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ABSTRACT  

Real-time process monitoring is still relatively scarce but is fundamental to provide in-situ 

information about different chemical and electrochemical processes. Particularly, electrochemical 

filtration has received growing attention in recent years due to the wide range of applications in 

which it can be successfully employed. Electrochemical removal is considered as an attractive 

methodology for the treatment of wastewater due to its efficiency in the removal of a huge number 

of contaminants. In this work, the development of a new device based on the use of UV-vis bare 

optical fibers in long optical pathway configuration allows us to monitor continuously the 

electrochemical degradation process during the filtration of different compounds. 

Spectroelectrochemistry additionally supplies quantitative information allowing us to calculate the 

efficiency of the electrochemical filtration process. The material selected to fabricate the 

electrochemical filter was single-walled carbon nanotubes that display not only high physical and 

chemical stability, but also high electrical conductivity. Therefore, the combination of 

electrochemical degradation methods, free-standing single-walled carbon nanotube filters and 

operando spectroelectrochemical techniques makes this outstanding device very interesting in the 

study of different molecules. As proof of concept, three different systems have been studied to 

validate the cell and demonstrate the good performance of the spectroelectrochemical device: o-

tolidine (reference system), indigo carmine (organic dye), and 4-nitrophenol (hazardous pollutant). 
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1. Introduction 

Electrochemical detection and treatment of wastewater is an overwhelming subject that has 

received growing attention from the scientific community in a wide variety of fields, such as 

chemical, petrochemical, pharmaceutical, textile, tannery, food industry, agronomic, landfill 

leachate and urban wastewater [1–15]. Electrochemical filtration enables the removal of 

contaminants by adsorptive filtration, as well as electrochemical degradation of different 

molecules under a suitable applied potential. The versatility shown by these methods makes them 

very useful in the degradation of a wide range of contaminants. The development of new devices 

for in-situ real-time monitoring of electrochemical filtration processes allows to study and control 

the different kind of phenomena involved for a huge variety of systems [16–20]. In-situ 

spectroelectrochemical monitoring provides dynamic spectroscopic and electrochemical 

information at the same time that the redox reaction takes place. This is the main advantage respect 

to ex-situ methods that require taking one or more samples and analyzing it or them using external 

instruments. The implementation of real-time monitoring devices in agreement with the specific 

demands of the process provides direct information about all of these processes. These new devices 

will supply unique and outstanding possibilities very useful for good process control. 

Although the interesting properties of carbon nanotube (CNT) filters are well-known [21–28], 

the simultaneous combination of this material with spectroelectrochemical techniques are notably 

absent in the literature for evaluation of filtration processes. Spectroelectrochemistry is a 

multiresponse technique that provides simultaneous electrochemical and spectroscopic 

information in a unique experiment. It shows the advantages of both techniques and offers very 

unique possibilities in the study of a huge variety of chemical systems [29–32]. 
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Spectroelectrochemical measurements has allowed the monitoring of a wide range of systems, 

fundamental aspects as reaction mechanisms, or quantitative analysis [33–38].  

The main objective of this work is the in-situ monitoring of the electrochemical treatment of 

different compounds using a new UV-vis absorption spectroelectrochemical filtration device, 

showing the capabilities and advantages of this novel setup in the study of the behavior of the 

designed electrochemical filter. We have analyzed three electrochemical systems to illustrate, in a 

general way, the good performance of this UV-vis absorption spectroelectrochemical filtration 

device. Firstly, o-tolidine (o-tol) has been chosen as reference system to validate the operation of 

the new spectroelectrochemical filtration setup. O-tol is a well-known reference system for UV-

vis absorption spectroelectrochemistry that exhibits a fast two electron transfer, and is widely used 

because it has a large molar absorption coefficient in water [39,40]. The second system studied 

was indigo carmine (IC), an organic dye employed in different fields not only as a dye in the 

pharmaceutical and food industry but also as redox indicator and mediator in biological systems 

[41,42]. Finally, the new spectroelectrochemical filtration device was employed to study the 

electrochemical reduction of 4-nitrophenol (4-NP). For the last decades, 4-nitrophenol has become 

one the most used compounds in the fabrication of drugs, pesticides, or leather [43–45]. However, 

4-NP is a hazardous pollutant for humans, plants and animals, and in this way, it is important to 

eliminate this compound from the wastewater, atmosphere and ground because is one of the 

nitrophenols in the U. S. Environmental Protection Agency List of Priority Pollutants [46,47]. 

