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1. SUMMARY 

Metal-organic cages (MOCs) containing four Fe(II) metal centres ([Fe4]) represent a novel 

class of molecules that have attracted a lot of interest due to, among others, its efficiency in 

encapsulating greenhouse gases such as SF6. On the top of that, the [Fe4] molecules exhibit spin-

crossover (SCO) behaviour, which can be tuned as a function of the guest molecule encapsulated 

in the system. Due to their size, conventional electronic structure calculations are not suited to 

study the origin of such interaction and its effect on the SCO behaviour and different 

computational methodologies need to be developed in order to study the nature of the host-guest 

interaction.  

First, by performing DFT calculations, the Fe-N bond will be modelled using a Morse potential. 

This data will be adjusted simultaneously against an energy scan along the totally symmetric 

normal mode in order to generate an ab initio force field for the molecule. Also, a series of 

electronic structure calculations will be carried out at CASSCF/NEVPT2 level to extract the 

relevant Angular Overlap Model parameters for a very simple molecule, [Fe(NH3)6]2+, 

representative of the Fe(II) environment in [Fe4] MOCs; necessary to construct the force field.  

In order to see if the results of [Fe(NH3)6]2+ can be extrapolated to more complex systems like 

the [Fe4] cages, the ammonia results will be compared with systems of increasing complexity yet 

closely related to the actual Fe environment in the [Fe4] system: [Fe(py)6]2+ and [Fe(C6H6N2)3]2+. 

Once validated, then the complete force field for the [Fe4] system will be assembled and tested.  

Finally, LFMM simulations will be run in the NVE, NVT or NPT/NσT ensemble to study the 

interaction between the [Fe4] system and the SF6 molecule in a large enough system so the crystal 

packing effects can be properly modelled. 

Keywords: force field, electronic structure, transition metals, molecular mechanics, Ligand-Field 

Molecular Mechanics, ab initio ligand field theory, angular overlap model, density functional theory, 

LFMM, AILFT, AOM, DFT 





Development of a first principles force field for metal-organic [Fe4] cages  7 

 

2. RESUM 

Les gàbies metal·lo-orgàniques (MOCs) que contenen quatre centres de Fe(II) ([Fe4]) 

representen una nova classe de molècules d’interès a causa, entre altres, de la seva eficàcia en 

l’encapsulament de gasos d’efecte hivernacle com el SF6. A més, mostren un comportament de 

transició de spin (SCO) el qual pot ser ajustat en funció de la molècula hoste encapsulada en el 

sistema. Amb motiu de la seva mida, els càlculs d’estructura electrònica convencionals no són 

adequats per estudiar l’origen d’aquesta interacció i el seu efecte en el comportament de SCO, i 

cal desenvolupar diferents metodologies computacionals per estudiar la naturalesa de la 

interacció host-guest. 

Realitzant càlculs DFT es modelitzarà l'enllaç Fe-N utilitzant un potencial de Morse. Aquestes 

dades s’ajustaran simultàniament enfront un escanejat d'energia al llarg del mode normal 

totalment simètric, amb l’objectiu de generar un camp de forces ab initio per a la molècula. També 

es duran a terme una sèrie de càlculs d'estructura electrònica a nivell de CASSCF/NEVPT2 per 

extreure els paràmetres rellevants de l’AOM per a una molècula molt simple, [Fe(NH3)6]2+, 

representativa de l'ambient del Fe(II) en les MOCs de [Fe4]; necessaris per construir el camp de 

forces. 

Per veure si els resultats del [Fe(NH3)6]2+ es poden extrapolar a les gàbies de [Fe4], aquests 

es compararan amb sistemes de complexitat creixent estretament relacionats amb l'entorn real 

del Fe en el sistema de [Fe4]: [Fe(py)6]2+ i [Fe(C6H6N2)3]2+. Llavors, el camp de forces complet pel 

sistema de [Fe4] serà muntat i testejat: s'executaran simulacions de LFMM en el conjunt NVE, 

NVT o NPT/NσT per estudiar la interacció entre les gàbies de [Fe4] i el SF6 en un sistema prou 

gran com per poder modelitzar adequadament els efectes de l'empaquetament del cristall. 

Paraules clau: camp de forces, estructura electrònica, metalls de transició, mecànica molecular, 

Ligand-Field Molecular Mechanics, ab initio ligand field theory, model de solapament angular, 

teoria del funcional de la densitat, LFMM, AILFT, AOM, DFT 
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3. INTRODUCTION 

Biological processes present host-guest chemistry, involving molecular recognition through 

non-covalent interactions (as for example when substrates bind to enzymes).[1] Considerable 

attention has been paid to the construction of container molecules such as self-assembled 

coordination cages in recent years for their wide-ranging applications in separation, molecular 

recognition, catalysis, gas storage, stabilization of reactive species, modulation of encapsulated 

guest reactivity and other applications. Metal-organic cages (MOCs) with porous surfaces and 

abundant recognition sites in their central cavities can typically bind guest molecules through 

specific host-guest interactions and molecular recognition. 

3.1. [Fe4] SYSTEMS AND APPLICATIONS, SF6 CAPTURE AND SPIN-CROSSOVER 

MOCs containing four iron metal centres ([Fe4]) represent a novel class of molecules that 

have interest due to its efficiency in encapsulating greenhouse gases such as SF6.[2] A 

greenhouse gas is a gas that has strong absorption bands in the infrared region interacting 

strongly with the thermal radiation emitted from the Earth’s surface and cause the greenhouse 

effect which is a process that warms the Earth’s surface.[3]  

These [Fe4] molecules exhibit spin-crossover (SCO) behaviour, which can be tuned as a 

function of the guest molecule encapsulated in the system. Spin crossover (SCO) within Fe(II) 

complexes is a phenomenon of interest. Due to its applications in molecular switching, memory 

and display devices, SCO in supramolecular structures has been explored in molecular 

frameworks, polymeric materials, and discrete multinuclear complexes.[4][5][6] 

In this study, a first principle force field (FF), based on the Ligand-Field Molecular Mechanics 

(LFMM) approach will be developed for a particular [Fe4] system, in order to study its interaction 

with the SF6 molecule. 
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 Figure 1.Global [Fe4] system of study. Left: [Fe4] empty cage without counter ions; Right: [Fe4] cage with 

the guest molecule (SF6) and the counter ions ([N(CH3)4]+). 

3.2. LIMITATIONS OF ELECTRONIC STRUCTURE METHODS TO STUDY [Fe4] 

Inherently, studying a system with open shells using electronic structure methods is difficult, 

and it is also difficult to describe coordination metal systems due to their variety of oxidation states, 

spin states and coordination numbers. Moreover, the classical study of electronic structure of this 

type of compounds is not useful because the system of study is very large. Classical studies using 

electronic structure methods are not powerful enough to study systems beyond 200 atoms.[7][8] 

Being so large the options that we would have at the level of electronic structure would be very 

expensive. Although we could perform a Density Functional Theory (DFT) calculation at a specific 

level, which would take a very long computational time, the results would not help much because 

the interest of this project is in the study of the molecular dynamics and the temporal evolution of 

the system. A static photography of the system is not of interest.  

It is possible to solve this limitation by using a force field (FF) method approach. A FF 

constructs a parameterized potential energy surface from experimental or calculated data. After 

this point, we are able to study how the system evolves as a function of time. In our case, we 

construct a FF based on the Generalized Amber Force Field (GAFF)[9], but since these parameters 

do not exist to describe the Fe-N bond, we must build the corresponding force field to this 

interaction by first principles (Fe-N interactions are not in Generalized Amber Force Field (GAFF), 

Chemistry at Harvard Macromolecular Mechanics (CHARMM), or any commercial force field). 

