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Cells are constantly submitted to external mechanical stresses, which they

must withstand and respond to. By forming a physical boundary between

cells and their environment that is also a biochemical platform, the plasma

membrane (PM) is a key interface mediating both cellular response to mech-

anical stimuli, and subsequent biochemical responses. Here, we review the

role of the PM as a mechanosensing structure. We first analyse how the

PM responds to mechanical stresses, and then discuss how this mechanical

response triggers downstream biochemical responses. The molecular

players involved in PM mechanochemical transduction include sensors of

membrane unfolding, membrane tension, membrane curvature or mem-

brane domain rearrangement. These sensors trigger signalling cascades

fundamental both in healthy scenarios and in diseases such as cancer,

which cells harness to maintain integrity, keep or restore homeostasis and

adapt to their external environment.

This article is part of a discussion meeting issue ‘Forces in cancer:

interdisciplinary approaches in tumour mechanobiology’.
1. Introduction
By forming a physical boundary permitting the segregation of specific chemical

reactions, the self-association of amphiphilic lipid molecules played an impor-

tant role in the origin of life. Accordingly, the plasma membrane (PM) of

prokaryotes and eukaryotes constitutes a fundamental border between the

cell and its environment, and tightly regulates the exchanges between the

inside and outside of the cell. Its physical state and integrity are crucial for

cell survival, and a major function of the PM is to preserve its integrity and

enable changes in cell shape. These changes occur in response not only to

cell processes such as division, migration or spreading, but also to the constant

external mechanical forces present in physiological scenarios. Mechanical

stimuli destabilize cellular homeostasis and are strongly associated with

cancer [1,2], and cells need to respond to either maintain their integrity or

trigger appropriate responses.

In this context, the PM constitutes a crucial interface, since mechanical forces

will result in a change of its state. Accordingly, extensive work (which we cite here

non-exhaustively) has addressed how membrane tension interplays with the actin

cytoskeleton (CSK) to regulate cell shape [3–5], motility [6–9] and polarity [10,11].

Correspondingly, many reviews discuss the feedback between membrane mech-

anical properties, CSK organization and cell dynamics [12–19]. Whereas in this

review we will not analyse this feedback in detail, we will address a related and

equally important topic: how the PM can harness mechanically induced changes

in its state to itself act as a mechanosensor. We will first detail the different types of

external mechanical stimuli that can be applied to the PM, and its subsequent
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mechanical response. Then, we will review how this PM

response triggers specific molecular mechanosensing events,

mediated by diverse mechanosensory molecules that share a

common principle: they are sensitive to a mechanical state of

the PM, or to a change of this state. Accordingly, they transduce

the external mechanical input transmitted from the PM into a

biochemical response. To decouple the effect of each particular

signal, we will not consider inputs composed of multiple mech-

anical signals (such as those usually present in three-

dimensional geometries). Therefore, we limit the review to

two-dimensional in vitro systems and examine the acute

response of mammalian cells to a single mechanical input.
 tb
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2. Effect of external mechanical stimuli on the
plasma membrane

The highly complex PM delimits the cell, and is in permanent

contact with its surroundings. As such, it constitutes a crucial

interface, since interactions with or alterations from the exter-

nal environment will result in a change of its mechanical

state. Whereas all living cells (eukaryotic or prokaryotic)

receive a large diversity of mechanical inputs, here we will

focus on the PM of animal cells. Examples of such cells in a

mechanically active environment include alveolar epithelial

cells in lungs, which cyclically stretch and relax, or skin

cells, which also experience transient stretch, but without a

cyclic rhythm. Cells in the intestinal track withstand trans-

mural pressure, shear flow and cyclic strains [20], and

smooth muscle cells in the bladder [21] or in ocular cells

[22] are exposed to hydrostatic pressure. Vascular endothelial

cells, circulating cells such as red blood cells, and cells from

the immune system are exposed to shear flows [23,24].

Among a plethora of other cells, circulating cells (RBC)s pas-

sing in the kidney medullae [25], cells in the renal medullae

[26] and cells exposed to the environment undergo important

osmotic changes, which will stretch or compress cells. Top-

ography is another external crucial mechanical cue, as

many adherent cells must physically adapt to a topographi-

cally heterogeneous substrate such as the extracellular

matrix (ECM) [27]. From a mechanical perspective, these

stimuli can be grouped as tensile stresses (as applied by cell

stretching and hypo-osmotic treatments), compressive stres-

ses (as applied by cell compression and hyper-osmotic

treatments) and shear stresses (as applied by shear flows

acting on adherent cells) [28]. In this section, we will focus

on experiments mainly applying only one of these stimuli,

and we will not analyse their combined effects (as could

occur for instance in cells flowing through narrow constric-

tions) [29]. As such, we will not consider three-dimensional

geometries as they would lead to complex mechanical inputs.

(a) Tensile stresses
Tensile stresses on the PM are commonly applied through

hypotonic treatments [30–32], both to adhering and sus-

pended cells (figure 1a(i)). Cells respond by swelling,

thereby expanding their volume. Such osmotic treatments

raise the issue of potential chemical responses triggered in par-

allel to the mechanical response [33,34]. Alternatively, cells

adhered to flexible membranes can be stretched uniaxially or

equibiaxially [31,35] (figure 1a(ii)), thereby regulating PM

area more directly. In both types of experiment, there is an
increase in PM apparent tension, a measure containing the

PM tension and the tension induced by adhesion to the under-

lying CSK, to which the PM is strongly attached (see further

details in box 2). Indeed, application of 40–70% osmotic treat-

ments increases apparent tension in neuron cells [32],

fibroblasts [3] and human leukaemia cells (HL-60) [36], and

application of a 40% uniaxial stretch increases apparent ten-

sion in human leukaemia cells [36]. In these assays, tension

most likely increases both in the PM and in the underlying

cytoskeletal actin cortex. The CSK is in fact thought to have

mechano protective effects on the poorly extensible PM,

which resists only a 3–5% area expansion before lysis, or rup-

ture [8,28]. The CSK prevents tension-induced PM rupture by

absorbing part of the applied stress [33,37]. Consistently,

apparent PM tensions in unstressed cells range from 0.03 to

0.3 mN m21 [16,38], far from the estimated rupture tension

of a bilayer, 3–10 mN m21 [8,13,38,39].

