated with the 
type of delivery nor improved either the calibration (-2 log likelihood ratios, 
AIC) or the discriminant accuracy (C statistic) of the final models. Therefore, 
it was excluded from the final logistic models. 
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Table 8. Distribution of fetal, maternal, and contextual variables by delivery 
type 

 Means 
 
 

 

Independent variables 
Vaginal 
birth 

Emergency C-
sections 

 

p-value 

Age (years) 31.46 32.83 <0.001 

Weight (kg) 65.7 67.9 <0.001 

Height (m) 1.63 1.61 <0.001 

BMI 23.96 26.66 <0.001 

Gestational age (weeks) 39.3 38.8 <0.001 

Fetus gender (%) 51.5 55.3 0.065 

Previous pregnancies (mean) 1.125 1.257 <0.001 

Smoker (%) 11.9 13.4 0.256 

Previous C-sections (%) 10.1 22.4 <0.001 

Comorbidity (%) 

Obstetric risk (%) 

17 

35 

25 

58 

0.014 

<0.001 

Obstetric risk (%) 

Labor induction (%) 

Scalp pH  

35 

20 

7.296 

58 

43 

7.245 

<0.001 

<0.001 

<0.001 

Night-shift delivery (%) 44 55 <0.001 
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BMI was finally included since it did not make any difference to include 
height and weight separately or BMI in terms of both the calibration (AIC) 
and the discriminant accuracy (C statistic) of the models. We did choose the 
most parsimonious models as the final ones. Gestational age was also 
excluded from the final logistic models due to its high collinearity with the 
rest of the independent variables that remained in the model for each hospital, 
and because its inclusion led to biased intercept estimates of these logistic 
models.  

 

 

Table 9. Prevalence ratios and positive likelihood ratios of the putative risk 
factors for emergency C-sections 

 Prev. Prev. 
Vag. 

Prev. Prev. 
LR+ 95% CI 

ECS ratio 

Smoker 12 12 13 1.1 1.1 1-1.16 

Previous C-section 11 10 22 1.03 2.2 2-2.4 

Comorbidity 17 17 25 1.59 1.5 1.38-1.56 

Obstetric risk 41 38 58 3.69 1.5 1.47-1.57 

Previous pregnancies 68 69 68 6.22 1 0.95-1.01 

Induction 23 20 43 2.06 2.2 2.05-2.25 

Scalp pH 9 7 29 2.64 4.1 3.85-4.42 

Night-shift delivery 45 45 55 4.11 1.2 1.17-1.26 

Weight (> 90kg) 3 5 9 1.08 1 1.01-1.06 

Height (< 1.50 m) 3 3 5 1.14 1 1.01-1.04 

Gestation (≤ 36 weeks) 6 5 15 1.22 1.1 1.06-1.13 

BMI ≥ 35 41 37 51 3.61 1.4 1.32-1.43 

Age ≥ 35 27 26 34 2.44 1.3 1.23-1.38 

Prev. Prevalence; Vag.: Vaginal, ECS: emergency cesarean delivery, LR+: likelihood ratio, 
CI: confidence interval. 
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Table 10 Logistic regression models to assess the association between the 
putative risk factors and type of delivery for the overall population and the 
four hospitals 

 

  4 Hospitals Hosp. A Hosp. B Hosp. C Hosp. D 

Hospital A 1.05 (0.74-
1.36) 

    

Hospital C 2.67*** (2.38-
2.96) 

    

Hospital D 1.44*** (1.09-
1.78) 

    

Age 1.02*** (1.01-
1.04) 

1.04** (1.01-
1.08) 

1.05** (1.01-
1.10) 

1.02 (0.99-
1.04) 

1.03 (0.99-
1.08) 

BMI 1.03*** (1.02-
1.05) 

1.04*** (1.01-
1.087) 

1.01 (0.96-
1.10) 

1.03*** 
(1.01-1.09) 

1.04 (0.99-
1.08) 

Smoker 1.230(0.98-
1.48) 

1.56* (1.05-
2.07) 

0.92 (0.13-
1.70) 

1.32 (0.95-
1.67) 

0.97 (0.35-
1.59) 

Prev. ECS 2.28*** (2.04-
2.51) 

3.77*** (3.25-
4.29) 

3.06*** 
(2.43-3.69) 

1.94*** 
(1.99-2.29) 

2.32*** 
(1.70-2.95) 

Comorbidity 1.21* (1.00-
1.42) 

1.41 (0.79-
2.04) 

2.43** (1.70-
3.16) 

1.05 (0.79-
1.31) 

1.34 (0.77-
1.91) 

Obstetric 
risk 

1.57*** 
(1.38,1.766) 

0.95 (0.54-
1.37) 

2.32*** 
(1.72-2.9) 

2.07*** 
(1.81-2.33) 

0.90 (0.34-
1.47) 

No. 
pregnancies 

0.87*** (0.79-
0.94) 

0.75*** (0.57-
0.93) 

0.95 (0.73-
1.16) 

0.79*** 
(0.67-0.91) 

1.27** (1.09-
1.45) 

Induction 2.23*** (2.14-
2.50) 

3.18*** (2.78-
3.59) 

1.72** (1.19-
2.25) 

2.14*** 
(1.87-2.40) 

2.26*** 
(1.79-2.73) 

Scalp pH 5.56*** (5.35-
5.78) 

5.24*** (4.81-
5.66) 

4.54*** 
(3.98-5.9) 

5.69*** 
(5.31-6.07) 

7.17*** 
(6.69-7.65) 

Night-shift 
delivery 

1.49*** (1.32-
1.66) 

1.40* (1.03-
1.77) 

1.11 (0.60-
1.61) 

1.78*** 
(1.54-2.02) 

0.93 (0.47-
1.39) 

AIC 3,715.86 873.21 461.82 1,846.04 532.47 
AUC 0.7781 0.81 0.7942 0.7477 0.79 
CI. AUC 
95% (0.76-0.7962) (0.7784-

0.8513) 
(0.7393-
0.849) 

(0.7211-
0.7743) 

(0.7382-
0.8418) 

Note: * p < 0.1, ** p < 0.05, *** p < 0 .01, 95% CI in parenthesis, AIC = Akaike 
Information Criterion, AUC = Area Under the Curve.   

 

 

According to the final logistic regression model for the overall population, 
all RFs except for the number of previous pregnancies were positively 
associated with ECS. The strongest associations were those found for scalp 
pH (OR = 5.56), Hospital C (OR = 2.69), induction (OR = 2.32), and previous 
ECS (OR = 2.28). The remaining ORs were lower than 1.5, although the 
lower limits of their 95% CI were greater than 1.0. The only inverse 
association found was that between parity and ECS (OR = 0.87). With regard 
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to the contextual variables, hospital fixed-effects and night-shift delivery 
were also positively associated with ECS. The strongest association was 
found with Hospital C, what is consistent with its substantial relative 
importance found in the random forest (Table 10). 

The strength of the positive associations was relatively similar in the models 
for each of the four hospitals and in the model for the overall population. 
Although pH, induction, and previous ECS appear to be the RFs with the 
highest ORs, and age and BMI those with the lowest, their relative magnitude 
at each hospital varied slightly, except for pH, which was substantially higher 
at one hospital (OR = 7.17). Parity was positively associated with ECS at 
only one hospital, whereas obstetric risk was positively associated with it at 
only two.   

The logistic model for the overall population and those for each hospital fit 
the data well, as indicated by both the -2log-likelihood ratio and the Akaike 
criterion. The goodness-of-fit of the population model increased notably 
when hospital fixed-effects were included. The DA of all five models was 
notably high, with AUCs ranging from 0.74 to 0.81. 

Of the two recursive partitioning models (CTREE and Random Forest), 
CTREE was used as the base learner for the Random Forest algorithm (n = 
500). Figure 15 depicts the tree structure of the trained CTREE. The first split 
(p < 0.001) is scalp pH, followed by labor induction and previous ECS, for 
pH ≥ 7.20 and pH < 7.20 respectively, meaning that if the pH ≥ 7.20, the next 
split is birth induction (p < 0.001), whereas if the pH < 7.20, the next split is 
previous ECS (p = 0.003). The interpretation extends to the conditional nodes 
(splits) and leaves. By way of example of the meaning and utility of hospital 
effects, on the extreme right side of Figure 15 it can be seen that mothers 
whose fetuses had a scalp pH > 7.20 and had not had a previous ECS, in 
hospital D had a probability of almost 48% of having an ECS, whereas in the 
other hospitals (A, B, and C) this probability went down to 27%. The AUC 
mean value of the CTREE was 0.88 (95% CI: 0.84-0.92). 