Furthermore, not only the use of 4-NP has increased in the industry during the last years, but also 

in other areas such as, for example, in agriculture, medical applications and domestic activities 

[48–50]. Although different methods can be followed to get rid of 4-NP of the industrial 

wastewater, our interest is focused on the electrochemical removal due to the simplicity to 
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automatize this methodology, its high level of efficiency and its great compatibility with the 

environment [51,52]. The combination of electrochemical and UV-vis absorption spectroscopy 

techniques has allowed monitoring the degradation of 4-NP from an aqueous solution. 

2. Materials and methods 

2.1. Reagents and materials  

Ammonium hexafluorophosphate (NH4PF6, Fluka), o-tolidine (o-tol, Sigma-Aldrich), acetic 

acid (HAc, VWR), perchloric acid (HClO4, 60%, Panreac), indigo carmine (IC, Acros Organics), 

sulfuric acid (H2SO4, 95-97%, Merck), 4-nitrophenol (4-NP, Sigma-Aldrich) and sodium sulfate 

(Na2SO4, Merck) were of analytical grade. Aqueous solutions were freshly prepared, or stored at 

4 ºC, using ultrapure water (18.2 MΩ cm resistivity at 25 °C, Milli-Q Direct 8, Millipore). 

Single-walled carbon nanotubes (SWCNTs, Sigma-Aldrich), 1,2-dichloroethane (DCE, 99.8% 

for HPLC, Acros Organics), acetone (VWR), nitrocellulose membrane (filter pore size 0.45 μm, 

Millipore), poly(ethylene terephthalate) (PET, 175 mm thick, HiFi Industrial Film), conductive 

silver paint (Electrolube) for ohmic contacts, and a high temp masking tape (Kapton) were used to 

fabricate the free-standing single-walled carbon nanotube (FS-SWCNT) filters. 

2.2. Instrumentation  

All electrochemical measurements were carried out at room temperature using a 

potentiostat/galvanostat AUTOLAB PGSTAT 302N electrochemical system. A standard three-

electrode cell was used in all experiments, consisting of a FS-SWCNT electrode as working 

electrode, a Pt wire as counter electrode and a homemade Ag/AgCl/KCl (3 M) as reference 

electrode.  
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UV-vis absorption spectroelectrochemistry measurements in parallel configuration (the light 

beam passes parallel and close to the electrode surface) [53] were performed using a QE65000 

spectrometer (Ocean Optics). UV-vis spectrometer was properly synchronized with the 

potentiostat. The light beam, supplied by a light source (Halogen HL-2000, Avantes), was 

conducted to the spectroelectrochemical cell by a 100 m bare optical fiber (Ocean Optics), and 

collected from the spectroelectrochemical cell to the spectrometer by a 100 m bare optical fiber 

(Ocean Optics). 

Raman spectra were obtained using a Confocal Raman Voyage (BWTEK). A 20× objective 

was used, with an excitation line at 532 nm and a power of 5 mW. Raman spectra were collected 

by a CCD array, with a spectral resolution of 3.8 cm-1.  

Morphology was studied using a scanning electron microscope Field Emission JSM-7100F 

Analytical Microscopy. 

Atomic-force microscopy (AFM) measurements were carried out using a Alpha300R - 

Alpha300A AFM WITec. 

2.3. Fabrication of free-standing carbon nanotube filters  

The methodology employed in the preparation of FS-SWCNT filters is based on previous works 

[37,54,55]. Briefly, it consists of seven consecutive steps: (1) Preparation of a homogeneous 

dispersion of SWCNTs in DCE (5 mg/L). Homogeneous dispersion is achieved using a CY-500 

tip-sonicator (Optic ivymen System), applying a power of 250 W for 10 min and reducing the 

power to 100 W for another 5 min. (2) Filtration of 3 mL of the SWCNT dispersion under vacuum 

using a nitrocellulose filter. (3) Transference of the SWCNT film to a poly(ethylene terephthalate) 

(PET) sheet with a hole of 2 mm diameter applying a gentle pressure around the edges of the 
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nitrocellulose filter to improve adhesion of the SWCNT film to the PET. (4) Dissolution of the 

nitrocellulose filter by slow addition of acetone and rinsing of the SWCNT film with acetone for 

15 min to ensure the complete removal of the filter. (5) Drying at room temperature of the SWCNT 

film. (6) An ohmic contact is made using a conductive silver paint that is dried in an oven at 75 °C 

for 30 min. (7) Isolation of the the ohmic contact with a high temperature masking tape. 