Hence, the parameters for Fe(II) must be built from first principles. How is it done? 
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We need to calculate the parameters of the Angular Overlap Model, AOM.[10] To calculate 

these parameters we need the Ab Initio Ligand Field Theory (AILFT) calculations. Complete 

Active Space Self-Consistent Field/second-order N-Electron Valence Perturbation Theory 

(CASSCF/NEVPT2) calculations are performed.[7][8][11] Then, these results are translated with 

AILFT, which is what gives us the splitting of the d orbitals. It is necessary to perform an energy 

scan and fit a Morse potential to describe the bond within AOM. If the Morse potential is not added 

and we only have the AOM parameters, which leads to an attractive potential, the molecule 

collapses. Morse potential adds this repulsive part necessary to have a stable system in its 

equilibrium geometry so that the system oscillates around the equilibrium position.  

In order to carry out the AILFT calculations, an optimization calculation at a DFT level is 

needed, obtaining the optimized geometry, the charges and the frequencies.  

4. OBJECTIVES 

The main objective of this final degree project is to study the dynamic processes that take 

place once the [Fe4] cage system encapsulates the guest SF6 molecule as a function of time and 

at different temperatures. To achieve this, it is necessary to carry out several procedures: 

1. Develop a force field by first principles that describes the Fe-N bond. 

2. Build a force field for the empty [Fe4] cage system. 

3. Prepare and balance the global [Fe4] cage system with the host molecule and the 

counter ions. 

4. Analyse different trajectories at different temperatures to see how the SF6 molecule 

behaves within the [Fe4] system. 
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5. METHODOLOGY 

To achieve the objectives mentioned above, it is necessary to perform a series of calculations 

at different levels of complexity using different tools from theoretical chemistry. These tools will 

be explained hereunder. 

DFT methods do not reproduce well enough the exchange and correlation interactions. To 

solve this problem, we can use multireference methods such as CASSCF and NEVPT2.[11] 

The methods used in this study provide electron correlation, which is usually divided into 

dynamic and static correlation. The dynamic correlation has to do with the movement of the 

electrons; it is the interaction between one electron and the electrostatic potential generated by 

the other electrons. The static correlation is important for molecules in which the ground state 

cannot be described by a single determinant, and appears due to the multiconfigurational 

character of the system and depends on its nature.[7][8][11] 

5.1. DENSITY FUNCTIONAL THEORY (DFT) 

DFT is a computational quantum mechanical modelling method used to investigate the 

electronic structure, principally the ground state, of many-body systems.[7][8][12][13] Applied to 

electronic systems, is a variational procedure alternative to the solution of the Schrödinger 

equation, alternative to traditional ab initio methods based on the wave function, where the 

functional of electronic energy is minimized with respect to electronic density.  

Using this theory, the properties of a many-electron system can be determined by using 

functionals. A functional is a function whose variable is another function. 

Computational costs are relatively low when compared to traditional methods. The main 

advantage of the DFT methods is that they are much simpler from the computational point of view 

because the electronic density, ρ, is a function of 3 variables: depends only on the x, y, z 

coordinates of the individual electron. It also allows to introduce the electronic correlation using 

exchange-correlation functionals.  
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These methods use the Hohenberg-Kohn theorem, which shows the existence of a functional 

that determines the energy of the ground state and the electronic density exactly. However, the 

theorem does not provide the form of the functional. Thus, the main problem is to find the correct 

form of the functional to use. Some approximate functionals are known that give quite good results 

in a range of chemical problems.  

It is one of the most used methods in the quantum calculations of electronic structures.  

5.2. MULTIREFERENCE METHODS (CASSCF/NEVPT2) 

Multi-Configurational Self-Consistent Field (MCSCF) is a method in quantum chemistry used 

to generate correct reference states of molecules in cases where Hartree-Fock (HF) and DFT are 

not adequate.[7][8][11] It uses a linear combination of configuration state functions (CSFs), or 

configuration determinants, to approximate the exact electronic wavefunction of an atom or 

molecule. The set of coefficients of both the CSFs or determinants and the basis functions in the 

molecular orbitals, are varied to obtain the total electronic wavefunction with the lowest possible 

energy. This method is a combination between configuration interaction (CI) and HF. 

Including additional possible determinants for excited electron configurations in the ground 

state improves the quality of the wave function. By selecting only a limited number of determinants 

from all possible, we can construct a multiconfigurational wave function, which can retrieve the 

static electron correlation energy. The most popular way to implement this is the Complete Active 

Space Self-Consistent Field (CASSCF) method. 

CASSCF consists in the complete variational calculation of some electrons and some orbitals, 

in the average field of the rest of electrons in the rest of orbitals. It provides the static correlation 

energy and gives good quality potential energy surfaces, and hence it is also used as a starting 

point for higher-level multireference methods.  

It has the advantage that it is applicable to excited states as well as the ground state and it 

provides size-consistent results. However, it often generates too many configurations, and 

therefore there is a problem in respect to how we could extract a chemical description from the 

lengthy CASSCF wave functions. 

https://www.sciencedirect.com/topics/chemistry/potential-energy-surface
https://www.sciencedirect.com/topics/chemistry/multireference-methods
https://www.sciencedirect.com/topics/chemistry/excited-state
https://www.sciencedirect.com/topics/chemistry/wave-function
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This method is convenient and overcomes many problems of HF calculations on open shell 

systems. However, it is difficult to recover a large portion of the dynamic correlation energy by 

expanding the active space. Its energies miss the effects of dynamic electron correlation.  

The lowest-order of perturbation theory at which electron correlation effects arise is second-

order. Given a reference wavefunction of the CASSCF type, second-order Multi-Reference 

Perturbation Theory (MRPT2) is already an elaborate undertaking. In this study we used the 

second-order N-Electron Valence Perturbation Theory (NEVPT2). 

NEVPT2, upon forming excited CSFs does not excite each and every of them inside the CAS 

individually, but rather applies the excitation collectively to the entire CASSCF wavefunction. 

The result of a NEVPT2 calculation is a second-order energy correction, ∆𝐸𝑃𝑇2 , such that 

the total energy for each state is 𝐸 = 𝐸𝐶𝐴𝑆 + ∆𝐸𝑃𝑇2. However, it is important to note that the 

wavefunction is not changed by the treatment and still remains a CASSCF wavefunction. Hence, 

all calculations are based on CASSCF wavefunctions in conjunction with second-order corrected 

total energies. It introduces the effects of dynamic electron correlation. 

5.3. AB INITIO LIGAND FIELD THEORY (AILFT) 

Ab initio methods are computational chemistry methods based on quantum chemistry, based 

on the determination of the wave function. That is why the term means “from first principles”. Their 

purpose is to solve the electronic Schrödinger equation given the positions of the nuclei and the 

number of electrons in the interest of provide information such as electron densities, energies and 

other properties of the system. Thus, this type of methods do not contain any type of experimental 

information.[7][8][11] The Ab Initio Ligand Field Theory method takes the complex results from 

NEVPT2 calculations and translate them to chemically meaningful crystal field parameters, which 

are easier to understand. Basically, provides the energy of the five d orbitals and the Racah 

parameters B and C. 