The RFM consisted of a set of n = 500 CTREEs with an optimal number of 
randomly selected variables = 2. Although random forest algorithms tend to 
be more of a black box in terms of their interpretation, their predictive power 
(AUC = 0.94; 95% CI: 0.93-0.95) provides reliable predictions even at an 
individual level. The relative variable importance of all variables included in 
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the RFM is shown inTable 11. The three most relevant RFs (pH, induction, 
and previous ECS) also showed the strongest associations in the logistic 
models. Since the LR+ of all the interaction terms found in the RFM were 
lower than 10, as was the case for the individual RFs (Table 9), they failed to 
rule in the type of delivery. 

 

 

 

Table 11 Relative importance of each putative risk factor for type of delivery 
according to the random forest 

Variable Relative importance 

Intrapartum pH 100 

Previous C-section 76.712 

Induction 31.755 

Hosp. C 29.895 

BMI 27.854 

Hosp. A 20.03 

Obs. risk 11.635 

Age 9.002 

Pregnancies  4.901 

Hosp. D 3.709 

Smoker 3.194 
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Figure 15. Classification tree for emergency cesarean sections for the four 
hospitals 
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4.4 Discussion 
The strength of the associations between some putative RFs and ECS, their 
prevalence, their prevalence ratios, and their LR+ in the overall population 
were low to moderate, indicating, as in other studies, that single RFs alone 
offer only a low DA for most outcomes, such as ECS, Deeks and Altman 
(2004); Eden et al. (2010); Grimes and Schulz (2005); Juárez et al. (2014); 
Khoury et al. (2016); Merlo and Mulinari (2015); Pepe et al. (2004); Wald et 
al. (1999). 

With the exception of scalp pH, the magnitude of the strength of these 
associations was low and similar across the four hospitals. Likewise, all were 
positive except for the number of pregnancies, which showed an inverse 
association. Heterogeneity did not seem to play a relevant role in the study 
population solely on the basis of this initial analysis. Moreover, only the 
number of pregnancies seemed to increase the odds of a vaginal delivery, as 
would be expected.  

In the final logistic model for the overall population both contextual variables 
(hospital fixed-effects and night-shift delivery) were positively associated 
with ECS and increased goodness-of-fit. These variables were associated 
with higher ECS rates and may thus favor the indication of ECS over vaginal 
deliveries. Regardless of maternal and fetal characteristics, and as indicated 
in a number of studies, different entrenched practices across hospitals seem 
to influence the decision regarding delivery type, similar to how physicians’ 
desire for night-time leisure influences the decision to perform an ECS at the 
start of the night shift, Bailit et al. 1999; Kritchevsky et al. 1999; Librero et 
al. 2000; DiGiuseppe et al. 2001; Gregory et al. 2001; Fantini et al. 2006; 
Dhillon et al. 2014; García-Armesto et al. (2016). 

No single 100% accurate predictive model of the type of delivery has been 
published to date. In fact, only a few have been published all showing a low 
predictive and discriminant accuracy. All these contextual (hospital) factors 
that may contribute both to predict and explain variations in both the type of 
delivery and in the appropriateness of the c-section´s indications (as shown 
by the high variability of rates of c-sections in several published atlases of 
variations in medical practice) remain unobserved and unknown. The only 
available way to account for them is by including hospital fixed-effects in 
logistic models and in random forests as contextual variables (which are 
tantamount of the second level variables in multilevel analyses). Moreover, 
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their inclusion in the models reduced the biases in the estimates of the 
measures of strength of the associations without resulting in overfitting, and 
increase their discriminant accuracy because they account for the 
abovementioned unobserved predictive factors. 

These results illustrate the usefulness of this analytic approach because they 
suggest that some hospital characteristics (i.e., method of payment and other 
incentives, physicians’ desire for night-time leisure, established non-
evidence-based practices such as to perform a c-section to mothers having 
had a previous c-section) may explain unjustified variations and 
inappropriateness of some indications for c-sections that warrant further 
investigation.  

Consequently, all fetal, maternal, and contextual factors alone failed to 
achieve a reasonable DA for ECS rates in different population subgroups at 
each hospital even after they were controlled for in these models. This is 
consistent with the well-known fact that the decision regarding the type of 
delivery hinges not only on different combinations of these RFs and the 
interactions between them, but also to some extent on variations across 
individual hospital practices and even individual clinicians’ practices. It can 
thus be the product of unjustified non-evidence-based clinical practices, 
which has long been shown in studies of variations in clinical practice with 
regard to CS using small area analysis.  

Measures of association alone are insufficient to discriminate between those 
individuals who will develop a given outcome and those who will not (a 
strong association is not tantamount to high DA given that the false positive 
and false negative fractions of the population are low), Deeks and Altman 
(2004); Eden et al. (2010); Grimes and Schulz (2005); Juárez et al. (2014). It 
is the set of independent variables included in the final logistic models that 
could make it possible to achieve acceptable DA, as shown by their high 
AUC (0.75-0.81). To our knowledge, no logistic regression model published 
to date has achieved an AUC similar to those reported here. 

The AUCs of the RFM (0.93-0.95) and the CTREE (0.84-0.92) offer a 
considerably improved additional analytical approach to the same issue due 
to the nature of their optimization algorithm, maximum likelihood for logistic 
and unbiased recursive partitioning for CTREE. Their incremental DA is 
notably higher than that of logistic models due to the unsupervised detection 
of interactions in the CTREE model and 500 such CTREEs in the RFM. The 
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reasons for this improvement in DA are mainly twofold. First, it results from 
detecting associations and interactions among the combinations of RFs used 
in clinical decision-making regarding the type of delivery at each hospital 
that are not captured by logistic models. Second, the model also captures 
heterogeneity (the trees’ branches), among both the hospitals and the 
clinicians’ decision-making frameworks, that logistic models likewise cannot 
capture.  

In terms of implications for clinical practice, we found some medically 
unjustified differences in ECS rates for hospital D compared to the other 
hospitals, e.g., in induced births between 11 p.m. and 3 a.m. in which the 
scalp pH was above 7.20 (nodes 2, 16, and 20). Moreover, in the subgroups 
of deliveries with pH above 7.20 and at least one previous C-section (nodes 
25 and 26), the ECS rates climbed to 50% and almost 60%, respectively. The 
utility of these results lies in that, despite they are neither explanatory not 
confirmatory, they suggest potential sources of inappropriate ECSs in 
Hospital D (contextual factors) that should be further investigated (i.e., 
changes in payment methods, lack of updated clinical guidelines, lack of 
utilization management, demand side issues).  

One of the main limitations of this study is that only 4 out 22 obstetrics 
services were included as explained in the Introduction. These four hospitals 
could be considered representative of up the 42% of hospitals within the 
Spanish National Health Service in terms of obstetric case mix, obstetric risk, 
and number of births and CS rates. However, it is to be expected that studies 
intended to build a predictive model for the type of delivery fail to have a 
high external validity with regard to the specific RFs for ECS. As already 
noted, it is the combination of RFs (fetal, maternal, and contextual) at each 
particular hospital and the interactions between them what makes it possible 
to improve the DA for the type of delivery. The more the clinical practice 
varies across centers and clinicians, the more different RF-combination 
subgroups can be expected to appear in the CTREES given their higher 
ability to capturing them; hence, the more hospital-specific the combination 
of RFs and interactions between them yielding the highest DA will be. Given 
that we performed a 10-fold cross-validation using randomly allocated 
90/10% training/test sample sizes, the chances of the RFM being overfitted 
and the AUCs being overestimated are very low. 
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Another limitation of the study is that scalp pH is a very proximate measure 
likely linked to fetal distress, so it is not a surprise that it is highly predictive. 
We did not include cord pH because it is a post-delivery endpoint and as such 
cannot be considered a predictive variable of the type of delivery. We could 
agree that scalp pH is linked to fetal distress and can be highly predictive. 
However, we have included it in the models as a predictive variable for 
several reasons: i) scalp pH is an intrapartum variable, not a final endpoint. 
Variations in the cut-off points actually used in clinical practice may explain 
both variations in the diagnosis of fetal distress, and in the fraction of 
appropriate and inappropriate indications for ECSs across hospitals (as it 
have been shown is studies of the appropriateness of the different types of 
emergency ECSs indications, in this particular case, fetal distress); ii) it has 
also been shown that both the clinical management of intrapartum (scalp) pH 
and thus of fetal distress varies across hospitals, and that it accounts for a 
considerable fraction of inappropriateness of ECSs for this specific 
indication, what could make scalp pH a predictive variable for some but not 
all ECSs; and iii) tenfold cross validation performed in the CTREE model 
prevented from obtaining overfitted estimates when including this variable.  