Upon stress application, however, cells have multiple

ways of supplying lipids to the PM to buffer tension

increases. First, highly abundant PM folds (see box 1) flatten

upon tensile stress application [15,30,31] (figure 1a(iv)).

Caveolae are an important type of such folds [40], exerting

a PM mechanoprotective role directly [41] (rather than

through caveolae endocytosis). Second, exocytosis contrib-

utes to PM area expansion [35,42–45] by adding lipids to

the bilayer. Exocytosis occurs in response to PM tension

increase [38] (figure 1a(v)). Interestingly, simple membrane

mechanics could drive this process, as stretching a supported

lipid bilayer leads to passive absorption of liposomes sitting

on top of it [46]. Similarly, endocytosis arrest has been associ-

ated with increased PM tension, as observed for instance

during osmotic swelling of rat basophilic leukaemia (RBL)

cells [47]. Here again, tension may facilitate molecularly

driven exocytosis [38,39].

Overall, the cell capacity to expand its area under tensile

stress will thus depend not only on the nature and the mag-

nitude of the stretch, but also on the PM lipid reserves in the

form of folds and endomembranes [48]. For instance, the

abundance of caveolae is cell-type-dependent, and they are

highly abundant specifically in smooth muscle cells (highly

exposed to stretch), and in endothelial cells (highly exposed

to shear flows) [49]. Moreover, cells have very different rest-

ing tensions depending on their type [17,33] and state [3,48]

and may even display heterogeneous apparent tension distri-

bution within the PM upon application of local stimuli [50].

Such differences may explain why the cellular response to

osmotic treatment is strongly cell-type-dependent: in a

range of cell types, PM area expansion prevented tension

increases upon hypotonic treatments of 50%, but not of

98% [43]. However, in mouse lung endothelial (MLEC)

cells, a 50% hypotonic treatment did not lead to an increase

in tension unless caveolar proteins were knocked down

[40]. Additionally, the physiological relevance of large osmo-

tic treatments in most physiological situations was

questioned in a recent study [51], and for instance a value

of 20% (measured to be insufficient to affect tension) was

found to be closer to physiological values in endothelial

cells. In any case, the magnitude of osmotic treatment or

stretch needed to increase PM tension after cells have

depleted their lipid reserves, and its relationship to the rel-

evant physiology of each cell type, remain an open question.

At the molecular level, an increase in PM tension (and

thereby membrane area) is predicted to decrease its thickness,
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Figure 1. PM response to applied mechanical stimuli. (a) Tensile stresses are applied experimentally by tether pulling, hypotonic shocks and cell stretching. In
response, PM folds flatten and exocytosis increases, buffering the increase in tension. Once lipid reserves have been used, PM tension and order increase. (b)
Compressive stresses are applied experimentally through hyper-osmotic shocks and stretch release. In response, PM folds of different shapes and sizes form (vacu-
ole-like dilations (VLDs), tubes), endocytosis increases, lipid packing defects appear in highly curved areas and phosphoinositide (PI) clusters form. (c) Shear stress
application results in increased PM fluidity, in both Lo and Ld phases. (d ) Upon encountering topographical cues, cells adapt their PM to substrate architecture, likely
triggering a temporary increase in PM tension.
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to minimize PM volume and the exposure of hydrophobic

tails to water [28]. This could directly affect transmembrane

protein conformation, decrease lipid packing and facilitate

diffusion in the lipid bilayer. This was predicted in 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers [52]

and observed upon application of an osmotic treatment in

synthetic giant unilamellar vesicles (GUVs) made of DOPC

[53]. In GUVs of complex lipid composition, bilayer tension



Box 1. Mechanical and molecular features of the plasma membrane

The cellular PM has evolved to become an extremely complex entity, bearing an asymmetric bilayer considered as a

two-dimensional fluid formed by glycerophospholipids, sphingolipids, cholesterol and carbohydrates, as well as high

amounts of transmembrane or peripheral proteins. A key PM parameter is its fluidity (also referred as its reciprocal

viscosity, which is the internal property of a fluid that offers resistance to flow [23]). Fluidity is commonly related to high

molecular mobility in the bilayer, which enables lateral diffusion of the embedded molecules [73]. Diffusion in the PM is

slower than in a pure lipid bilayer [179] because of its lateral organization, especially through the presence of peripheral

and transmembrane proteins [180], its shape and its attachment to the cytoskeleton (CSK). The complex composition of

the PM results in lateral liquid–liquid phase separation of the bilayer in liquid-disordered (Ld) and liquid-ordered (Lo)

domains, with reduced diffusion in the latter. Lo domains in the PM (also called lipid rafts) are enriched in cholesterol, sphin-

golipids and transmembrane or anchored proteins, display a higher lipid packing and dynamically assemble and

disassemble at a fast rate in domains of different sizes [181]. Of note, controversies remain about the organization and

dynamics of these domains [182].