5.4. ANGULAR OVERLAP MODEL (AOM) 

The Angular Overlap Model (AOM) is a method of description of transition metal and ligand 

interactions and main group stereochemistry. Its basic assumption is that the strength of a bond 

formed using atomic orbitals on two atoms is related to the distance and the magnitude of overlap 

between the two orbitals.[10][14][15] 
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It is assumed that the total ligand field potential (VLF) can be constructed as a sum of 

contributions from individual metal-ligand (M-L) bonds and that these contributions are localized. 

The complex can be treated as a set of diatomic molecules with the bonds divided into separate 

σ and π contributions which are modelled by AOM parameters such as eσ, eπx and eπy. That is to 

say, AOM parameterizes the M-L interactions based on the M-L distance and the position of the 

ligand around the metal using the parameters mentioned. 

In AOM terms, the octahedral splitting ΔOh for ligands that only have σ contribution (typically 

amine ligands) is given by Equation 1. 

        ∆𝑂ℎ= 3𝑒𝜎                Equation 1 

5.5. MOLECULAR MECHANICS/LIGAND-FIELD MOLECULAR MECHANICS (MM/LFMM) 

Molecular mechanics (MM) computes the potential energy surface for a particular 

arrangement of atoms using potential functions that are derived using chemical physics. These 

equations are known as a force field. It is a methodology that parameterizes the potential with 

mathematical functions. With the temperature, we give initial speeds to the system and allow it to 

propagate following the Newton equations obtaining the energy and the forces of the system.[7][8] 

This allows us to obtain a temporary evolution of the system in specific conditions, which can 

be, NVE (constant Number of particles, Volume and Energy), NVT (constant Number of particles, 

Volume and Temperature), NPT (constant Number of particles, Pressure and Temperature)/NσT 

(constant Number of particles, Stress tensor and Temperature), etc. 

The advantage of MM is that it is extremely cheap from the computational point of view and 

allows to study large molecules (such as proteins).[7][8] The disadvantages are that is restricted by 

parameters of equations like different FF for different types of atoms (FF are not transferable) and 

it is not applicable for electronic properties (the potential energy surface corresponds to an 

electronic state). 

In our case, a modified version of the MM is made which is the Ligand-Field Molecular 

Mechanics (LFMM) where the AOM is implemented within the molecular mechanics 

scheme.[14][16][17]  
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Summary of the procedure followed in this study: 

This study focusses only on the low-spin Fe(II) system. 

Performing DFT calculations, the Fe-N bond will be modelled using a Morse potential. This 

data will be adjusted simultaneously against an energy scan along the totally symmetric normal 

mode, in order to generate an ab initio force field for the molecule.  

Also, a series of electronic structure calculations will be carried out at CASSCF/NEVPT2 level 

to extract the relevant AOM parameters for a very simple molecule, [Fe(NH3)6]2+, representative 

(in principle) of the Fe(II) environment in [Fe4] MOCs; necessary to construct the force field. 

After that, the construction and validation of the force field must be done. In order to see if the 

results of [Fe(NH3)6]2+ can be extrapolated to a more complex systems like the [Fe4] cages, it will 

be verified if the approximation of the ammonia can be used in systems increasingly similar to the 

compound of study: [Fe(py)6]2+ and [Fe(C6H6N2)3]2+. Then, the complete force field for the [Fe4] 

system will be assembled and tested.  

Figure 2. [Fe(NH3)6]2+, [Fe(py)6]2+ and [Fe(C6H6N2)3]2+, respectively. 

Finally, LFMM simulations will be run in the NVE, NVT or NPT/NσT (it appears later in the 

study) ensemble to study the interaction between the [Fe4] system and the SF6 molecule in a large 

enough system so the crystal packing effects can be properly modelled. 

6. RESULTS 

 All DFT calculations are performed with Gaussian09.[18] 

 Arbitrary initial geometries are obtained using Gaussview.[19] 

 All AILFT calculations are performed with ORCA4.0.[20]  

 The program used to construct the FF is build_ff_lfm_morse4.f90. 
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 The programs used to validate the FF are DL-POLY-2.0 and Visual Molecular 

Dynamics (VMD).[21][22] 

 The program used for the representation of the molecules and orbitals is VMD.[22] 

 All graphics and fits in this study have been made using Gnuplot 4.6.[23] 

6.1. [Fe(NH3)6]2+ 

6.1.1. Geometry Optimization and calculation of Frequencies and NBO charges for 

[Fe(NH3)6]2+ with DFT 

The first step on this study is to obtain the optimized geometry of [Fe(NH3)6]2+ (since it is a 

low-spin system, S=0).  

In order to achieve that geometry, a structure of the complex is created with an arbitrary initial 

geometry using Gaussview, which is able to write the geometry in Cartesian coordinates. These 

coordinates are put then in a Gaussian input, in order to make a DFT calculation of optimization, 

frequencies and Natural Bond Orbital (NBO) charges using the hybrid meta-GGA TPSSh 

functional.[24] See Appendix 1 (Table A1.1 and Table A1.2) and Appendix 2 (Table A2.1). 

Why do we need these data? 

 The optimized geometry gives us information about the geometry that corresponds 

to the minimum of electronic energy and allows us to establish a range of distances 

to generate a local scan (study of the energy depending on the Fe-N bond distance), 

which is useful to determine eσ values. 

 Since all the frequencies are positive, we can assure that we are in a minimum of 

energy. 

 NBO charges are more reliable than those given by Mulliken Population Analysis 

and will be useful later to construct the force field. 

Req(Fe-N) = 2.08 Å  

6.1.2. Local scan for [Fe(NH3)6]2+ with DFT and AILFT 

In order to study the dependence of energy on the Fe-N bond distance, a range of distances 

around the minimum has been chosen and the energy has been calculated on each of them: 

from 1.83 Å to 2.43 Å with 0.05Å increments. See Appendix 3 (Table A3.1). 
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Figure 3. ΔE/kcal mol-1 vs r(Fe-N)/Å with DFT. 

6.1.3. Sigma type bond parameter in AOM (eσ) obtaining for [Fe(NH3)6]2+: DFT vs AILFT 

With the information of the local scan, it is possible to know which orbitals are occupied and 

which are virtual (unoccupied). In DFT method, the orbitals are chosen manually by looking the 

contribution coefficient of the molecular orbital at the d orbitals. It is obvious that this procedure 

will provide more error than a procedure that gives directly the d orbitals, as it does AILFT. 

Then, it is possible to calculate ΔOh by subtracting the energy value of the less energetic virtual 

orbital by the energy value of the most energetic occupied orbital. Since ΔOh=3eσ, we can extract 

the eσ value.  

Figure 4. Dependence of eσ on the Fe-N distance. 

As we can see in the graphic, there is a big difference between the two methods. AILFT is 

more reliable than DFT because DFT does not provide a good description of the empty d orbitals, 

the energy of these virtual orbitals is not good enough due to methodological issues. By contrast, 

AILFT performs a huge analysis of different electronic possibilities by moving electrons from 

occupied orbitals to virtual orbitals providing all the possible excitations, which provides reliable 

energies. See Appendix 3 (Table A3.1) and Appendix 5 (Figure A5.1). 

DFT	

AILFT	
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After this local scan, a fit of this M-L bond length dependence must be done in order to have 

a function that describes the d orbital splitting as a function of the bond distance, whereby we can 

calculate the ligand field splitting. This function describes the Fe-N sigma bond interaction. 

Together with the overlap factors, it is possible to calculate VLF, which in turns allows us to 

compute the Ligand Field Stabilization Energy (LFSE).[14] From that energy term, it is possible to 

calculate more parameters related to the trajectory studies. 