Therefore, this study’s main contribution is that the information provided by 
the combination of logistic regressions and CTREES can provide more 
accurate information than either method alone to help clinicians and 
managers find the sources of heterogeneity and unjustified variations in 
ECSs, design and implement hospital-tailored interventions intended to 
improve the appropriateness of their indications and reduce unnecessary ECS 
and their avoidable complications and costs. This comprehensive and 
complementary statistical methodology, combined with robust data 
collection and audit processes, makes it possible to analyze an intricate 
medical decision-making problem with higher discriminant capacity than 
previous studies.  

In conclusion, fetal, maternal, and contextual factors alone fail to achieve a 
reasonable discriminatory accuracy for type of cesarean delivery. We have 
met our objective by simultaneously considering these factors at each 
particular hospital by using both logistic regressions and the CTREES for the 
following reasons. First, this analytical strategy has improved the final 
discriminatory accuracy of the models for the type of delivery compared with 
that of the predictive models published to date. Second, the discriminatory 
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accuracy of these models has been validated in our study by means of ten-
fold cross-validation. Third, the results allow for further investigating sources 
of variability and inappropriateness of ECSs. Finally, based on this 
information, they also allow for tailoring hospital-specific interventions 
intended to discriminatory accuracy improve the appropriateness of 
indications for ECS. 
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5 IT’S ABOUT TIME: CESAREAN 
SECTIONS AND NEONATAL 
HEALTH* 

5.1 Introduction 
In recent years, there has been an increasing concern about the rise in 
cesarean section births. On average, in 2013 in OECD countries, more than 
1 birth out of 4 involved a c-section, while in 2000 it was only 1 out of 5, 
OECD (2013). These numbers contrast sharply with the recommendations of 
the WHO to have cesarean rates not above 15%. 

This excessive use of c-sections has been largely debated because they are 
associated with greater complications and higher maternal and infant 
mortality and morbidity than vaginal deliveries. However, the available 
evidence consists mostly of comparisons between cesareans and vaginal 
deliveries, and these studies may suffer from omitted variable bias, as 
mothers who give birth by cesareans may be different to those who have a 
vaginal birth in characteristics that can affect the health outcomes of the child 
and the mother after birth. In this line, in 2015, the WHO pointed out the 
need for more research to understand the health effects of cesarean sections 
on immediate and future outcomes, and remarked that “the effects of cesarean 
section rates on other outcomes, such as maternal and neonatal morbidity, 
pediatric outcomes and psychological or social well-being, are still unclear”, 
WHO (2015). 

*This paper is co-authored with Ana Maria Costa Ramon (Pompeu Fabra University, 
Barcelona, Spain), Ana Rodríguez-González (Pompeu Fabra University, Barcelona, Spain) 
and Carlos Campillo-Artero (Balearic Health Service). We are grateful to Libertad 
González, Guillem López-Casasnovas, Cristina Bellés-Obrero, Andrés Calvo, Rosa Ferrer, 
Christian Fons-Rosen, Borja García Lorenzo, Albrecht Glitz, Sergi Jiménez-Martín, 
Gianmarco León, Vicente Ortún, Alexandrina Stoyanova, Alessandro Tarozzi and Ana 
Tur-Prats. We also thank participants inthe UPF LPD Seminar, VI EvaluAES Workshop, 
31st ESPE Conference and 12th iHEA Congress. This paper was published the 27th of 
March 2018 in the Journal of Health Economics.  
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This paper aims to contribute to filling this gap by providing new evidence 
of a causal link between non-medically indicated cesarean sections and 
newborn health outcomes. Understanding the impact of c-sections on 
neonatal health is of relevance, as fetal and neonatal outcomes have been 
shown to be determinants not only of future health, but also of other later life 
outcomes, such as test scores, educational attainment and income, Almond 
and Currie (2011). In particular, we look at the impact of c-sections on Apgar 
scores and on the pH of the umbilical cord, both widely used measures of 
newborn wellbeing. Apgar scores have been found to be predictive of the 
health, cognitive ability, and behavioral problems of the child at age three, 
Almond et al. (2005), and of reading and math test scores in grades 3-8, Figlio 
et al. (2014). 

In order to show the existence of a causal link between non-medically 
indicated c-sections and health, we use the exogenous variation in the 
probability of getting a c-section that exists between hours. It has been 
studied that, although nature distributes births and associated problems 
uniformly, time-dependent variables related to the physicians’ demand for 
leisure are significant predictors of unplanned c-sections, Brown (1996). 
Using a sample of birth registries in public hospitals in Spain, we first 
document how, in this context, emergency c-sections are more likely to be 
performed during the first hours of the night (from 23h to 04h). We discuss 
how the structure of medical shifts and the higher opportunity cost in terms 
of time that vaginal deliveries imply might explain physicians’ incentives to 
perform more c-sections in this time period. We then show that mothers 
giving birth at different times of the day are observationally similar, also in 
pregnancy and labor characteristics that could predict a medically-indicated 
c-section. Therefore, the excess c-sections that we observe at the beginning 
of the night seem to be due to non-medical reasons. We thus adopt an 
instrumental variables approach, using the time of birth as an instrument for 
the mode of delivery: this allows us to interpret our estimates as causal and 
to focus on non-medically indicated c-sections, since the medically-indicated 
will be performed independently of the time of birth. We discuss the 
necessary assumptions and their plausibility in the coming sections. Our 
results suggest that non-medically indicated c-sections lead to a significant 
worsening of Apgar scores of approximately one standard deviation, and an 
increased probability of having the pH of the umbilical cord below normal 
levels. Our findings are robust to a number of robustness checks. 
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This paper contributes to two different strands of the literature. First, we 
contribute to the literature that studies the effects of c-sections on newborn 
health outcomes. There are a large number of papers that have documented a 
robust association between c-sections and respiratory morbidity, both at 
birth, Zanardo et al. (2004); Hansen et al. (2008), and in the longer term in 
the form of asthma, Davidson et al. (2010); Sevelsted et al. (2015). To the 
best of our knowledge, the only paper that tries to identify the causal impact 
of cesareans on later infant health is Jachetta (2015). The author uses 
variation in medical malpractice premia at the MSA-level in the US as an 
instrument for the rate of risk-adjusted cesarean sections and finds that higher 
rates lead to an increase in the rate of total hospitalizations and of 
hospitalizations that present asthma. Although the author identifies several 
potential threats to the validity of the instrument, this is a first step towards 
providing credible estimates of the causal link between c-sections and health 
outcomes.  

We advance the existing knowledge by using a new instrument that allows 
us to isolate the causal impact of non-medically indicated c-sections on the 
newborn’s health. In particular, our setting allows us to focus on mothers that 
give birth in the same hospital and are similar in observable characteristics, 
but that only differ in the hour of delivery. Moreover, we are able to provide 
evidence that time-variation in the quality of care is not driving our results. 
Finally, since we measure the impact on health at birth, we are able to 
establish the direct connection between c-sections and health outcomes. 
Second, our work is also related to the literature that documents or uses time 
variation in the probability of getting a c-section. Brown (1996) was one of 
the first to show that the probability of unplanned c-sections is non-uniformly 
distributed across time. Using data from military hospitals, he finds that 
cesarean sections were less likely during the weekend and more likely from 
6 PM to midnight. He interprets these results as evidence that non-clinical 
variables, and in particular physicians’ demand for leisure, also play a role in 
doctors’ decision making. In our setting, we find that the probability of 
unplanned c-sections is higher during the first hours of the night. We discuss 
how this is the period when doctors have a higher incentive to perform a c-
section when facing ambiguous cases, as the opportunity cost in terms of time 
of a vaginal delivery is higher.  
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There is one paper that uses time variation in the probability of getting a c-
section to study maternal outcomes. In particular, Halla et al. (2016) use 
administrative data from Austria to show that the probability of getting a c-
section is lower on weekends and public holidays, and they use this as an 
instrument for the mode of delivery to study the impact of c-sections on 
subsequent fertility and maternal labor supply. The authors find that c-
sections reduce subsequent fertility and that this translates into an increase in 
maternal labor supply over a period of about six years. Our paper also makes 
use of time variation, but our data allow us to use finer variation and rule out 
potential exogeneity problems: we study mothers in the same hospital, in the 
same day, but giving birth at different hours. Moreover, we are also able to 
precisely identify and restrict our sample to non-scheduled c-sections.  

The structure of the rest of the paper is as follows. In the next section we 
provide some background information on the choice of the mode of delivery, 
on the institutional setting and physicians’ shifts and on why we would expect 
to find an adverse effect of c-sections on health outcomes. The third section 
introduces the data, describes the variation in the c-section rate across hours 
and presents the empirical strategy. In section 4 we show and discuss our 
results. Section 5 presents some robustness checks and, finally, section 6 
concludes. 