Another fundamental PM parameter is its topography. The PM has a spontaneous curvature conferred by its composition

and asymmetry and is not a smooth bilayer [183]. It contains actively maintained folds in the form of micro- and nano-struc-

tures such as ruffles, microvilli or caveolae [13]. Among them, caveolae are small PM invaginations (20–100 nm) shaped by

caveolin and cavin proteins [102,184,185]. Caveolae are enriched in glycosphingolipids and cholesterol but are apparently

devoid of transmembrane proteins [186]. These folds are actively maintained through mechanochemical feedbacks which

have been the object of many studies [80,132,187]. The PM is also strongly coupled to the CSK through different biochemical

links. ERM proteins (ezrin, radixin and moesin proteins) [188] mediate PM attachment to the cortex, and actin filaments also

attach to caveolae [184], lipid rafts [189] and recently described asters (actin-based PM nanoclusters) [181]. Such PM–CSK inter-

action may locally impair diffusion and organize the PM as a ‘fence and picket’ bilayer [190]. The PM constantly undergoes

fusion (exocytic) and fission (endocytic) events through a variety of pathways [191], ensuring protein and lipid turnover as

well as chemical communication with the outside environment. Endocytosis decreases PM area while exocytosis increases it.
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triggered phase separation and appearance of liquid-ordered

(Lo) domains in the PM (see box 1) [53,54], which is in oppo-

sition to some theoretical predictions [55] (figure 1a(vi)).

Increased PM order was also observed upon uniaxial stretch

of vascular endothelial cells [56], coupled with a slower diffu-

sion as assessed by FRAP (fluorescence recovery after

photobleaching) measurement. Similarly, increased PM

order occurred upon application of a hypoosmotic treatment

in HeLa or MDCK cells [53]. Both effects (phase separation

and lipid unpacking) would likely affect lipid raft organiz-

ation and dynamics (see box 1). However, they would,

respectively, increase or decrease packing and diffusion in

the bilayer, and therefore the overall effect of PM tension

remains unclear.
(b) Compressive stresses
When stretch is released, or if a hyperosmotic treatment is

applied, a decrease in apparent tension has been consistently

measured [32,57,58] (figure 1b(i,ii)). Compression also leads

to PM bending [28]. In the case of hyperosmotic treatments

(or restoration of medium tonicity after an isotonic treat-

ment), dome-shaped micrometre-sized invaginations termed

vacuole-like dilations (VLDs) form passively [31–33]. VLDs

are only observed at the basal substrate-bound side of the

PM (figure 1b(iii)), and we demonstrated that they were

due to expulsion from cells of water which was not absorbed

by hydrophobic substrates such as glass coverslips [31]. If

cells are seeded on porous substrates, water can flow through

and VLDs are not observed. Upon stretch release, passive PM

folds also form, both in DOPC-supported lipid bilayers

[46,59] and in the PM of several cell types [31]

(figure 1b(vi)). These folds can be dot-shaped sub-micrometre

structures termed reservoirs, or longer tubes, depending on

the magnitude of de-stretch. Such structures locally deform
the PM, thereby accommodating the lipid excess caused by

compression. Similarly, caveolae that had been unfolded by

tensile stress re-form upon stress release [60]. Interestingly,

VLDs can also form upon stretch release on poroelastic sub-

strates, owing to water flow out of the substrate [31,61].

Thus, the PM can deform during compression, either by

accommodating excess PM in small folds, or by generating

VLDs to accommodate water effluxes. Unlike in the case of

stretch, adaptation to osmotic changes does not seem to

require the formation of PM structures to accommodate

excess PM area, likely because, particularly in flat cells,

changes in cell volume induced by osmotic treatments can

be accommodated with very small changes in PM area. Con-

sistently, another study reported that hypertonic treatments

affected cell shape and volume but not PM topology [30].

In all cases and regardless of their nature, reservoirs, tubes

and VLDs are subsequently actively re-absorbed in the PM

after formation [31]. Endocytosis also intervenes as an

additional mechanism for handling the extra lipids in the

PM [62] (figure 1b(iv)).

Analogously to tensile stresses, compressive stresses also

lead to lipid reorganization, owing to both decreased tension

and formation of highly curved structures. Experiments in

GUVs showed formation of lipid packing defects in highly

curved structures [63,64] in both Lo and Ld phases [65],

which may facilitate the insertion of hydrophobic molecules

(figure 1b(v)). In addition, high bilayer curvature can lead

to lipid sorting or changes in the lipid phases. Indeed, simu-

lations revealed correlation between lipid clustering and lipid

bilayer curvature [66]. Experimentally, pulling tubes from

GUVs led to the enrichment of unsaturated compared with

saturated lipids close to phase separation [67], short chain

lipids have a preference for highly curved bilayers in vitro
[63] and stretch release in yeast led to the formation of

invaginations enriched in phosphoinositides (PIs) [58]



Box 2. Plasma membrane tension

The tension in a lipid bilayer membrane is defined as the force per unit length acting on a cross-section of a membrane

[15,17,39]. Thus, PM tension is the in-plane tension, set by the nature of the lipids forming the bilayer and influenced by exter-

nal forces acting on the PM of a cell. PM tension arises from hydrostatic or osmotic pressures from the cytosol, the forces

exerted by the CSK and adhesion forces if the cells adheres to a substrate or other cells [15,17,39]. Whereas cell compression

and micropipette aspiration can be used to assess cell tension [14], the most accurate technique involves pulling PM tethers

(figure 1a(iii)) through atomic force microscopy, optical tweezers or magnetic tweezers [14,17], where tension is inferred

from the resistance force exerted by the tether. As extensively explained [14,17,19], the tension measured with this

set-up is an apparent tension containing the PM tension and the tension induced by adhesion to the underlying