                          𝑒𝜎(𝑟) = 𝑎𝑜 + 𝑎1𝑟 +
𝑎2

𝑟2
+

𝑎3

𝑟3
+

𝑎4

𝑟4
+

𝑎5

𝑟5
+

𝑎6

𝑟6
                                 Equation 2 

Taking reference on Equation 2, we have tested three fits: 

i. 𝑒σ =
𝑎6

𝑟6 ; 𝑎6 = 358843 𝑐𝑚−1Å
6

 ; error of 0.545% 

 

ii. 𝑒σ =
𝑎5

𝑟5 ; 𝑎5 = 181743 𝑐𝑚−1Å
5
  ; error of 2.61% 

 

iii. 𝑒σ =
𝑎4

𝑟4 ; 𝑎4 = 90489.1 𝑐𝑚−1Å
4
 ; error of 4.86% 

Figure 5. Fit of the bond length dependence on r-6, r-5 and r-4 respectively. 

Although it is clear that the best fit comes from r-6 dependence, the function chosen is the one 

that depends on r-4. This will be discussed further in the FF construction. 

6.1.4. Morse potential fit for [Fe(NH3)6]2+ with DFT 

In order to obtain a function that describes the Morse potential, it is required a scan of a large 

range of distances: starting with 1.8 Å, 64 steps with an increment of 0.05 Å, thus, from 1.8 Å to 

5.0 Å. This scan is made using Gaussian09 at a DFT level. 

To construct the FF, three parameters from the Morse potential are necessary: the 

dissociation energy, De, the equilibrium radium, Req, and the well width, α. 
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    𝑉(𝑅) = 𝐷𝑒[(1 − 𝑒−𝛼(𝑅−𝑅𝑒𝑞))2 − 1]                 Equation 3 

To calculate these parameters, the program Gnuplot needs initial values. We put, thus: De = 

15 kcal mol-1, Req = 2 Å and α = 2. Then, it has returned: De = 29.31 kcal mol-1 = 10251 cm-1 (error 

of 0.635%); Req = 2.10 Å (error of 0.216%); α = 1.47 (error of 1.231%). See Appendix 4 (Table 

A4.1). 

Figure 6. Morse potential fit for [Fe(NH3)6]2+ per bond of Fe-N. 

Now we have all the pieces to construct the force field. 

6.1.5. Force Field Construction for [Fe(NH3)6]2+ 

It will be easier to understand the construction of the FF by looking at the following scheme: 

Figure 7. Process flow diagram. 

First, it is necessary to create a pdb file with the optimized geometry of the molecule. Then, 

all the atoms must be labelled according to the Generalized Amber Force Field (GAFF) database. 
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GAFF atom type Atomic weight [amu] Description 

fe 57.8450 There are no type of Fe  

n4 14.0100 Sp3 N with four connected atoms 

hn 1.0078 H bonded to nitrogen atoms 

Table 1. Atom labels according to GAFF. 

This pdb file is modified as a cubic cell of 500 Å × 500 Å × 500 Å with the molecule with its 

connectivity in the middle. In this way, all the information can be read and interpreted by the 

program build_ff_lfm_morse4, which will help us to construct the force field.  

Once this is done, we create a file (force_field.dat) that contains all the parameters involved 

in the molecule by extracting information of the GAFF and of the electronic structure calculations 

performed before (charges, Morse and AOM parameters). 

Figure 8. force_field.dat file for [Fe(NH3)6]2+. 

We have to modify the input by putting the paths and the different parameters that requires 

and at the build_ff_lfmm_morse4.f90 we must check the distance cutoffs. 
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Then, we run the program and it returns the number of bonds, angles, dihedrals and Van Der 

Waals interactions. These data are set at the input file and the program is run again. Two files 

have been created, the FIELD (contains FF parameters) and the CONFIG (contains the initial 

Cartesian coordinates for the system). 

Why do we use r-4 dependence? 

We tried to run the trajectory with the dependence on r-6 and the calculation did not work. The 

same thing happened for r-5. However, with the dependence on r-4 the calculation worked out, so 

we definitely chose this type of dependence. It is not the best fit, but it is still acceptable around 

the equilibrium bond length of 2 Å. There is not enough time to carry out an exhaustive 

methodological exploration. The time available to accomplish this study is limited. 

In r-4, small changes in the distance entail big changes in energy, but not as pronounced as 

in r-6. Major changes in energy cause that small displacements will alter much the dynamics of 

the system. To avoid this, it is possible to change several parameters of the system (set a limit on 

the displacement of the atoms, modify the time step, etc.) so that we could use the function that 

depends on r-6, which represents a better fit, but nevertheless it would take much time in testing 

which parameters are suitable. That is why we chose a function that does not lead to such big 

changes. 

6.1.6. Force Field Validation for [Fe(NH3)6]2+ 

The first step is to look for the potential well. We calculate a geometry optimization with the 

FF to test if it is close to the one calculated by the DFT method. Moreover, we have a starting 

structure at the potential well, therefore we avoid sudden changes that could end up with the 

calculation. 

The second step is to run the trajectory at different temperatures in order to see the molecule’s 

behaviour and to ensure if it is stable. The ensemble used is NVE. 
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Figure 9. Energy dependence on time of [Fe(NH3)6]2+ at 350 K. 

6.2. [Fe(py)6]2+ AND [Fe(C6H6N2)3]2+ 

The ligand of interest (the one from [Fe4] cages) has a nitrogen that is aromatic. To see if the 

calculations for the ammonia complex can be extrapolated, we will calculate the AOM parameters 

for a [Fe(py)6]2+ complex, which has an aromatic N, to find out if it has a different behaviour than 

the N of the ammonia. Then, we will also calculate the AOM parameters for a [Fe(C6H6N2)3]2+ 

molecule (more similar to the ligand of interest) to see which type of nitrogen is better suited to 

the ligand; the ammonia type nitrogen, the pyridine nitrogen or both. 

In other words, we assume that the possible π interactions that may exist due to the presence 

of aromatic N are negligible. This assumption will be validated below. 

6.2.1. Geometry Optimization and calculation of Frequencies and NBO charges for 

[Fe(py)6]2+ and [Fe(C6H6N2)3]2+ with DFT 

The procedure is the same as the one followed in section 6.1.1 but for [Fe(py)6]2+ and 

[Fe(C6H6N2)3]2+ systems. See Appendix 1 (Table A1.3, Table A1.4, Table A1.5 and Table A1.6) 

and Appendix 2 (Table A2.2 and Table A2.3) and Appendix 5 (Figure A5.2 and Figure A5.3). 

 [Fe(py)6]2+: Req(Fe-N) = 2.09 Å  

 [Fe(C6H6N2)3]2+: Req(Fe-N) = 1.97 Å 
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6.2.2. Sigma type bond parameter in AOM (eσ) obtaining for [Fe(py)6]2+ and [Fe(C6H6N2)3]2+ 

with AILFT 

As the calculation using AILFT returns better results than the one done with DFT, we calculate 

eσ via AILFT at the equilibrium geometry. We do not perform a local scan yet; if the results of 

equilibrium geometry of pyridine and 2-picolylamine systems are similar to those of ammonia, and 

eσ for pyridine and 2-picolylamine systems is close to the one given by the ammonia function, it 

will not be necessary to carry out a local scan. 

 

Table 2. 10Dq and eσ values depending on the Fe-N bond length of [Fe(py)6]2+ and [Fe(C6H6N2)3]2+. 

6.2.3. [Fe(py)6]2+ and [Fe(C6H6N2)3]2+ comparison to [Fe(NH3)6]2+ 

To continue, we must compare the results of the ammonia system with the results of the 

pyridine and 2-picolylamine systems.  