5.2 Background 

5.2.1 Choice of the mode of delivery 
Cesarean sections can be performed for several reasons and at different times 
of the pregnancy. First, c-sections can be scheduled in advance – what are 
known as planned c-sections – if there are medical indications that make a 
vaginal delivery not advisable. Examples of such indications include multiple 
pregnancies with non-cephalic presentation of the first twin or placenta 
previa, NICE (2016). In principle, c-sections can also be scheduled if they 
are demand determined; that is, if the mother requests to deliver via a c-
section. However, in the context of public hospitals in Spain, elective c-
sections are very uncommon and, in fact, are not part of the portfolio of 
services offered by the public system, Marcos (2008). In any case, we 
exclude scheduled c-sections from our sample since these women are likely 
to be different from those delivering vaginally. 
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On the other hand, if there is no c-section scheduled, an attempt of vaginal 
delivery starts with the onset of labour or with the medical induction. If 
before or during labor the midwife or doctor detects evident health risks for 
the mother or the fetus, then a medically indicated emergency c-section will 
be performed. In some cases, however, whether a c-section is needed or not 
is not obvious, and thus the choice between a vaginal delivery, a c-section or 
other kinds of instrumented delivery will depend on the subjective 
assessment of the doctor, Halla et al. (2016). In fact, as Shurtz (2013) points 
out, a c-section is a common procedure that is known to be sensitive to 
physician incentives. For example, some papers have found that financial 
fees can influence the behavior of the doctor, Grant (2009). When fees are 
higher for a c-section than for a vaginal delivery, physicians have larger 
incentives to perform a c-section. Other papers have pointed out that 
physicians perform more c-sections as a defensive strategy to the fear of 
malpractice suit, Baicker et al. (2006); Currie and MacLeod (2008); Jachetta 
(2015). Finally, physicians have higher incentives to perform c-sections 
when the opportunity cost of time is higher, as vaginal deliveries last longer 
than c-sections and thus the latter can be seen as timesaving devices, Lefèvre 
(2014). This last type of incentive is the one we focus on in our study, since 
by performing our analysis within hospital we abstract from variations in 
malpractice premia and financial fees. 

5.2.2 Mechanisms: The impact of c-sections on the newborn’s health 
Cesarean sections have been associated with several adverse health outcomes 
of the newborn. Hyde et al. (2012) provide an extensive review of such 
findings. They reckon that, while further research is needed, the available 
evidence suggests that “normal vaginal delivery is an important 
programming event with life-long health consequences”. The absence or 
modification of such event is thus related to several health alterations, which 
they classify either as short or long term. 

The most relevant for our study, among the short-term outcomes, are the 
increased hazard of impaired lung functioning and altered behavioral 
responses to stress. Regarding the former, one of the most common causes of 
respiratory distress among newborns is transient tachypnea or the presence 
of retained lung fluid. Babies in the amniotic sac have their lungs filled with 
amniotic liquid, and during labor the fetus releases chemicals which, together 
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with the pressure of the birth canal on the baby’s chest, help expel the 
amniotic fluid from their lungs. This process does not play a role for babies 
born by cesarean section, so the presence of liquid in their lungs after birth is 
more common among them. Moreover, catecholamines, one of the chemicals 
released by the fetus during labor, are also correlated with muscle tone and 
excitability, Otamiri et al. (1991). These authors find that babies born by 
cesarean sections responded worse to neurological tests a few days after 
birth. In our setting, we can proxy the impact of c-sections on these outcomes 
by looking at Apgar scores at the minute 1 and 5 after birth, which capture 
appearance (skin color), Pulse (heart rate), Grimace (reflex irritability), 
Activity (muscle tone) and Respiration. 

In the longer term, cesarean births have also been associated with higher risk 
of asthma, Sevelsted et al. (2015). While a possible mechanism for this 
relation are the changes in the microbiome of the newborn with respect to 
those born by vaginal delivery due to not passing through the birth canal, 
Hyde et al. (2012) also discuss that the differences in lung functioning at birth 
between these two groups might also lead to the development of future 
respiratory problems. Finally, there is also evidence that the excitability 
reduction in cesarean newborns might be a symptom of further alterations in 
the central nervous system, as the catecholamine surge at birth might affect 
its programming, Boksa and Zhang (2008). These findings suggest that 
whatever health worsening at birth we detect might have long-lasting 
consequences. 

Besides Apgar scores, we also inspect the impact of cesarean sections on the 
pH of the umbilical cord. The examination of the umbilical artery is a 
measure of fetal suffering and determines if a baby has experienced an 
oxygen-depriving event. PH values below 7.20 reflect that the newborn 
suffered a moderate lack of oxygen; values under 7.15 suggest a severe lack 
of oxygen and below 7.10 very severe suffering. Although the relationship 
between pH levels and Apgar scores is not one-to-one, they are positively  

correlated. The medical literature recommendation is to consider pH levels 
together with Apgar scores in order to assess the wellbeing of the newborn, 
Hannah (1989); Gao et al. (2009). 
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5.2.3 Institutional setting 

5.2.3.1 Childbirth in Spanish public hospitals 

In Spain, maternity care coverage is universal under the provision of the 
Spanish National Health Service. Antenatal and postnatal care for women are 
mainly provided at the local health centers by midwives, while deliveries are 
supervised in the hospitals by teams of both midwives and obstetricians. 
Expectant women do not have a pre-assigned doctor or midwife for the 
delivery; rather, they are allocated to the professional available at the time of 
admission to the hospital. During labor women are constantly assisted by 
midwives who monitor the baby, check how labor is progressing and call a 
doctor if they notice any problems. If no complications arise, midwives might 
manage the whole delivery. However, the obstetrician is in charge of any 
instrumented assistance and takes decisions regarding the mode of delivery. 

Women may opt for private care, but most of the deliveries – 8 out of 10 
births – take place under the public health system, Ministerio de Sanidad, 
Servicios Sociales e Igualdad (2015). In the year 2014, the c-section rate in 
the public health system was 22.1%, down from the 25.4% rate of the whole 
sector, combining both public and private hospitals. It is important to note 
that, within the public system, obstetricians’ wages are independent of the 
method of delivery used and the number of c-sections performed. 

5.2.3.2 Physicians’ shifts 

In our setting, the normal work shift for a doctor is from 8am to 3pm, and 
night shifts are covered by doctors that are on duty and have to stay in the 
hospital for 24 hours (from 8am to 8am next morning). When doctors are on 
duty, they have to aid gynecological emergencies, which are not very usual, 
monitor newborns’ health from time to time and be in the labor room when 
decisions regarding a delivery have to be taken, or if complications arise. 
Midwives, on the other hand, work 12-hour shifts (from 8am to 8pm). For all 
hospitals in our sample, there are at least two obstetricians and two midwives 
on duty during the night shift. On average in our sample doctors assist 
between 1 and 2 deliveries per night. Therefore, during the night shift, each 
delivery accounts for a major part of a doctor’s duties. Although in our setting 
doctors cannot leave the hospital while they are on duty, they have beds 
available to rest when there is no emergency or complication that requires 
their presence. 
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5.3 Data and Methods 

5.3.1 Description of the data 
Our data consists of 6,163 birth records from four different public hospitals 
in different Autonomous Regions in Spain during the years 2014-2016. The 
characteristics of the hospitals in our sample are comparable to that of the 
majority of public hospitals in Spain, in particular in the volume of births 
attended per year (between 300 and 1500). In terms of their c-section rates, 
three of four hospitals are in the left tail of the distribution, while one of them 
is just at the mode, which a c-section rate around of 21%.  

Each birth registry contains information on mother characteristics (age, 
nationality, studies, marital status, etc.), on the pregnancy, on the type of birth 
(elective cesarean, emergency cesarean, eutocic delivery, etc.), on medical 
interventions during labor, on a series of medical indicators collected before, 
during and after the delivery, on the newborn (birthweight, APGAR scores, 
etc.) and on the date and time of birth. In our data, 5% of women deliver via 
a planned c-section, more than 11% via an emergency c-section and 68% 
have an eutocic delivery, that is, a vaginal delivery without other 
interventions (spatula, forceps and vacuum). Vaginal deliveries with these 
interventions represent around 15% of the sample. We restrict our sample to 
single births that are either eutocic or by unplanned c-section: our final 
sample consists of 4,886 observations. 