CSK, to which the PM is strongly attached. Tether experiments do not decouple them, except in measurements per-

formed on PM areas detached from the CSK (blebs) [50]. Comparative measurements in or out of blebs have

determined that the CSK often has a higher contribution to the apparent tension than the PM, pointing out the essen-

tial role of CSK – PM coupling [17]. Furthermore, because of the very slow equilibration of PM tension at cellular scales

when coupled to the CSK, tether measurements in such a situation are a local reporter of a possibly heterogeneous

tension distribution [50]. Thus, unravelling the effects of external mechanical stimuli on the PM, decoupled from

those on the CSK, is an important challenge, which may be addressable through novel molecular fluorescence sensors

of PM tension [53,69]. Interestingly, the cell CSK generates mechanical constraints on the PM similar to those arising

from external physical forces, giving rise to comparable mechanochemical responses at the PM, with interesting impli-

cations in division, motility or spreading [3,8,14].
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(figure 1b(v)). Finally, a decrease in the PM tension through

hyperosmotic treatment has been associated with a decrease

in Lo areas in HeLa cells [53], which would be expected to

facilitate diffusion in the bilayer.
(c) Shear stresses
Different studies have consistently found a rapid increase in

PM disorder upon shear flow application (figure 1c(i)),

either by using Laurdan imaging (a membrane fluorescent

dye sensitive to local membrane packing [56]), a molecular

rotor probe [68] or an FRET-based molecular sensor [69]

(figure 1c(ii)). Although shear flows exert both a tensile

stress from the hydrostatic pressure and a shear stress on

the PM [24,70], the effect was specifically attributed to

shear stress in one of the studies [56]. In this study, the

increased disorder was coupled to increased diffusion in

both GUVs and cells. This fluidization occurs to both Ld

and Lo domains (although at different time scales [71]), and

in caveolae [72]. How shear stress leads to those effects is

intriguing, but potential mechanisms include an increase in

PM resistance to shear flow caused by Lo domains [73], or

effects in membrane tension. Indeed, shear traction on the

cell surface induced by shear flow may modify membrane

tension and its uniformity, as reported in a recent study

[69]. However, increased apparent tension has been associ-

ated with increased (rather than decreased) order, as

discussed previously in this article.
(d) Topographical cues
The topography surrounding cells also constitutes a mechan-

ical stimulus, in that the cellular PM that is at the interface

will be forced to adapt to the shape of the substrate

(figure 1d(i)). In vivo, cells are often in contact with the

ECM, a very heterogeneous material presenting changes in

topography that shape the PM [27]. To mimic rough or con-

fined topographies, cells have been seeded on

micropatterned substrates of a variety of shapes, confining

cell adhesion to restricted areas [74–76]. As expected, cells
adapt their volume and area to the patterns. Nanoneedles

[76], nanocones [77] or nanopillars [78] 50–500 nm in diam-

eter have also been engineered on a substrate before cells

were seeded on top. Electron microscopy images confirmed

that the PM wrapped around the pillars, adopting a highly

curved configuration [79] (figure 1d(ii)). Therefore, external

topography deforms the PM, and probably also induces a

temporary increase in tension [80].
3. Plasma membrane mechanical state sensors
When mechanical stimuli affect PM shape and tension, the

cell responds to restore its homeostasis [33]. Fast responses

occur to temporarily accommodate the new mechanical

state of the PM and prevent cell lysis, while adaptative

responses occur if the mechanical stimulus is repeated or

maintained [81–83]. The signalling cascades triggered by

the PM response rely on mechanotransduction events, in

which specific mechanosensing molecules sense mechani-

cally induced changes in the PM and trigger a biochemical

response. Unravelling the nature and function of these mol-

ecules is highly relevant, since they are the first sensors in

subsequent complex signalling cascades that define cell

response. In this section, we will focus on the players relevant

at short time scales, in response to the mechanical stimuli

described above. Long-term cellular adaptation of cells to

cyclic or permanent external mechanical stimuli (often abnor-

mal and leading to disease states) goes beyond the scope of

this review and we refer the reader to recent reviews on the

topic [20,81].

(a) Sensors of tensile and shear stresses
(i) Protein conformational changes: response to plasma

membrane tension
Mechanically gated channels (MGCs) are clear players in PM

mechanotransduction [84–87]. MGCs are integral membrane

proteins that undergo a conformational change in response to

an area expansion of the PM (figure 2a). They are activated by
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an increase in tension due to PM stretch or suction (usually

assessed through micropipette aspiration in electrophysi-

ology assays), osmotic treatments and flow-induced shear

stress [84,88,89]. In the case of shear stress, it is unclear

whether the MGC responds to the shear stress itself, or to
the hydrostatic pressure stretching the cellular PM. The

first, bacterial channels (large conductance mechanosensitive

ion channel, McsL) to be discovered have been extensively

studied. These channels are believed to undergo a confor-

mational change triggered by increased PM tension and
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related PM area expansion [90] (‘force from lipid’ concept

[91,92]) but also possibly by the induced changes in PM

thickness [93]. MscL channels are believed to open slightly

before the PM reaches the rupture tension under area

expansion [15,22], although this assumption may not be

generalizable to the very different eukaryotic membranes.

Eukaryotic PM channels include TRP (transient receptor

potential) channels, potassium channels and Piezo channels

[84,92,94], which have recently raised a lot of interest

[95,95,96]. Their activation may be due generally to changes

in PM tension, but also changes in curvature [87], and the

tensions needed to activate them may not need to be as

close to the rupture tension as previously believed

[86,88,97]. Importantly, PM tensions include CSK contri-

butions (see box 2), and therefore tensions needed to

activate MGCs will be higher in PM regions attached to the

CSK than in detached regions (blebs) or in proteo-liposomes

lacking CSK [95,98]. Interestingly, whereas the important

factor in PMs under stretch is generally considered to be

bilayer expansion, changes in bilayer thickness may induce

conformational changes by introducing a hydrophobic mis-

match [28], and even clustering effects [99]. This may lead

to a broader range of transmembrane proteins sensitive to

PM tensile stress.