 

 

 

 

 

Table 3. 10Dq and eσ values depending on the Fe-N bond length of [Fe(NH3)6]2+, [Fe(py)6]2+ and 

[Fe(C6H6N2)3]2+. 

 

 

 

Entry r(Fe-N) [Å] 
10Dq (AILFT) 

[cm-1] 
eσ (AILFT) [cm-1] 

[Fe(py)6]2+ 2.09 12416 4138.7 

[Fe(C6H6N2)3]2+ 1.97 16772 5590.8 

Entry [Fe(NH3)6]2+ [Fe(py)6]2+ Fe(C6H6N2)3]2+ 

r(Fe-N) [Å] 2.08 2.09 1.97 

10Dq (AILFT) [cm-1] 13128 12416 16772 

eσ (AILFT) [cm-1] 4376.1 4138.7 5590.8 
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Fit for [Fe(NH3)6]2+ system: 𝑒σ =
𝑎6

𝑟6 ; 𝑎6 = 358843 𝑐𝑚−1Å
6

  

 [Fe(NH3)6]2+: 𝑒σ =
358843 𝑐𝑚−1Å6

2.086 Å6
= 4431.2 𝑐𝑚−1 close to 4376.1 cm-1 

 

 [Fe(py)6]2+: 𝑒σ =
358843 𝑐𝑚−1Å6

2.096 Å6
= 4305.5 𝑐𝑚−1 close to 4138.7 cm-1 

 

 [Fe(C6H6N2)3]2+: 𝑒σ =
358843 𝑐𝑚−1Å6

1.976 Å6
= 6139.1 𝑐𝑚−1 close to 5590.8 cm-1 

 

eσ for both pyridine and 2-picolylamine systems are close to the fit provided by the eσ 

ammonia system. 

Let’s check if the fit is still good with an r-4 dependence: 

Fit for [Fe(NH3)6]2+ system: 𝑒σ =
𝑎4

𝑟4 ; 𝑎4 = 90489.1 𝑐𝑚−1Å
4
 

 [Fe(NH3)6]2+: 𝑒σ =
90489.1 𝑐𝑚−1Å4 

2.084 Å4
= 4834.4 𝑐𝑚−1 close to 4376.1 cm-1 

 

 [Fe(py)6]2+: 𝑒σ =
90489.1 𝑐𝑚−1Å4

2.094 Å4
= 4742.5 𝑐𝑚−1  close to 4138.7 cm-1 

 

 [Fe(C6H6N2)3]2+:  𝑒σ =
90489.1 𝑐𝑚−1Å4

1.974 Å4
= 6008.0 𝑐𝑚−1 close to 5590.8 cm-1 

 

We see that the results of the fit are close to those calculated for each complex. Therefore, 

we can simplify the metal-ligand interaction, the ammonia does reflect it properly. The results 

show that de nitrogen of the pyridine does not need to be treated in a different way than the 

nitrogen of the ammonia. Moreover, 2-picolylamine system fits properly with ammonia’s eσ 

function, which shows that both types of nitrogen can be treated equally. We do not provide much 

error neglecting the possible π interactions. 

Thus, as previously said, it is not necessary to perform a local scan for [Fe(py)6]2+ to obtain a 

function that describes better the bond with the aromatic N, but we will. In this way we will fully 

demonstrate that we could take data from ammonia system, pyridine system or even both at the 

same time. 
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6.2.4. Local scan for [Fe(py)6]2+ with AILFT 

A range of distances around the minimum has been chosen in order to study the dependence 

of energy on the Fe-N bond distance, and the energy has been calculated on each of them: from 

1.84 Å to 2.44 Å with 0.05 Å increments. 

6.2.5. Sigma type bond parameter in AOM (eσ) obtaining for [Fe(py)6]2+ 

As explained in section 6.1.3, after the local scan, we perform a fit of this metal-ligand bond 

length dependence. 

Taking reference on Equation 2, we have tested three fits: 

i. 𝑒σ =
𝑎6

𝑟6 ; 𝑎6 = 354571 𝑐𝑚−1Å
6

 ; error of 0.999% 

 

ii. 𝑒σ =
𝑎5

𝑟5 ; 𝑎5 = 178417 𝑐𝑚−1Å
5

  ; error of 3.07% 

 

iii. 𝑒σ =
𝑎4

𝑟4 ; 𝑎4 = 88261.7 𝑐𝑚−1Å
4

 ; error of 5.32% 

Figure 10. Fit of the bond length dependence on r-6, r-5 and r-4 respectively. 

The function chosen is the one that depends on r-4 for the same reason explained in section 

6.1.5. 

We see that the values of a6, a5, and a4 obtained for the pyridine complex are quite similar to 

those obtained by the ammonia system (section 6.1.3). Therefore, an ammonia type nitrogen and 

a pyridine type nitrogen can be treated in the same way. See Appendix 3 (Table A3.2). 
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6.2.6. Morse potential fit for [Fe(py)6]2+ with DFT 

As said in section 6.1.4, in order to obtain a function that describes the Morse potential, it is 

required a scan of a large range of distances: from 1.8 Å to 5.0 Å. 

In order to construct the FF, three parameters from the Morse potential are necessary: De, 

Req, and α (see Equation 3). To calculate these parameters, we put as initial values: De = 15 kcal 

mol-1, Req = 2 Å and α = 2. Then, the program has returned: De = 24.25 kcal mol-1 = 8481.8 cm-1 

(error of 0.534%), Req = 2.36 Å (error of 0.122%), α = 1.42 (error of 0.566%). See Appendix 4 

(Table A4.2). 

Figure 11. Morse potential fit for [Fe(py)6]2+ per bond of Fe-N. 

We see that the values of De, Req and α obtained for the pyridine complex are quite similar to 

those obtained by the ammonia system (section 6.1.4). Therefore, both type of N can be treated 

equally. 

6.3. [Fe4] CAGE SYSTEM 

6.3.1. μ2-4,4'-bis([(pyridin-2-yl)methylidene]amino)biphenyl-2,2'-disulfonate ligand 

6.3.1.1. Calculation of NBO charges for [Fe4] empty cage system 

The first step is to download the pdb file that has de [Fe4] cage system without the counter 

ions and the guest molecule.[25] 

As it is a complex system, we tried to assemble a FF with the charges provided by GAFF, but 

for a repulsion issue it did not work, so we decided to calculate the NBO charges. Of the whole 

system, we only keep the ligand so the calculation will be easier and faster. 
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Figure 12. Molecular representation of the μ2-4,4'-bis([(pyridin-2-yl)methylidene]amino)biphenyl-2,2'-

disulfonate ligand.[25] 

Each type of atom has different charges, so we calculate an average of these. Then, we have 

to compare these charges with those (also average) obtained for the [Fe(py)6]2+ and 

[Fe(C6H6N2)3]2+ systems since they contain similar type of nitrogen involved in the ligand, and 

then, decide which charges choose for the FF construction. See Appendix 2 (Table A2.2, Table 

A2.3 and Table A2.4). 