5.3.2 Variation in the c-section rate between hours 
Figure 16 shows the c-section rate across hours for our sample of public 
hospitals in Spain. We can observe that the distribution of emergency c-
sections by hours of birth is not uniform. The proportion of women that 
deliver via an emergency c-section is higher early at night (from 23 to 4 am) 
and much lower during the last hours of the night and during the rest of the 
day. This pattern is not matched by either the total number of births or the 
number of vaginal births. But more importantly, this variation is not driven 
by differences in maternal or pregnancy characteristics of deliveries that take 
place at different times of the day. In the next section table 13 confirms the 
good balance of a very large set of mother and pregnancy characteristics 
between the first hours of the night and the rest of the day. As we will discuss 
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in more detail, this allows us to use this exogenous variation as an instrument 
for the mode of delivery. 

We are not the first to document this spike in emergency c-section deliveries 
at the beginning of the night. For example, Fraser et al. (1987); Brown (1996) 
and Spetz et al. (2001) show an increase in the probability of a c-section at 
the end of the day until midnight, and Hueston et al. (1996) documents a peak 
in the emergency c-section rate between 9pm and 3am. These authors have 
interpreted these evening or night peaks as evidence that doctors’ 
convenience and demand for leisure matter for the determination of the 
timing and mode of delivery. Similarly, some studies find that the probability 
of a c-section also increases when doctors can go to sleep or home after the 
birth, since cesarean sections normally result in less total time devoted to the 
patient, Klasko et al. (1995); Spong et al. (2012). 

This explanation is consistent with the time pattern that we find in our data. 
Given the medical shift structure and the larger time-cost implied by vaginal 
deliveries, doctors’ incentives to perform c-sections in ambiguous cases can 
vary with time. In particular, we expect doctors to have a larger incentive to 
perform c-sections at the beginning of the night. At this time doctors that are 
on duty have already been working for more than 12 hours straight. If they 
perform a c-section and do not have other mothers to take care of they can 
expect to rest for the remainder of their shift; alternatively, if they do not 
perform a c-section they will have to monitor from time to time the vaginal 
delivery during the rest of the night. Moreover, ongoing deliveries at the 
beginning of the night have a high probability of falling under the 
responsibility of the doctor on duty, while this is not true for deliveries 
starting later on, which are more likely to finish outside the doctor’s shift. All 
of the above would have as a consequence that a higher share of deliveries 
with ambiguous indications end up in cesarean section during the first hours 
of the night, as compared to the rest of the day. 

Other alternative explanations are not compatible with this variation. For 
example, if either patient’s or physician’s fatigue increased the probability of 
c-sections, we would expect to see a higher emergency c-section rate during 
late hours of the night rather than during the first hours. We can rule out as 
well that this is driven by an accumulation of births during these hours, since 
we do not observe the same time pattern for the number of births. Finally, it 
cannot be explained by selection of some highly interventionist doctors at 
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different times of the day, as deliveries are not pre-assigned to a given 

obstetrician. 

Figure 16. Proportion of unplanned c-sections by hour 

5.3.3 Identification Strategy 

Our objective is to identify the causal impact of non-medically indicated c-

sections on child’s health at birth. The simple comparison of women who got 

a c-section and those who delivered vaginally is likely to suffer from omitted 

variable bias, as these groups are probably different in characteristics that 

influence the outcome variables. Table 12 compares observable 

characteristics of mothers who delivered vaginally and through a cesarean 

section: we see that, in fact, these mothers are significantly different along 

several relevant aspects, such as age, gestational length, obstetric risk or 

educational achievement, all of them potentially related to the health of the 

newborn.  

There are thus reasons to be worried that they might also be different in other 

characteristics we cannot observe. Besides, by comparing vaginal deliveries 

with births by emergency c-section we cannot identify which kind of 

emergency c-section is causing whatever health effects we find, since we 

observe the outcomes of both medically and nonmedically indicated 

interventions. In order to overcome these issues, we will use the variation in 

the probability of getting a c-section between hours. The purpose of the 

instrument is thus twofold: we want to be able to compare similar women, 
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and we want to identify precisely the impact of non-medically necessary 
cesareans. 

Table 12. Observable characteristics by type of birth 

  Means   

  Eutocic Birth 
C-

section 
P-

vaule 
A. Personal 
characteristics    
Mother Age 31.466 32.828 0.000 
Levels of education    

No studies 0.037 0.022 0.044 
Primary school 0.278 0.206 0.000 
Secondary school 0.502 0.609 0.000 
University education 0.182 0.164 0.234 

Non-Spanish 0.278 0.199 0.000 
Single 0.017 0.015 0.602 
Mother weight 65.471 67.83 0.000 
Mother height 1.653 1.595 0.547 
B. Pregnancy characteristics   
Tobacco during 
pregnancy 0.119 0.134 0.256 
Alcohol during pregnancy 0.003 0.007 0.067 
Gestation weeks 39.267 38.863 0.000 
Precious c-section 0.064 0.223 0.000 
Obstetric risk 0.35 0.58 0.000 
Intrapartum pH 7.296 7.245 0.000 
Birthweight 3290.334 3181.038 0.000 
Induction 0.189 0.431 0.000 
Observations 4201 685 4886 

We define a binary variable  equal to one if the mode of delivery is an 
emergency c-section and zero if it is an eutocic delivery, that is, a vaginal 
delivery with no interventions. Child’s health  refers to either Apgar scores 
or umbilical cord pH. We would thus like to estimate the following equation: 

  

where  is a set of covariates that include information on mothers’ personal 
and pregnancy characteristics. But, as discussed earlier, the estimation of 
equation (1) is likely to provide biased estimates of . To overcome this 
potential endogeneity, we use an IV approach, instrumenting the type of birth 
with an indicator for the time the baby is born. Therefore, our first stage 
would be the following: 
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where earlynighti is an indicator variable equal to 1 if woman i gives birth 
during the beginning of the night shift (from 23h to 04h). We expect a 
positive g1 since obstetricians are more likely to initiate a c-section during 
these hours of the night in order to gain time for rest or leisure. The 
identifying assumption is that earlynighti is not correlated with ei, but this 
assumption entails two conditions. The first is that the instrument is as good 
as randomly assigned. We provide suggestive evidence that this is the case 
by comparing personal and pregnancy characteristics of mothers who give 
birth from 23h to 04h and during the rest of the day in table 13. Mothers are 
similar with respect to their educational level, weight and height, alcohol and 
tobacco consumption habits during pregnancy, gestational length, obstetric 
risk, weight of the newborn or previous c-sections. The level of intrapartum 
pH, a measure of fetal suffering during labor – a major cause of emergency 
c-sections – is also equivalent. We find some slight differences between 
mothers across time with respect to their nationality (there are slightly more 
non-Spanish women during the day shift) and their marital status (more non 
married women during the day). However, these differences are very small 
in magnitude. We also find that the proportion of women who had their labor 
induced is higher during the first hours of the night (26.1%) than during the 
rest of the day (21.2%). This is something we could expect from our 
institutional setting, since in the hospitals in our sample most inductions are 
performed in the morning and, given the average duration of labor, these 
women are more likely to give birth during the first hours of the night. We 
control in our main specification for all of these differences and perform a 
robustness check excluding inductions, where we find that our conclusions 
still hold. Overall, we thus feel confident with the assumption that there is no 
selection of women into the different shifts that could threaten our 
identification. 

Additionally, identification requires the exclusion restriction to hold; that is, 
the instrument should affect child’s health only through the increased 
probability of having a c-section. One potential concern is that the quality of 
medical care could change depending on the hour/shift. In order to overcome 
this problem, as a robustness check, we perform the analysis using variation 
in the probability of getting a c-section only within the night shift, thus 
holding the quality of medical care constant. 
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Table 13. Maternal and pregnancy characteristics by delivery time 

  Means   

  Rest of day Early night 
P-

vaule 
A. Personal characteristics    
Mother Age 31.466 32.828 0.120 
Levels of education    

No studies 0.037 0.022 0.181 
Primary school 0.278 0.206 0.817 
Secondary school 0.502 0.609 0.943 
University education 0.182 0.164 0.779 

Non-Spanish 0.278 0.199 0.012 
Single 0.017 0.015 0.024 
Mother weight 65.471 67.83 0.355 
Mother height 1.653 1.595 0.556 
B. Pregnancy characteristics   
Tobacco during pregnancy 0.119 0.134 0.679 
Alcohol during pregnancy 0.003 0.007 0.481 
Gestation weeks 39.267 38.863 0.923 
Precious c-section 0.064 0.223 0.228 
Obstetric risk 0.35 0.58 0.394 
Intrapartum pH 7.296 7.245 0.337 
Birthweight 3290.334 3181.038 0.728 
Observations 3796 1090 4886 