(ii) Protein conformational changes: response to fluidity
Shear stress in the PM has been linked to G protein activation,

by triggering the required conformational change. Application

of a shear flow resulting in increased PM fluidity seems to

allow higher G protein rotational mobility, which facilitates

the GDP to GTP exchange and subsequent activation [70]

(figure 2a). Shear stress also induced phosphorylation of

VEGFRs (vascular endothelial growth factor receptors) but

the actual mechanism still needs to be unravelled [56].

(iii) Protein relocation: caveolae
Upon increased PM tension, caveolae disassemble and flat-

ten, reducing and thereby buffering PM tension changes

[40]. A primary consequence of caveolae flattening is to pre-

vent an increase in PM tension upon stress. In terms of

inducing downstream responses, PM tension buffering by

caveolae could prevent MGC activation, exerting thus an

indirect mechanotransduction role [100]. Beside this, caveolae

disassembly facilitates the diffusion of some of their proteins

(figure 2b). Indeed, upon application of hypo-osmotic treat-

ment inducing a 20% swelling, an increase in non-caveolar

CAV1 (caveolin-1) and a higher population of freely diffusing

CAV1 have been measured in MLEC cells [40]. Subjecting

myoblasts to a single fast stretch (20% uniaxial) released the

binding of CAV3 (caveolin-3) to SRC (proto-oncogene tyro-

sine-protein kinase SRC), enhancing SRC activation [60]. In

addition to caveolin release from caveolae to the bulk PM,

cavin-1 (caveolae-associated protein 1) can also be released

into the cytoplasm [40], and could subsequently interact

with signalling effectors. Another protein, EHD2 (EH-

domain-containing protein 2), has been recently shown to

be released as a consequence of caveolae unfolding, and sub-

sequently translocated to the nucleus [101]. Lipid trafficking

also seems to be modified by caveolae disassembly. Interest-

ingly, a decrease in sphingolipid packing was also measured

upon caveolae flattening [60], resulting in an accelerated turn-

over of glycosphingolipid, which might insert more easily
into the unpacked flattened caveolae. Lastly, caveolae are

actively refolded upon stretch release [40] (in an ATP- and

actin-dependent manner) but this active mechanism has not

been elucidated in detail. However, it may involve a sen-

sing role of a BAR (Bin/amphiphysin/Rvs) protein

domain (see discussion on BAR-domain proteins below),

since PACSIN 2 (protein kinase C and casein kinase sub-

strate in neurons protein 2), which contains a BAR

domain, may participate in caveolae biogenesis [102].

PACSIN 2 could thereby be an initial sensor of bilayer ten-

sion decrease, as well as a linker to actin through its SH3

(Src homology 3) domain [102].

(iv) Protein relocation: unfolding of other invaginations
Upon mechanical stretch (micropipette aspiration of a PM

patch at 5 kPa), a redistribution of Slm (phosphatidylinositol

4,5-bisphosphate-binding protein Slm) proteins between dis-

tinct PM domains has been observed in eisosomes (folded

structures) from yeast [103]. This led to activation of

TORC2 (target of rapamicin kinase complex 2) and sphingo-

lipid metabolism regulation. A similar mechanism was

described recently in neutrophils [36]. Application of a tensile

stress (from either hypo-osmotic treatment or a 40% radial

stretch) possibly unfolded PM invaginations leading to

PLD2 (phospholipase D2) release (figure 2b), subsequently

activating mTORC2 (mammalian TORC2) and limiting actin

network assembly. Another example is that of the unfolding

of PM ruffles, where MARCKS (myristoylated alanine-rich C-

kinase substrate) proteins localize and supposedly capture

PIs. Ruffle unfolding may relocate MARCKS proteins and

consequently release PIs in the PM [104]. Finally, unbinding

of BAR proteins (extensively discussed in the next section)

may occur upon flattening of PM invaginations [11,14,105,106]

(figure 2b). If accompanied by an increase in PM tension,

theoretical predictions suggest that BAR protein oligomeriza-

tion would become unfavourable [107]. All these phenomena

may potentially be enhanced by phase separation associated

with increased PM tension, leading to relocation of

embedded or anchored proteins.
4. Sensors of compressive stress and topography
(a) Curvature sensing: Bin/amphiphysin/Rvs proteins
PM deformations generated upon compression, or because of

external topography, can lead to the formation of extremely

curved structures that can be detected by curvature-sensing

proteins (CSPs; figure 2c). Among them, BAR-domain pro-

teins are particularly relevant. Unravelling the crystal

structure of AMPH (amphiphysin) [108] as a domain forming

a banana-shaped arrangement upon dimerization, the so-

called N-BAR domain, shed light on the way how such

domains would act as scaffolds on top of curved lipid bilayers.

Thereafter, N-BAR domains have been described as having a

high intrinsic curvature, capable of sensing and inducing

PM curvature. The family of BAR-domain-bearing proteins

expanded to include different intrinsic curvatures, notably

when crystal structures of F-BAR (Fes/CIP4 homology-BAR)

domains (with a shallower degree of curvature than N-BAR

domains) [109], and subsequently I-BAR (inverse-BAR)

domains [110] (with an inverted curvature relative to N-BAR

domains) followed. These domains bind the acidic PM with

the positive charges of the BAR domain facing the curved PM.
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(b) Curvature sensing: proteins with bilayer insertion
motifs

In parallel, amphipathic helix motifs are another type of curva-

ture-sensing domain (figure 2c). These helices might be

structured in the soluble form of the protein, or be disordered

domains folding upon interaction with the lipid bilayer. As

has been discovered for ARFGAP1 (ADP-ribosylation factor

GTPase-activating protein 1) [111], these helices screen lipid

packing defects, where they can easily be buried. Curved

areas of the bilayer generate more transient defects than

planar regions, giving these helices curvature-sensing capa-

bilities [112]. The helix of ARFGAP1 has given the name to a

family of motifs, ALPS (amphipathic lipid packing sensors),

but the mechanisms used by ALPS have since then been

expanded to a wide range of amphipathic or hydrophobic

motifs [113]. Alpha-synuclein and proteins with hydrophobic

anchors (e.g. lipidated N-terminal domains) also sense lipid

packing defects [114,115], and some reports suggest that

many proteins containing such motifs have curvature-sensing

properties [63,115]. However, there might be rules restricting

curvature-sensing capabilities to some hydrophobic motifs

with specific properties [112], or setting the sensed curvature

size range [114]. N-BAR proteins also possess ALPS motifs,

opening the debate about which motifs in the BAR super-

family of proteins are in fact sensing PM curvature [116].