 

GAFF 

atom 

type 

Atomic 

weight 

[amu] 

Description 

GAFF 

atom 

type 

Atomic 

weight 

[amu] 

Description 

fe 57.845 There are no type of Fe  hc 1.008 

H bonded to aliphatic 

carbon without 

electrowithdrawing 

group 

ca 12.010 
Sp2 C in pure aromatic 

systems 
nb 14.010 

Sp2 N in pure 

aromatic systems 

ce 12.010 
Inner Sp2 carbons in 

conjugated systems 
ne 14.010 

Inner Sp2 N in 

conjugated systems 

cp 12.010 

Head Sp2 C that 

connect two rings in 

biphenyl systems 

s6 32.06 
S with four connected 

atoms 

ha 1.008 
H bonded to aromatic 

carbon 
o 16.00 

Oxygen with one 

connected atom 

Table 4. Atom labels of the ligand according to GAFF. 
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GAFF 

atom 

type 

Atomic 

weight 

[amu] 

Description 
GAFF atom 

type 

Atomic 

weight 

[amu] 

Description 

fe 57.845 
There are no 

type of Fe 
hc 1.008 

H bonded to aliphatic 

carbon without 

electrowithdrawing 

group 

ca 12.010 

Sp2 C in pure 

aromatic 

systems 

hn 1.008 
H bonded to nitrogen 

atoms 

ce 12.010 

Inner Sp2 

carbons in 

conjugated 

systems 

nb 14.010 
Sp2 N in pure aromatic 

systems 

ha 1.008 
H bonded to 

aromatic carbon 
ne 14.010 

Inner Sp2 N in 

conjugated systems 

Table 5. Atom labels of [Fe(C6H6N2)3]2+ according to GAFF. 

GAFF 

atom 

type 

Atomic 

weight 

[amu] 

Description 
GAFF atom 

type 

Atomic 

weight [amu] 
Description 

fe 57.845 
There are no 

type of Fe  
ha 1.008 

H bonded to 

aromatic carbon  

ca 12.010 

Sp2 C in pure 

aromatic 

systems 

nb 14.010 

Sp2 N in pure 

aromatic 

systems 

Table 6. Atom labels of [Fe(py)6]2+ according to GAFF. 
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Considering that [Fe4] empty cage system and [Fe(C6H6N2)3]2+ have more types of atoms in 

common than [Fe4] empty cage system and [Fe(py)6]2+ systems (see Table 4, Table 5 and Table 

6), we have opted for the NBO charges of [Fe4] empty cage system and [Fe(C6H6N2)3]2+. 

Table 7. NBO charges chosen for the FF construction. 

6.3.1.2. Force Field Construction and Validation for [Fe4] empty cage system 

The steps are similar to those of section 6.1.5 but for [Fe4] empty cage system. 

As the parameters obtained by both the ammonia complex and the pyridine complex are quite 

similar, it will be possible to use only data from one N type atom. However, we will use both, taking 

advantage of the fact that we have made the calculations for both N types. 

LIGAND-FIELD MOLECULAR MECHANICS (LFFM): 

AOM parameters: 

 fe nb: a4 from [Fe(py)6]2+ which is 88261.7 cm-1Å4    

 fe ne: a4 from [Fe(NH3)6]2+ which is 90489.1  cm-1Å4     

Morse parameters: 

 fe nb: from [Fe(py)6]2+ which are De = 8481.8 cm-1; Req = 2.36 Å; α = 1.42 

 fe ne: from [Fe(NH3)6]2+ which are De = 10251 cm-1; Req = 2.10 Å; α = 1.47 

 

Entry 

Charges from 

[Fe4] empty 

cage 

Charges from 

[Fe(C6H6N2)3]2+ 
Entry 

Charges 

from [Fe4] 

empty 

cage 

Charges from 

[Fe(C6H6N2)3]2+ 

fe - -0.03500 cp -0.03400 - 

nb - -0.28633 ha - 0.23942 

ne - -0.43033 hc - 0.22333 

ca - -0.06307 s6 2.31050 - 

ce - 0.13200 o -0.98117 - 
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The steps to validate the FF are the same as those in section 6.1.6 but for [Fe4] empty cage 

system. The ensemble used is NVE. 

When we check the trajectory, we see that the calculation does not work and several angles 

of the system are not as they should. We think that the problem comes from a charges issue. 

Thus, we modify a little bit the s6 atom charge, which finally has a value of 1.97193, so that the 

global charge of the system is -4 approximately. 

When we check the trajectory again, we see that the calculation does not work either. We 

have discovered that the problem comes from the ensemble used. If we use a NVE ensemble, 

the calculation does not work, but if we use a NVT or NPT/NσT ensemble, it does. Thus, we 

change it. See Figure 1 (Left). 

Figure 13. Energy dependence on time of [Fe4] empty cage system at 300 K. 

6.3.2. Counter ion [N(CH3)4]+ 

It is necessary to introduce counter ions to the system, which is negatively charged. Thus, the 

geometry optimization with DFT, and the construction of the FF for tetramethylammonium cation 

must be done. 

6.3.2.1. Geometry Optimization and calculation of Frequencies and NBO charges for [N(CH3)4]+ 

with DFT 

The procedure is the same as the one followed in section 6.1.1 but for [N(CH3)4]+ cation. See 

Appendix 1 (Table A1.7 and Table A1.8) and Appendix 2 (Table A2.5) 

Req(N-C) = 1.51 Å 
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6.3.2.2. Force Field Construction and Validation for [N(CH3)4]+ 

The steps are the same than those of section 6.1.5 and 6.1.6 but with the 

tetramethylammonium cation. The ensemble used is NVE. 

Table 8. Atom labels of [N(CH3)4]+ cation according to GAFF. 

Figure 14. Energy dependence on time of [N(CH3)4]+ at 300 K. 

6.3.3. Guest molecule SF6  

Now we have to construct the FF for the guest molecule SF6 and then, with all the pieces, 

construct the FF for the [Fe4] cage system. 

6.3.3.1. Geometry Optimization and calculation of Frequencies and NBO charges for SF6 with 

DFT 

The procedure is the same as the one followed in section 6.1.1 but for SF6 molecule. See 

Appendix 1 (Table A1.9 and Table A1.10) and Appendix 2 (Table A2.6). 

Req(S-F) = 1.61 Å 

 

GAFF atom type Atomic weight [amu] Description 

c3 12.0100 Sp3 C 

n4 14.0100 Sp3 N with four connected atoms 

h1 1.0080 
H bonded to aliphatic carbon with 1 

electrowithdrawing group 
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6.3.3.2. Morse potential fit for SF6 with DFT 

It would not be necessary to perform a Morse potential fit if the GAFF had the harmonic 

potential parameters for the S and the F. As GAFF does not have the necessary parameters for 

our type of S and F, we must enter the parameters of the Morse potential. 

As said in section 6.1.4, in order to obtain a function that describes the Morse potential, it is 

required a scan of a large range of distances: starting with 1.3 Å, 100 steps with an increment of 

0.05 Å, thus, from 1.3 Å to 6.3 Å.  

Initial values: De = 100 kcal mol-1, Req = 2 Å and α = 1.5. Then, the program returns: De = 

107.405 kcal mol-1 = 37565 cm-1 (error of 0.476%); Req = 1.63479 Å (error of 0.120%); α = 1.76186 

(error of 0.596%). See Appendix 4 (Table A4.3). 

Figure 15. Morse potential fit for SF6 per bond of S-F. 

6.3.3.3. Force Field Construction and Validation for SF6 

The steps are the same than those of section 6.1.5 and 6.1.6 but for SF6 molecule.  

In the GAFF force field there are no standard parameters for this type of F and S atoms. 

Therefore, we had to define three different type of F. If not, the geometry of the molecule is not 

octahedral because the angles are not well defined. Thus, we label them as f1, f2, f3 and s. 

Figure 16. SF6 with the different type of F. 