5.4 Results 
Tables 14 and 15 present the results for the OLS estimation of equation (1) 
for the different measures of neonatal health. In table 14, the first column for 
each outcome presents the results without controls, the second column 
incorporates controls for maternal characteristics, and finally the third 
column adds information about the pregnancy. All specifications include 
hospital and weekday fixed effects, the sample is restricted to single births 
and we cluster standard errors at the hospital-day level 3. The results show 
that delivering via a c-section is associated with a significant worsening of 
the Apgar Scores 1 and 5 and with a lower probability of having moderate 
pH, but not of having severe pH. Table 15 presents the results for other 
outcomes of neonatal health. As it can be seen, babies born by cesarean 
section are more likely to need reanimation and to go to the Intensive Care 
Unit, but they are less likely to die. 
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Table 14.  OLS results – Neonatal Health 

A) Apgar  Apgar Score 1 Apgar Score 5 

 1 2 3 1 2 3 
Emergency CS -0.590*** -0.586*** -0.488*** -0.590*** -0.590*** -0.590*** 

 (0.058) (0.058) (0.064) (0.039) (0.038) (0.047) 
Mean of Y  8.945 9.809 
Observations 4886 4884 

       
B) pH Level pH  < 7.2 pH < 7.15 

 1 2 3 1 2 3 
Emergency CS -0.057*** -0.058*** -0.070*** 0.002 0.001 -0.010 

 (0.019) (0.020) (0.021) (0.015) (0.015) (0.016) 
Mean of Y  0.215 0.098 
Observations 3758 3758 
Maternal 
controls 

 ⃝ ⃝  ⃝ ⃝ 

Pregnancy 
controls     ⃝     ⃝ 

Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All 
specifications include hospital and weekday fixed-effects. Sample is restricted to single births. 
Maternal controls include level of education, nationality, maternal weight, height, age and 
marital status. Pregnancy controls include previous c-section, prenatal care, obstetric risk, 
gestation weeks and induced labor. *p<0.1, **p<0.05, ***p<0.01 

 

Table 15. OLS results, other outcomes 

A) Apgar  Intensive Care Unit Reanimation Exitus 

 1 2 3 4 5 6 
Emergency CS -0.143*** -0.112*** -0.095*** -0.077*** -0.002 -0.007* 

 (0.016) (0.014) (0.014) (0.014) (0.002) (0.004) 
Mean of Y  0.057 0.073 0.005 
Observations 4886 
Maternal controls ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 
Pregnancy 
controls   ⃝   ⃝   ⃝ 

Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal controls 
include level of education, nationality, maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric risk, gestation weeks and induced 
labor. *p<0.1, **p<0.05, ***p<0.01 
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As explained before, these estimates are likely to be biased because mothers 
giving birth by c-section and vaginally are not comparable, and because we 
cannot identify which kind of c-section is driving the results. The results for 
the IV estimation of the effects of non-medically indicated c-sections on 
Apgar scores 1 and 5 are shown in table 16. The first stage F-statistics are 
larger than 39 for the different specifications, so following Stock et al. (2005) 
critical values with one endogenous variable and one IV (16.38), we can 
reject the null hypothesis that our instrument is weak. In line with our 
descriptive analysis, Panel B shows that births that take place between 23h 
and 4h are around 8 percentage points more likely to be by cesarean. 

In the first row of the table 16 (Panel A), we can see that a c-section has a 
negative impact on both Apgar Score 1 and Apgar Score 5. The estimated 
effects are large and significant. In the specification with the full set of 
controls (column 3), an emergency c-section reduces the Apgar Score 1 by 
1.161 points. This effect is larger than one standard deviation (1.117) and is 
significant at the 5% significance level. An emergency c-section also has a 
negative impact on the Apgar Score 5. In this case the coefficient is -0.942, 
and again, is larger than one standard deviation (0.818) and significant at the 
5% significance level. 

Most of the newborns in our sample have Apgar score 1 equal to 9 and Apgar 
score 5 equal to 10. We thus perform a similar analysis but using as 
dependent variable an indicator for having Apgar scores 1 and 5, 
respectively, lower than 10 and both scores lower than 9. Our qualitative 
conclusions hold, as we find that a non-medically justified c-section, as 
compared to an eutocic delivery, increases by around 30% and 40% the 
probability of having Apgar scores 1 and 5, respectively, below 10, and by 
40% and 17% the probability of having Apgar scores 1 and 5 below 9. This 
is relevant, since decreases in Apgar scores are non-linearly related to the 
health of the newborn. We see that non-medically justified c-sections 
significantly increase the probability of having Apgar scores lower than 10, 
9 and 8, but not lower than 7 or inferior levels. Therefore, these marginal c-
sections increase the probability of deviating from the perfect scores, which 
are the mode in our sample, but we do not see significant effects in the left 
tail of the distribution. 

In table 17 we estimate the impact of a c-section on the probability of the pH 
level being below different thresholds: pH levels below 7.2 (low pH) and pH 
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below 7.15 (very low pH). As can be seen, a c-section increases the 
probability of both indicators and the coefficients are significant for all the 
specifications, at the 10% significance level for low pH and at the 5% 
significance level for very low pH. In particular, a c-section increases the 
probability of low and very low pH by approximately 45 percentage points. 
We also perform the same analysis for other health outcomes of the child. 
Results can be found deviation (0.818) and significant at the 5% significance 
level. 

Our IV identifies the local average treatment effect for the “marginal” 
women, that is, for the deliveries that are sensitive to the subjective 
assessment of the doctor; more specifically, we capture cases in which the 
time of birth affects the decision of the doctor to perform a cesarean section. 
Therefore, we focus on c-sections that are not strictly necessary in the 
medical sense; these, in fact, are arguably the most relevant from a policy 
point of view.  

We are not able to estimate the effect for women who have a clear indication 
for a vaginal delivery or for women who receive c-sections that are medically 
necessary. If we compare the results from the IV and OLS estimations, we 
can see that the IV coefficients are larger in absolute terms both for Apgar 
scores and for the pH measures. This can be explained by the fact that with 
the OLS estimation we are including medically indicated c-sections, which 
reduce fetal suffering, and this partially offsets the negative effects of the 
nonmedically indicated c-sections that we find when using our instrument. 
However, if we compare the results for the other outcomes (see tables 15 and 
18), we can see that in this case the coefficients for the OLS are larger and 
significant: c-sections are associated with an increased probability of needing 
intensive care and reanimation, but with a reduction of neonatal mortality.  

It seems that these medically-indicated c-sections are performed to suffering 
babies who need immediate support. On the other hand, the IV estimates are 
not significant, suggesting that the effects of non-medically indicated c-
sections are short-lived: in spite of the worsening in Apgar scores and pH, 
we do not find that these negative effects translate into needing intensive 
care, reanimation or increased mortality risk. 
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Table 16. IV estimation – Apgar Scores 

  Apgar Score 1 Apgar Score 5 
  1 2 3 1 2 3 
A) 2SLS       
Emergency CS -1.179*** -1.218*** -1.161*** -0.907*** -0.954*** -0.942*** 

 (0.448) (0.459) (0.514) (0.372) (0.382) (0.426) 
Mean of Y  8.945 9.809 
B) First stage   
Early night -0.090*** -0.058*** -0.070*** -0.090*** -0.058*** -0.070*** 
  (0.013) (0.013) (0.012) (0.013) (0.013) (0.012) 
Observations 4886 4886 4886 4884 4884 4884 
First-stage F 45.329 43.974 39.192 45.222 43.852 39.102 
Maternal controls  ⃝ ⃝  ⃝ ⃝ 
Pregnancy controls     ⃝     ⃝ 
Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal controls 
include level of education, nationality, maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric risk, gestation weeks and induced labor. 
*p<0.1, **p<0.05, ***p<0.01 

 

Table 17. IV estimation – pH Levels 

  pH < 7.2 pH < 7.15 
  1 2 3 1 2 3 
A) 2SLS       
Emergency CS 0.408* 0.417** 0.451* 0.406** 0.413** 0.445** 

 (0.211) (0.211) (0.234) (0.163) (0.164) (0.180) 
Mean of Y  0.215 0.098 
B) First stage   
Early night -0.085*** -0.085*** -0.077*** -0.085*** -0.085*** -0.077*** 
  (0.015) (0.015) (0.014) (0.015) (0.015) (0.014) 
Observations 3751 3751 3751 3751 3751 3751 
First-stage F 30.979 31.092 29.505 30.979 31.092 29.505 
Maternal controls  ⃝ ⃝  ⃝ ⃝ 

Pregnancy controls     ⃝     ⃝ 
Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal controls 
include level of education, nationality, maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric risk, gestation weeks and induced labor. 
*p<0.1, **p<0.05, ***p<0.01 
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Table 18. IV estimation – Other outcomes 

  Intensive Care Unit Reanimation Exitus 
  1 2 3 4 5 6 
A) 2SLS       
Emergency CS 0.161* 0.137 0.109 0.089 0.03 0.028 

 (0.094) (0.100) (0.100) (0.114) (0.030) (0.034) 
Mean of Y  0.057 0.073 0.005 
B) First stage   
Early night -0.088*** -0.078*** -0.088*** -0.078*** -0.088*** -0.078*** 
  (0.013) (0.012) (0.013) (0.012) (0.013) (0.012) 
Observations 4886 4886 4885 4885 4886 4886 
First-stage F 43.974 39.192 43.959 39.079 43.974 39.192 
Maternal controls ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

Pregnancy controls   ⃝   ⃝   ⃝ 
Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal controls 
include level of education, nationality, maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric risk, gestation weeks and induced labor. 
*p<0.1, **p<0.05, ***p<0.01 

5.5 Robustness checks 

5.5.1 Exclusion restriction: variation within the night shift 
One potential concern of our identification strategy is that the quality of 
medical care could be different during the day and the night shift. Hence, it 
could be the case that the negative effects on the child’s health that we find 
are not due to the increased probability of getting a c-section, but due to a 
reduction of the quality of care during the night. 