Several studies found that ALPS motifs, rather than the

BAR domains [117], were responsible for curvature sensing

in AMPH and some F- and I-BAR proteins [118–120].

Some studies therefore claim that the sensing motif could

be the ALPS motif only, with the driving force for its inter-

action with the PM being the density of defects rather than

affinity [120]. How F-BARs or I-BARs that do not contain

ALPS motifs would sense curvature is unclear, but crowding

effects [121] or effects from the surrounding protein back-

bone [122] or the large disordered domains found in many

of these proteins [123,124] could be involved. Most probably,

the curvature sensing event is a cooperative process to which

each of these domains contributes [125].

(c) Sensing versus inducing curvature

If present at sufficiently high concentrations (as is often the case

in assays in vitro or in overexpression conditions), CSPs not

only sense, but also induce curvature [112,116,126]. Whether

sensing and inducing are always mediated by the same phys-

ical mechanisms remains unclear, but theoretical models [80]

suggest that curvature sensing and generation are two manifes-

tations of a fundamental coupling between the bilayer free

energy, the chemical potential of proteins and curvature.

According to this view, sensing and generation would occur

concomitantly in general and can only be uncoupled in situ-

ations such as dilute or highly crowded protein coverage or

fixed membrane shape. Supporting this suggestion, AMPH

has been shown to sense and generate curvature [126]. Accord-

ingly, the curvature-inducing effect, analysed mainly via

vesicle tubulation assays of GUVs in vitro [108], is often con-

sidered as proof that the proteins are also sensors [80]. In

cells, CSPs organize and remodel the PM [127], and most

studies focus on how these proteins actively induce curvature

to optimize cellular functions such as endocytosis [128]. To

decouple inducing from sensing effects, in vitro assays have

been developed to study the sensing mechanisms only. These
include assays to analyse the sensing of tense liposomes of differ-

ent curvatures [119,120], lipid tether assays [126,129] and

techniques such as the use of wavy lipid bilayers [130] or mem-

brane-tubes extruded from a supported lipid bilayer [131]. It is

also important to note that it is more challenging to study

convex than concave curved proteins, although the former can

be achieved by using lipid tethers [132]. Additionally, though

many simulations have been developed to describe CSP bilayer

shaping mechanisms [132,133], some also specifically describe

sensing mechanisms [134].

In cells, CSPs may also trigger transduction to a biochemi-

cal signalling cascade. CSPs usually possess additional

domains that recruit other partners, and convey a biochemi-

cal signal in the cell. BAR proteins localize to curved spots

in the cellular PM [108], but this does not enable us to dis-

tinguish whether they sense curved PM domains or if they

are recruited by another means (via lipid binding for

example) and subsequently shape the PM, especially when

overexpression of BAR proteins (known to induce PM

tubule formation [127]) is used. The capacity of curved PM

areas to recruit BAR proteins and induce mechanotransduc-

tion has mostly been found in cellular processes where PM

curvature is pre-existing, and not generated in response to

external forces. For instance, in CME (clathrin-mediated

endocytosis), the endocytic bud (generated by CSPs them-

selves) possibly recruits other CSP participating in the

endocytic event [135], although it is not clear when and

whether curvature or other signals recruit these proteins

[136]. During filipodia formation and retraction, invagina-

tions created by PM tension release recruit the F-BAR

protein FBP17 (formin-binding protein 17) [11]. Similarly,

ArhGAP44 (Rho GTPase-activating protein 44), an N-BAR

protein, colocalizes to nanoscale deformations in neurons,

inhibiting filipodia formation/exploration [137]. The N-BAR

protein PICK1 (protein interacting with C kinase-1) is

recruited to nanovesicles (insulin-containing granules)

because of their high curvature [138]. Other than BAR pro-

teins, ARFGAP1, which contains an ALPS motif, is

recruited to PM deformations induced by coat protein

complex COPI [111].
(d) Curvature sensing of deformations induced by
extracellular forces

Other than responding to pre-existing PM curved areas, an

exciting possibility is that curvature sensing is also important

in the context of PM reshaping by extracellular stresses. For

instance, CSPs recruit to mechanically induced curved struc-

tures in bacteria [139], and to nanocone-shaped PM

invaginations created by substrate topography [78,79]. In

the study by Zhao et al. [78], engineering substrate topogra-

phy through nanopillars of different sizes and shapes led

to recruitment of CSPs of different types, from N-BAR to

I-BAR. Additionally, topography-induced CSP recruitment

triggered mechanotransduction by enhancing endocytosis,

via the recruitment of endocytic proteins such as clathrin

and DNM2 (dynamin-2). Inspired by this method, a later

study [140] used fluorescent N-BAR overexpression at low

concentration to detect locations of cellular PM invaginations.

As suggested by these works, endocytosis seems to be a

major cell response downstream of PM mechanosensing.