 

 

S

F1

F1
F2

F2F3

F3
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GAFF atom type Atomic weight [amu] 

s 32.06 

f1 19.00 

f2 19.00 

f3 19.00 

Table 9. Atom labels (not GAFF). 

The file force_field.dat contains all the parameters involved in the molecule by extracting 

information of the Morse potential (De, α and Req), of the GAFF force field (Van Der Waals 

parameters and force constant of the angles) and of the electronic structure calculations 

performed.  

The ensemble used is NVE. 

Figure 17. Energy dependence on time of SF6 at 300 K. 

6.3.4. Force Field Construction and Validation for the global [Fe4] cage system 

Once we have all the pieces, we can construct the global FF of study. The steps are the same 

than those explained at the previous FF constructions but with the addition of all the pieces to the 

calculation. 

The parameters to construct this FF are the same used in the previous FF for each piece of 

the system. We pick the same final values used for [N(CH3)4]+, SF6 and [Fe4] empty cage. 
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First, we test the FF in the NVT ensemble at different temperatures, and then we do the same in 

the NPT and NσT ensembles. See Figure 1 (Right). 

Figure 18. Energy dependence on time of [Fe4] cage system at 100 K (blue), 200 K (green) and 300 K 

(red). 

7. DISCUSSION 

7.1. GEOMETRY OPTIMIZATION AND CALCULATION OF FREQUENCIES AND NBO 

CHARGES FOR [Fe(NH3)6]2+, [Fe(py)6]2+, [N(CH3)4]+ AND SF6 

See Appendix 1. The results show an octahedral optimized geometry for [Fe(NH3)6]2+, 

[Fe(py)6]2+, [Fe(C6H6N2)3]2+ and  SF6 as expected, with a Fe-N bond length of 2.08 Å, 2.09 Å and 

1.97 Å respectively for the nitrogen complexes, and a S-F bond length of 1.61 Å for SF6. 

The results show a tetrahedral optimized geometry for [N(CH3)4]+ as expected, with a N-C 

bond length of 1.51 Å. 

See Appendix 1. All frequencies are positive in each compound; hence, we can assure that 

we are in a minimum of energy. 

See Appendix 2. NBO charges are useful to construct the FF and are more reliable than 

Mulliken charges since they operate on the electron density instead. Thus, polarization of bonds 

is considered. NBO describes better the Lewis-type molecular bonding pattern of electronic pairs. 

The population analysis of Mulliken shares the total electronic density between the atoms of the 
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molecule. The distribution of charges obtained by Mulliken is arbitrary and should be taken with 

a certain caution, since in some cases erroneous charge distributions may occur, inconsistent 

with the dipole moment of the system. One of the problems that has been observed with Mulliken's 

charges is that they are strongly dependent on the basis set and the description becomes worse 

by increasing it. 

7.2. LOCAL SCAN FOR [Fe(NH3)6]2+ AND [Fe(py)6]2+ 

See Figure 3 and Appendix 3. If we consider only the Fe-N bond (as a system formed by two 

atoms), initially they are so separated that they do not exert any influence on each other. As Fe 

and N start approximating each other, the attractive forces (long-range) of one of the nucleus over 

the electronic cloud of the other (VNe) begin to be noticed and vice versa. This stabilizes the 

system; therefore, the energy of the system decreases to a valley of minimum energy. However, 

as Fe and N keep getting closer, the repulsive (short-range) forces of one electronic cloud over 

the other (Vee) start to be noticed, which destabilizes the system and cause the increase of the 

energy. 

7.3. SIGMA TYPE BOND PARAMETER IN AOM (eσ) OBTAINING FOR [Fe(NH3)6]2+ (DFT 

VS AILFT), [Fe(py)6]2+ AND [Fe(C6H6N2)3]2+ 

See Figure 4, Figure 5, Figure 10 and Appendix 3 (Table A3.1 and Table A3.2). 

Part of these results (choice of the fitting parameters and debate between DFT and AILFT) 

are discussed in sections 6.1.3 and 6.1.5. 

As Fe-N bond length increases, eσ decreases. t2g orbitals in these kinds of complexes have a 

non-bonding nature and the eg orbitals have an antibonding nature. In the ideal case, increasing 

of the M-L distance causes the stabilization of the antibonding orbitals (decrease of energy) as 

the interaction between atoms is lower. 

The discussion about the different type of N and their eσ values is in sections 6.2.3 and 6.2.5. 
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7.4. MORSE POTENTIAL FIT FOR [Fe(NH3)6]2+, [Fe(py)6]2+, [N(CH3)4]+ AND SF6 

See Figure 6, Figure 11, Figure 15 and Appendix 4 (Table A4.1, Table A4.2 and Table A4.3). 

The explanation of the behaviour of the energy depending on the bond length is the same 

that those explained in section 7.2. 

If we look at Equation 3 we can see that when R<Req, the function tends to +∞, and when 

R>Req, the function tends to zero. 

The discussion about the different type of N and their values of the Morse parameters is in 

section 6.2.6. 

7.5. [Fe(NH3)6]2+ [Fe(py)6]2+ AND [Fe(C6H6N2)3]2+ BEHAVIOUR 

If we look at the following table, we can see that the ammonia N and the pyridine N have 

nearly the same values in the fits performed, which means that are similar.  

Table 10. Comparison table of each complex. 

In addition, the results obtained from eσ (ΔOh/3) are as expected according to the 

spectrochemical series of the ligands for an octahedral crystal field, in which the ligands are 

arranged in order of increasing energy of transitions that occur when they are present in a 

complex:[26] 

ΔOh: I- < Br- < S2- < SCN- < Cl- < NO2
- < N3- < F- < OH- < C2O4

2- < O2- < H2O < NCS- < CH3C≡N < py < 

NH3 < en < bpy < phen < NO2
- < PPh3 < CN- < CO 

py: pyridine; en: ethylenediamine; bpy: bipyridine; phen: phenanthroline; PPh3: triphenylphosphine 

Compound 

Fit of Fe-N bond length 

dependence 
Morse parameters 

Sigma 

type bond 

parameter 

in AOM eσ 

[cm-1] 

a6 [cm-1 

Å6] 

a5 [cm-1 

Å5] 

a4 [cm-1 

Å4] 
De [kcal mol-1] 

Req 

[Å] 
α 

[Fe(NH3)6]2+ 358843 181743 90489.1 29.31 2.10 1.47 4376.1 

[Fe(py)6]2+ 354571 178417 88261.7 24.25 2.36 1.42 4138.7 

[Fe(C6H6N2)3]2+ - - - - - - 5590.8 
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Pyridine is a ligand that has a weaker field than NH3, but not much. According to the results, 

2-picolylamine is the strongest field ligand in this study. 

7.6. FORCE FIELD CONSTRUCTION AND VALIDATION FOR [Fe(NH3)6]2+, [Fe4] EMPTY 

CAGE SYSTEM, [N(CH3)4]+, SF6 AND [Fe4] CAGE SYSTEM 

See Figure 9, Figure 13, Figure 14, Figure 17 and Figure 18. 

As we can see in the graphic, the dependence of the total energy of the system over time is 

quite stable, no sudden changes are observed. This indicates that the FF created is stable. If we 

look at the [Fe4] cages total system, we see that the three trajectories (100 K, 200 K and 300 K) 

are practically identical, the only thing that changes is the fluctuation due to the temperature. The 

higher the temperature, the more oscillations in the energy, as expected. 

The most stable molecule over the time is SF6 because it is a closed shells system. 