In order to provide evidence that this is not the case, we perform the same IV 
estimation but restricting the sample to mothers that gave birth during the 
night. Thus, in this case, we will use variation in the probability of getting a 
c-section within the night shift, holding the quality of care constant. As 
before, our instrument is an indicator variable equal to 1 if the woman gives 
birth during the early night (from 23 to 04 am). The sample is restricted to 
deliveries taking place at night: from 8pm to 8am; i.e., in the last half of 
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physicians’ shift, when the healthcare professionals in the labor room – both 
obstetricians and midwives – do not change. 

Table 19. IV estimation – Apgar scores within the night 

  Apgar Score 1 Apgar Score 5 
  1 2 3 1 2 3 
A) 2SLS       
Emergency CS -1.445** -1.476** -1.439* -1.235** -1.261** -1.293* 

 (0.708) (0.743) (0.861) (0.566) (0.593) (0.679) 
Mean of Y  8.919 9.793 
B) First stage   
Emergency CS -0.067*** -0.065*** -0.055*** -0.067*** -0.065*** -0.055*** 
  (0.015) (0.015) (0.014) (0.015) (0.015) (0.014) 
Observations 2553 2553 2553 2552 2552 2552 
First-stage F 19.759 18.243 14.792 19.665 19.138 14.724 
Maternal controls  ⃝ ⃝  ⃝ ⃝ 
Pregnancy 
controls     ⃝     ⃝ 

Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal 
controls include level of education, nationality, maternal weight, height, age and marital status. 
Pregnancy controls include previous c-section, prenatal care, obstetric risk, gestation weeks and 
induced labor. *p<0.1, **p<0.05, ***p<0.01 

 

Results for the IV estimation using variation within the night shift can be 
found in table 19. Despite the smaller sample size, we again find that an 
emergency c-section reduces both Apgar Score 1 and Apgar Score 5 and 
increases the probability of having a pH lower than 7.2 and 7.15. The 
coefficients remain large and significant at the 5% significance level. We 
interpret these results as evidence in favor of our exclusion restriction. 

5.5.2 Excluding inductions 
The comparison of maternal characteristics showed that mothers giving birth 
during the first hours of the night are more likely to have had their labor 
induced. Inductions can be scheduled, normally because the pregnancy is 
beyond full term and labor has not started spontaneously, or can be 
unscheduled if the mother’s waters break but labor does not start, NICE 
(2008). If an induction is to be scheduled, the hospitals in our sample do so 



 

72 

in the morning, so after progression of labor at average pace these women 
are expected to give birth in the evening or during the first hours of the night. 

The relation between inductions and c-sections is a question where the 
medical literature and the medical practice seem to differ. We observe in our 
sample that mothers with induced labor are more likely to have a c-section 
(see tables 12 and 13). However, the recent medical literature finds that, 
while c-sections are conventionally regarded as the main potential 
complication of inductions, inductions at full term do not increase the risk of 
cesarean delivery, Saccone and Berghella (2015), or even lower it, Mishanina 
et al. (2014), with no increased risks for the mother and some benefits for the 
fetus. All in all, it seems that whether a c-section is needed in cases of induced 
labor is likely to be dependent on the assessment of the obstetrician, so 
mothers with inductions probably belong to the ”grey area” where we expect 
doctors’ decisions to be more sensitive to external factors and incentives. In 
any case, even if the decision of performing a c-section to mothers with 
induced labor was more dependent on doctors’ routines or incentives than on 
the health conditions of the mother and the baby, if our analysis was driven 
by this type of mothers alone, we would not be able to disentangle the effect 
of c-sections from the effect of medical inductions. In our main specifications 
we directly control for whether labor was induced, but in table 10 we also 
repeat our analysis excluding inductions from our sample. Here we see that, 
despite the reduction in the number of observations, our qualitative 
conclusions hold, births at early night are still more likely to end up in 
cesarean sections, and these have a negative and significant impact on the 
Apgar scores. We thus conclude that, although inductions seem to make our 
first stage stronger as they might offer room for discretionary behavior, our 
findings do not depend on including them. 

5.5.3 Emergency c-sections: medically indicated versus non-medically 
indicated 
In order to ensure that the health effects we find are due to non-medically 
indicated c-sections, we explore whether the c-sections captured by our 
instrument are correlated with the same indications that should predict a 
medically-necessary cesarean section. One of the main medical indications 
for an emergency c-section is fetal distress. This is monitored during labor 
by several means, like watching their cardiac frequency or measuring the 



 

 

     73 

fetal scalp pH. Similar to the umbilical cord pH, if the fetal scalp pH is too 
low (namely, below 7.2) it suggests that the fetus is not getting enough 
oxygen. If this situation persists for too long, it could be threatening to the 
baby’s health and the clinical advice is to perform an emergency c-section. 
Therefore, while medically-indicated c-sections should be predicted by fetal 
suffering, those which are not medically-indicated, but performed for the 
doctors’ convenience, should not.  

A priori we would not expect our instrument to be correlated with fetal 
suffering: there is no apparent reason why births starting at night should 
present more risks for the fetus. A quick glance at the distribution of the 
intrapartum pH across hours seems to confirm this: we see a uniform 
distribution along the hours of the day, suggesting that there are no systematic 
differences in average fetal suffering across time. However, we can also test 
for this formally, although we only have information about fetal scalp pH for 
a small part of our sample (around 200 observations). We do this in table 21. 
Columns (1) and (3) present the results of regressing the dummy for all 
emergency c-sections on the level of intrapartum pH and on an indicator for 
low intrapartum pH (below 7.2), respectively.  

Table 20. Robustness check – excluding inductions 

  Apgar Score 1 Apgar Score 5 
  1 2 3 1 2 3 
A) 2SLS       
Emergency CS -2.271** -2.312** -2.430* -1.905** -1.972** -2.073* 

 (1.102) (1.147) (1.183) (0.935) (0.982) (1.013) 
Mean of Y  9.001 9.841 
B) First stage   
Early night -0.043*** -0.042*** -0.041*** -0.043*** -0.042*** -0.041*** 
  (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) 
Observations 3795 3795 3795 3793 3793 3793 
First-stage F 10.801 10.282 10.762 10.748 10.222 10.668 
Maternal 
controls 

 ⃝ ⃝  ⃝ ⃝ 

Pregnancy 
controls     ⃝     ⃝ 

Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal controls 
include level of education, nationality, maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric risk, gestation weeks and induced labor. 
*p<0.1, **p<0.05, ***p<0.01 
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We can see that lower levels of pH are strongly associated with a higher 
probability of performing a c-section, and that having the intrapartum pH 
below 7.2 is also associated with a higher probability of getting a c-section. 
On the other hand, in columns (2) and (4) we perform the same analysis but 
substituting the dependent variable for the predicted c-sections from our first 
stage – that is, a variable keeping only the variation in the probability of 
getting a c-section that is predicted by our instrument. 

In this case, we do not see any significant correlation with the two measures 
of intrapartum pH. Therefore, the c-sections captured by our instrument do 
not seem to be predicted by fetal suffering but by other reasons. We interpret 
this as supporting evidence that the negative health impacts that we find are 
due to non-medically indicated cesarean sections. 