Recently, the CLIC-GEEC (clathrin-independent carrier and
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GPI-AP enriched endosomal compartment) endocytic path-

way has been demonstrated to respond to mechanical

tension [62]. The pathway found is governed by VCL

(vinculin) acting upstream of GBF1 (Golgi-specific brefeldin

A-resistance guanine nucleotide exchange factor 1), but the

actual molecular sensor of the change in tension remains

unknown. Two BAR proteins involved in CLIC-GEEC

endocytosis and acting downstream of GBF1/ARF1

(ADP-ribosylation factor 1), namely IRSP53 (insulin receptor

substrate protein, also known as BAIAP2) and PICK1 [141],

could potentially play a role. In different work, a burst in endo-

cytosis mediated by the BAR protein GTPase regulator GRAF1

(also known as ARHGAP26, Rho GTPase-activating protein 26)

was reported upon restoring medium tonicity after a harsh

hypotonic treatment [105], but the driving factor of GRAF1

recruitment remained unclear. The treatment also led to for-

mation of VLD and subsequent recruitment of GRAF1.

However, whether the curvature of micrometre-sized VLDs

matches the sensing capabilities of GRAF1 is unclear. Interest-

ingly, endocytosis in both studies is mediated by accumulation

of myristoylated ARF proteins. In those proteins and similarly

to ALPS motifs, the myristoylated hydrophobic anchor could

insert into the PM and sense curvature.

Unrelated to endocytosis, the F-BAR RhoGAP protein Spv1

(spermathecal physiology variant) also has an interesting

mechanosensing role in egg fertilization in Caenorhabditis ele-
gans [106]. In the relaxed spermatheca, Spv1 localizes to the

apical PM, inhibiting Rho1/RhoA activity. The entry of

oocytes into the spermatheca stretches spermatheca cells, prob-

ably unfolding and flattening Spv1-containing microvilli, and

leading to Spv1 detachment from the PM. Rho1/RhoA activity

is then promoted, inducing cell contraction and expulsion of

the fertilized embryo to the uterus. In this study, it is not

clear whether Spv1 is recruited to PM microvilli through curva-

ture sensing or another mechanism, but it seems clear that

tension increase and subsequent microvilli flattening lead to

Spv1 detachment, triggering signalling [106]. Other than

these examples, further curvature-sensing events and sub-

sequent mechanochemical responses likely remain to be

unravelled. For instance, the reservoirs we observed upon cel-

lular destretch [31] might be regions for curvature-sensing-

mediated mechanotransduction.

(e) Sensing protein relocation: response to phase
changes

Upon decreasing PM tension, PIs cluster in invaginated PM

structures in yeast [58], possibly due to either lipid sorting

or changes in lipid phases. PI clustering led to binding of

the PH (pleckstrin homology) domain of TORC2 to the PI-

enriched PM, and consequently drove TORC2 recruitment

and inactivation (figure 2d ). Further, the enrichment of

lipid packing defects in curved Lo domains upon com-

pression could affect the location of anchored proteins. For

instance, N-RAS (GTPase NRas), which targets lipid packing

defects, shows preference for Ld domains on flat bilayers, but

for Lo domains in highly curved liposomes [65].
5. Theoretical modelling
Much of the current understanding of the PM as a mechano-

chemical transducer reviewed here is the result of close
interaction between experiments and theory. Theoretical

models and simulations provide a framework to rationalize

and predict both (1) how mechanical stimuli affect the PM,

and (2) the complex ensuing PM mechanochemistry. Regard-

ing (1), free-standing membranes are well described by

classical Helfrich-like models, which consider the membrane

as a continuum surface whose stable configurations minimize

bending energy. This bending energy depends on the curva-

ture of the surface, and is subject to constraints such as fixed

volume or area (see also box 3). The mechanics of membranes

adhered to deformable or active networks, however, is richer

and far less explored. Continuum models have shown how

the interaction between the PM and the actin CSK controls

PM tension in pressurized blebbing cells [37], in motile cells

[142] or during localized membrane perturbations [50].

These works highlight how friction or heterogeneous attach-

ment to the CSK leads to significant tension gradients.

Continuum simulations have also established the mechan-

isms by which membranes confined to deformable and

possibly poroelastic substrates cope with excess area or inter-

stitial fluid [59,61]. The PM–CSK interaction described by

these continuum models ultimately depends on an intimate

and dynamical coupling over multiple length scales

[143,144], which remains to be fully understood. Turning to

membrane mechanochemistry, phase separation in model

membranes has been successfully modelled using molecular

dynamics (MD) [145] and continuum thermodynamic

models, which have also described the coupling between

shape and composition [146,147]. The coupling between

phase behaviour and tension, however, remains controversial

since theoretical models predict mixing upon tension increase

[55], whereas experiments suggest this and the opposite be-

haviour [54,148]. Furthermore, theoretical models having

focused on model membranes; their applicability to the more

heterogeneous and dynamical PM is unclear.

Much of membrane mechanochemistry hinges on the

interaction between membranes and proteins [132]. To cap-

ture the specificity of these interactions, all-atom MD

simulations have identified molecular mechanisms behind

curvature generation [149] and maintenance [150] by BAR

domains, or the gating of mechanosensitive channels by

membrane tension [151]. At the expense of molecular speci-

ficity, coarse-grained MD simulations [152] have been able

to reach micrometre-sized domains during microseconds to

understand curvature sensing and generation by large

numbers of isotropic [153] or banana-shaped proteins [154],

and the tension-dependence of such processes [107].

These approaches are complementary to hybrid continuum/

discrete models, which treat the membrane as a continuum

elastic surface but treat individual proteins as discrete objects.

Such hybrid models have examined how PM tension and

elasticity control mechanosensitive channels [155], or

protein-mediated interactions between curving proteins of

different shapes [156,157]. They have also shown that the col-

lective behaviour of many channels [158] or curving proteins

[157,159] is fundamentally multibody, highlighting a funda-

mental gap between models for individual proteins and

mean-field models treating proteins as concentrations [80].