Tetramethylamonium cation is a closed shells system too, but it is positively charged, it is more 

flexible, and the methyl groups have rotation. That is why it does not have a stability as clearly 

defined as SF6. 

When we look at the trajectory with the VMD, it is observed that the SF6 is confined inside the 

cage and tends to get close to the vertices of the tetrahedron formed by the macromolecule. We 

should set up a program that at each step of the simulation would measure the Fe-S distance and 

return us where the molecule has been. Normally, it is done with a radial distribution function, 

which is a measure of the probability of finding a particle at a certain distance away from a given 

reference particle.[27] Anyway, this behaviour could be explained due to electrostatic interactions 

between Fe(II) and F that have a certain negative charge density. 

7.7. CHOICE OF THE ENSEMBLE 

DL_POLY allows to test FF with net charge. The NVE ensemble is the most comfortable to 

see if everything works. Therefore, testing of the FF for the different parts of the system are made 

with NVE. 

Then, we must use ensembles that describe better the reality of the system once it has all its 

parts. We start with NVT and then with NPT/NσT (NPT and NσT are equivalent, the difference is 

that in NPT the pressure is isotropic and in NσT it is anisotropic). NσT is a more realistic 

description of the system because it allows the system to deform. 
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8. CONCLUSIONS 

 The results of the calculations for the three model complexes containing Fe-N bonds 

produce similar results for the ligand field around the metal centre. 

 Fe-N bonds on [Fe4] cages can be described using a simple model such as [Fe(NH3)6]2+. 

[Fe(py)6]2+ can also be used but becomes more expensive from the computational point 

of view due to its size. In any case, the N atoms in both ammonia and pyridine are 

similar in terms of bonding, and have a comparable behaviour to the N atom in the [Fe4] 

cage system. 

 Using AILFT, the relative position of ammonia, pyridine and 2-picolylamine in the 

spectrochemical series has been determined. As expected, pyridine has a slighter 

weaker ligand field than ammonia, and 2-picolylamine has the strongest ligand field in 

the study: ∆Oh([Fe(NH3)6]2+)=13128 cm-1; ∆Oh([Fe(py)6]2+)=12416 cm-1; 

∆Oh([Fe(C6H6N2)3]2+)=16772 cm-1. 

 All constructed force fields are stable and provide a reasonable representation of the 

potential energy surface for the [Fe4] cages. 

 SF6 is confined inside the [Fe4] cage and tends to get close to the vertices of the 

tetrahedron formed by the macromolecule due to electrostatic interactions between 

Fe(II) and F that have a certain negative charge density. 
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10. ACRONYMS 

 AILFT: Ab Initio Ligand Field 

Theory 

 AOM: Angular Overlap Model 

 CASSCF: Complete Active 

Space   Self-Consistent Field 

 CHARMM: Chemistry at Harvard 

Macromolecular Mechanics 

 CI: configuration interaction 

 CSFs: configuration state 

functions 

 DFT: Density Functional Theory 

 FF: force field 

 GAFF: Generalized Amber Force 

Field 

 HF: Hartree-Fock 

 LFMM: Ligand-Field Molecular 

Mechanics 

 LFSE: Ligand Field Stabilization 

Energy 

 MCSF: Multi-Configurational 

Self-Consistent Field 

 meta-GGA TPSSh: hybrid meta-

Generalized Gradient 

Approximation Tao-Perdew- 

Staroverov-Scuseria 

 M-L: metal-ligand 

 MM: molecular mechanics 

 MOCs: metal-organic cages 

 MRPT2: second-order Multi-

Reference Perturbation Theory 

 NBO: Natural Bond Orbital 

 NEVPT2: second-order N-

Electron Valence Perturbation 

Theory 

 NPT: constant Number of 

particles, Pressure and 

Temperature 

 NσT: constant Number of 

particles, Stress tensor and 

Temperature 

 NVE: constant Number of 

particles, Volume and Energy 

 NVT: constant Number of 

particles, Volume and 

Temperature 

 SCO: spin-crossover 

 VLF: ligand field potential 

 VMD: Visual Molecular 

Dynamics 
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APPENDIX 1: OPTIMIZED GEOMETRY IN CARTESIAN 

COORDINATES, LOWEST FREQUENCY AND ENERGY 

OF THE MINIMUM (DFT) 

 

 [Fe(NH3)6]2+ 

Table A1.1. Optimized geometry of [Fe(NH3)6]2+. 

 

Table A1.2. Lowest frequency and minimum energy of [Fe(NH3)6]2+. 
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[Fe(py)6]2+ 

 

Table A1.3. Optimized geometry of [Fe(py)6]2+. 

 

Table A1.4. Lowest frequency and minimum energy of [Fe(py)6]2+. 
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[Fe(C6H6N2)3]2+ 

Table A1.5. Optimized geometry of [Fe(C6H6N2)3]2+. 

 

Table A1.6. Lowest frequency and minimum energy of [Fe(C6H6N2)3]2+. 
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[N(CH3)4]+ 

           

 

SF6 

 

 

 

Table A1.7. Optimized geometry of [N(CH3)4)]+. 

Table A1.8. Lowest frequency and minimum 

energy of [N(CH3)4]+. 

 

Table A1.9. Optimized geometry of SF6. 

Table A1.10. Lowest frequency and minimum 

energy of SF6. 
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APPENDIX 2: RESULTS OF THE NBO CHARGES 

WITH DFT 

 

*Bold values are the average. 

 

[Fe(NH3)6]2+ 

 

Table A2.1. NBO charges of [Fe(NH3)6]2+. 

 

[Fe(py)6]2+ 

Table A2.2. NBO charges of [Fe(py)6]2+. 
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[Fe(C6H6N2)3]2+ 

Table A2.3. NBO charges of [Fe(C6H6N2)3]2+. 

 

μ2-4,4'-bis([(pyridin-2-yl)methylidene]amino)biphenyl-2,2'-disulfonate 

ligand 

Table A2.4. NBO charges of μ2-4,4'-bis([(pyridin-2-yl)methylidene]amino)biphenyl-2,2'-disulfonate ligand. 

 

fepic3 
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[N(CH3)4]+ 

 

Table A2.5. NBO charges of [N(CH3)4]+. 

 

SF6 

 

Table A2.6. NBO charges of SF6. 
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APPENDIX 3: RESULTS OF THE LOCAL SCAN WITH 

DFT AND AILFT: 10Dq AND eσ 

 

[Fe(NH3)6]2+ 

Table A3.1. Local scan of [Fe(NH3)6]2+. 

 

[Fe(py)6]2+ 

 

Table A3.2. Local scan of [Fe(py)6]2+. 
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APPENDIX 4: RESULTS OF THE MORSE POTENTIAL 

FIT WITH DFT 

 

[Fe(NH3)6]2+ 

Table A4.1. Morse potential fit for [Fe(NH3)6]2+. 

[Fe(py)6]2+ 

Table A4.2. Morse potential fit for [Fe(py)6]2+. 



Development of a first principles force field for metal-organic [Fe4] cages  55 

 

SF6 

Table A4.3. Morse potential fit for SF6. 

APPENDIX 5: d ORBITALS 

 

[Fe(NH3)6]2+ 

 

 

 

 

 

 

Figure A5.1. d orbitals of [Fe(NH3)6]2+. 
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[Fe(py)6]2+ 

 

 

 

 

 

 

 

 

 

 

Fe(C6H6N2)3]2+ 

 

 

Figure A5.2. d orbitals of [Fe(py)6]2+. 

Figure A5.3. d orbitals of [Fe(C6H6N2)3]2+. 



 

 