 

Table 21. Robustness check – fetal suffering and c-sections 

  1 2 3 4 
  Emergency CS Predicted CS Emergency CS Emergency CS 
Emergency CS -1.702*** 0.037   
 (0.360) (0.030)   
Intra. pH < 7.2   0.309*** -0.008 
      (0.085) (0.006) 
Observations 216 216 216 216 
Notes: Standard errors (in parentheses) are clustered at the hospital-day level. All specifications 
include hospital and weekday fixed-effects. Sample is restricted to single births. Maternal controls 
include level of education, nationality, maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric risk, gestation weeks and induced labor. 
*p<0.1, **p<0.05, ***p<0.01 

5.5.4 Doctors’ leisure incentive: some suggestive evidence 
Although it is not crucial for our identification strategy, in this section we try 
to shed some light on the mechanism behind the exogenous variation in the 
probability of a c-section between hours that we observe in our data. 

As mentioned previously, the most plausible explanation is that doctors have 
a higher incentive to perform c-sections at the beginning of the night as, at 
this time, the opportunity cost of time becomes more salient. This is because 
doctors have been working for more than 12 hours already and if they 
perform the c-section and do not have other mothers to attend, they can rest 
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for the remainder of the shift. According to this, we would expect that doctors 
are more likely to perform a non-medically indicated c-section in nights when 
there is only one birth compared to nights when there is more than one 
delivery ongoing. 

We provide suggestive evidence that this is the case. The first column in 
Table 22 shows the first stage coefficient for nights when only one delivery 
took place and the second column for nights with more than one birth. In line 
with our argument, the results of this exercise suggest that doctors perform 
more non-medically indicated c-sections at the beginning of the night when 
they have only one delivery ongoing. 

 

Table 22. First stage – busy vs. non-busy nights 

  1 2 

  
One-birth 

nights 
Multiple-birth 

nights 
Early Night "0.106***" "0.069***" 
  "(0.026)" "(0.015)" 
Observations 1252 3152 
Notes: Standard errors (in parentheses) are clustered at the 
hospital-day level. All specifications include hospital and 
weekday fixed-effects. Sample is restricted to single births. 
Maternal controls include level of education, nationality, 
maternal weight, height, age and marital status. Pregnancy 
controls include previous c-section, prenatal care, obstetric 
risk, gestation weeks and induced labor. *p<0.1, **p<0.05, 
***p<0.01 

5.6 Conclusions 
This paper provides new evidence of the adverse effects of non-medically 
necessary cesarean sections on the newborn’s health. In order to overcome 
potential omitted variable bias and abstract from those cases in which c-
sections respond to a clear clinical indication, we make use of a novel 
instrument that exploits variation in the probability of receiving a c-section 
that is unrelated to maternal and fetal health: variation between hours. 

Our results suggest that these non-medically indicated c-sections lead to a 
significant worsening in two frequent measures of newborn health: Apgar 
scores and the pH of the umbilical cord. In particular, the deterioration in 
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these outcomes is likely to be capturing increased respiratory morbidity 
related to the presence of amniotic liquid in the newborn’s lungs. The relative 
decline in Apgar scores might also capture reduced excitability and muscle 
tone. All in all, these findings are consistent with the medical literature that 
has identified the vaginal delivery as a crucial programming event in the 
baby’s life, Hyde et al. (2012). 

Although the size of the effects we find is of statistical and medical 
significance – declines range between 1 and 1.5 standard deviation for all 
neonatal health outcomes – we do not find evidence that these effects 
translate into a significant increase in the need for reanimation or intensive 
care or into increased risk of neonatal death. Therefore, the effects we find 
might not be severe enough or might fade after little time. Nonetheless, we 
do not find evidence of any health benefit of these non-medically justified 
interventions either. More research is needed in order to obtain a more 
complete understanding of the causal effect of these nonmedically necessary 
c-sections on the health of the baby and the mother in the longer run. 
However, given the monetary cost of these unnecessary interventions – the 
average cost of a c-section for the Spanish public health system is around 1.8 
times that of a vaginal delivery, the absence of health benefits and the 
significant health costs, policies aimed at avoiding an excessive procedure 
use are likely to increase efficiency. 

Similarly, more work is needed to understand the decisions of the doctors 
driving the observed time variation in c-section rates. We have only been able 
to provide some suggestive evidence of the mechanism behind this variation, 
which is consistent with the findings of previous studies. 

Our results would point at the need to revise the incentives created by the 
shift structure and long working hours of physicians in order to avoid 
unnecessary interventions. 
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6 CONCLUSIONS 

This dissertation has dealt from the theoretical basis of the British National 
Institute for Clinical Excellence (NICE) priority setting to the neonatal 
consequences of obstetricians’ tiredness. From being NICE to being tired 
aimed to provide a quantitative perspective of four relevant multidisciplinary 
topics in health economics. 

Most theoretical work regarding the relevance of cost-effectiveness for 
priority setting frameworks directly ignores an evident private market for 
healthcare. The efficiency and equity implications are discussed in chapter 2, 
focusing on how cost-effectiveness harms equity in the provision of public 
healthcare. To which extent the relevance of price-elasticities for specific 
healthcare services, Ellis et al. (2017) will determine the equilibrium in the 
public-private markets is the logical next step of theoretical research of my 
own. However, one has to acknowledge the long-run sequential equilibrium 
that has developed in most developed countries where private and public 
healthcare coexists to some degree. Adverse selection of non-profitable 
treatments in highly complex patients, that in some countries, 5% of patients 
amount up to 45% of the overall health expenditure, is a widespread 
phenomenon. The purpose of the first chapter was to develop a simple 
algorithmic approach to provide an alternative perspective, in an analogous 
way than Costa-Font and Cowell (2019). One example of relative success 
compared to the NICE is PHARMAC, the New Zealand independent 
government agency that evaluates and makes compulsory decisions 
regarding the funding and provision of medical devices, vaccines, 
community and cancer medicines and also, hospital medication. Their 
approach is slightly different. Instead of fixing and explicit threshold, they 
approach it through marginal budget programming and yearly tenders. 
However, they only assess the equity in their provision through giving special 
status to indigenous communities. This and the failure of most health systems 
in the developed and developing world to take any equity considerations, 
either horizontal or vertical, in the provision of health services highlights the 
need for a wider discussion.  
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While we dwell into the era of “personalized” and “precision” medicine, 
currently confined to basically particular single mutations of genes in cancer 
patients, the discussion about which statistical and causal inference methods 
are appropriate is of utmost importance. While economics has been a pioneer 
filed in the identification of causal effects, it has lagged somewhat behind in 
terms of mediation analysis, g-formulas or identification of heterogeneous 
causal effects. The third chapter of this dissertation has dealt with an 
application of a recently developed statistical method on a large-scale 
randomized controlled trial. The analysis aims to identify subgroups of the 
populations, based upon baseline observables, that do have differential 
treatment effects. We find that even though, there is substantial evidence of 
qualitative and quantitative heterogeneity in causal effects, the statistical 
power of testing multiple hypothesis and recursively partitioning the sample 
yields low credibility to the results. This conclusion is especially relevant for 
the design of trials for novel drugs that relay on the identification of a 
subgroup of patients for whom the benefit is expected to be higher than 
average. Underpower in statistical terms is a major issue in economics 
Ioannidis et al. (2017), it is estimated that 84% of published results in 
empirical economics are severely underpowered to their purpose. 

Prediction, whether in diagnostic or prognostic terms, has also been dealt 
with in chapter 4. The accurate prediction of mode of delivery in births poses 
also a challenge in health provision. The scheduling of operating theaters, 
midwifes, and, resource utilization in general critically depends on the 
likelihood that a given birth will be delivered vaginally or c-section. It is 
worth noting that prediction problems have been partially ignored in applied 
economics. Perhaps only in time-series econometrics and finance. Optimal 
resource allocation depends on a dynamic reality, in healthcare as well, being 
able to predict in an 8-hour window emergency treatments, is of clearly 
relevance. We conclude that machine learning methods, compared to 
traditional methods such as logistic regression, more specifically, random 
forests outperform by 20% in discriminatory accuracy. The automated 
detection of interactions between covariates is the key determinant of 
predictive accuracy gains.  

Causal inference, solved by an instrumental variable approach in chapter 5 
of the dissertation, employed the same dataset than chapter 4, to answer a 
different question: What is the effect of emergency cesarean sections on 
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neonatal health outcomes? We find, contrary to the medical literature, that 
even though c-sections cause a slight worsening in Apgar scores at 1 and 5 
minutes, these do not translate into hard outcomes, such as ICU admission, 
reanimation or death. The novelty of the paper is the identification strategy, 
which employs the timing of birth alongside the tiredness or demand for 
leisure of doctors in 24h working shifts.  

I hope that the current thesis, that covers a wide spectrum of relevant 
questions in health economics, contains useful theoretical, methodological 
and applied insights for those with research interests in the field of health and 
economics. 
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