The latter models couple Helfrich-like bending energies, in

which the spontaneous curvature of the membrane depends

on the concentration of curving proteins, with mean-field

models for the free energy of the protein gas. Such mean-

field models (such as that by Flory [160] and Huggins



Box 3. Box 3. Theoretical definitions.

(a) Continuum models
Continuum models treat the PM as a continuous surface rather than resolving individual lipid molecules. This results in a

mean field description of the response of the PM.

(b) Continuum Helfrich model
This model treats the PM as a surface whose local area cannot be easily changed (inextensibility), which can shear in-plane

without storing elastic energy because it is fluid, and which stores elastic energy when it is bent. Mathematically, this leads to

an energy function that penalizes deviations between the local curvature of the surface and a spontaneous curvature encod-

ing the bilayer asymmetry. Helfrich conceived of such a model in 1973 [192].

(c) Flory–Huggins model
This model describes the free energy of mixtures of fluids or gases. One can imagine a simplest mixture to be binary. If the

mixture consists of repelling fluid particles, a low-energy state can be devised in which particles will segregate into distinct

pure phases. At finite temperature, however, the mixture will have a tendency to maximize entropy, which favours a homo-

geneous mixture. In general, these two mechanisms will compete. Since the entropic response depends on the temperature,

one can envision a critical temperature for repelling fluid mixtures beyond which the mixture would be homogeneous, while

the phases are separated for temperatures below the critical temperature. Such a model was conceived by Flory and Huggins

in the 1940s [160,161] to describe the behaviour of a mixture of polymers and has hence been used to predict the response of

various kinds of mixtures. When applied to protein gases on fluid membranes, curvature modifies the energy required to

place a protein molecule in a given membrane location (its chemical potential), which can lead to protein-rich curved

domains in conditions where a planar membrane would remain homogeneously mixed.
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[161]) account for the mixing entropy of the proteins in the

membrane, and the self-interaction between proteins (see

also box 3). Such thermodynamic continuum models pro-

vide a self-consistent description of curvature sensing,

sorting [126] and generation, as well as its coupling with

membrane tension [162]. Strikingly, despite the fact that

these phenomena can be highly dynamical and concomi-

tant, current theories have focused on equilibrium, or

considered restricted dynamics with either fixed shape

[163] or fixed protein coverage [164]. Looking forward, a

fundamental challenge in the field is to connect models

capturing protein–lipid specificity and membrane mechan-

ochemistry at a mesoscale.
6. Concluding remarks
Though external mechanical forces play a crucial role in cell

fate, the role of mechanochemical feedback mediated by the

cellular PM remains largely unexplored. To further advance

in this promising area, several aspects need to be considered.

First, PM homeostasis is highly cell-dependent, and efforts

need to be made to mimic physiological forces as closely as

possible. Second, the respective effects of the PM and the

underlying CSK need to be further clarified, as both can be

sensitive to similar stimuli and can modify each other. For

instance, a protein recruited to focal adhesions, Vinculin,

was recently described as an early player in the endocytosis

response triggered by PM compression due to stretch release

[62]. Relatedly, changes in the PM order induced by cell

shape have been associated with CSK reorganization [75].

In this regard, recently described molecular probes of PM

tension [53] are promising tools to distinguish between

these effects. Third, the respective roles and mechanisms of

curvature sensing and inducing need to be further clarified.

If all proteins bearing a hydrophobic anchor can sense curva-

ture, this implies a future important broadening of the field,
especially if a combined effect with phase transition occurs

as with N-Ras recruitment to Lo domains in curved lipo-

somes. Fourth, this review also highlights the interplay

between tension and curvature sensing, and both seem to

play a role in biochemical sensing mechanisms. In addition,

external forces exerted on the PM trigger molecular

rearrangements such as phase changes or lipid sorting, poss-

ibly affecting directly many signalling proteins [165]. Finally,

many CSPs have been explored at the nanoscale, but how

cells sense curvature at the microscale remains unclear

[166]. Upon cellular compression, structures of very different

sizes can be generated [31], and may induce very different

curvature-sensing mechanisms. To conclude, mechanotrans-

duction by the cellular PM is still an emerging field, which

could even have implications in other cellular membranes

[167], including the nuclear membrane [168,169]. Here, we

explored the short-term mechanotransduction events

involved. Interestingly, several of the molecular players dis-

cussed (BAR proteins [170–172], TORC2 [173], MGCs [174]

Arf1 [175,176] and caveolae [177,178]) are involved in differ-

ent cancer scenarios, potentially through altered mechanical

responses. However, how this occurs, and how it is linked

to long-term cellular response to mechanical signals, remains

as an open question and is likely to be an exciting area of

research.
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14. Diz-Muñoz A, Fletcher DA, Weiner OD. 2013 Use the
force: membrane tension as an organizer of cell
shape and motility. Trends Cell Biol. 23, 47 – 53.
(doi:10.1016/j.tcb.2012.09.006)

15. Clark AG, Wartlick O, Salbreux G, Paluch EK. 2014
Stresses at the cell surface during animal cell
morphogenesis. Curr. Biol. 24, R484 – R494. (doi:10.
1016/j.cub.2014.03.059)

16. Sens P, Plastino J. 2015 Membrane tension and
cytoskeleton organization in cell motility. J. Phys.
Condens. Matter 27, 273103. (doi:10.1088/0953-
8984/27/27/273103)

17. Pontes B, Monzo P, Gauthier NC. 2017 Membrane
tension: a challenging but universal physical
parameter in cell biology. Semin. Cell Dev. Biol. 71,
30 – 41. (doi:10.1016/j.semcdb.2017.08.030)

18. Saha S, Nagy TL, Weiner OD. 2018 Joining forces:
crosstalk between biochemical signalling and
physical forces orchestrates cellular polarity and
dynamics. Phil. Trans. R. Soc. B 373, 20170145.
(doi:10.1098/rstb.2017.0145)
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