2.4. Characterization of the free-standing SWCNT electrodes. 

Optimization of FS-SWCNT films was performed in a previous work [53]. The electrodes 

prepared by filtering 3 mL of the SWCNT dispersion display the best features for 

spectroelectrochemical purposes. Characterization of FS-SWCNT electrodes was performed by 

Raman spectroscopy. Fig. S1 shows the characteristic Raman spectrum of the SWCNTs, in which 

mainly four bands are observed: the radial breathing mode (150-250 cm-1, RBM), the disorder 

induced mode (1250-1450 cm-1, D), the tangential displacement mode (1550-1600 cm-1, G) and 

the high frequency two phonon mode (2500-2800 cm-1, G’) [47–52]. 

SEM image (Fig. S2) shows that FS-SWCNT film is completely uniform. As was establish in a 

previous work [53], the flexibility of this kind of films is an important property, FS-SWCNT 

electrodes remain intact even when the PET sheet is completely bent. Thickness of the 3 mL film 

was determined by AFM, obtaining a value of 570 ± 30 nm. Optical transparency of the film was 

evaluated by measuring the transmittance at 550 nm, obtaining a transmittance value of 18 ± 2 %. 

2.5. Electrochemical hydrophilization of free-standing carbon nanotube films  

Although different methods can be followed to obtain hydrophilic carbon nanostructures [56,57] 

our interest is focused on the electrochemical route because this procedure is cleaner and faster 
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[58–60]. Typically, the oxidation of carbon nanotubes introduces functional groups (hydroxyl, 

carbonyl, carboxyl or epoxide groups) into the molecular structure, providing hydrophilic 

properties to carbon structures [61]. The electrochemical functionalization was performed in 0.1 

M NH4PF6 by chronoamperometry applying 0.00 V, 10 s; +1.20 V, 20 s; 0.00 V, 10 s; +1.40 V, 20 

s; 0.00 V, 10 s; +1.60 V, 20 s; 0.00 V, 10 s and +1.80 V, 20 s (Fig. 1a). Using this multipulse-

potential sequence, SWCNTs are gradually oxidized until its pristine hydrophobic character turns 

to a hydrophilic one. Hydrophobic/hydrophilic character of FS-SWCNT filters was demonstrated 

before and after the electrochemical functionalization. As can be observed in Fig. 1b, FS-SWCNT 

films show hydrophobic properties, and the solution cannot pass through the filter and drops are 

not observed on the bottom side of the filter. On the other hand, after the electrochemical 

functionalization (Fig. 1c) the solution passes from the upper side to the bottom side of the FS-

SWCNT filter after 10 seconds approximately. Fig. 1 demonstrates that the electrochemical 

functionalization is a suitable route to obtain hydrophilic SWCNTs following an easy, clean, quick, 

cheap, and reproducible methodology. Moreover, instrumentation required is not complicated, 

which makes this method a very useful alternative to the chemical route. 

 

2.6. Spectroelectrochemical setup  

The setup proposed in this work (Fig. 2 and Fig. S3 in Supporting Information) involves a FS-

SWCNT working electrode (WE), a homemade Ag/AgCl/KCl 3M reference electrode (RE) and a 

Pt wire as counter electrode (CE). A cylindrical vessel to contain the initial solution is fixed on the 

upper side of the WE. Electrochemical oxidation/reduction reaction, depending on the system 

studied, was followed by UV-vis absorption spectroelectrochemistry. For a better monitoring of 
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the processes occurring during the electrochemical reaction, spectroelectrochemical measurements 

were carried out in parallel arrangement. For this purpose, two bare optical fibers are aligned 

opposite one another and fixed on the bottom side of the FS-SWCNT membrane to record the 

spectral changes. Therefore, one 100 µm bare optical fiber (F1) leads the light beam from the light 

source and is accurately aligned with a second 100 µm bare optical fiber (F2) that collects the 

transmitted light beam to the spectrometer. The light beam in parallel configuration passes parallel 

and close to the electrode surface, sampling only the first 100 µm of solution adjacent to the FS-

SWCNT film. The two 100 µm bare optical fibers are properly fixed on the bottom side of the FS-

SWCNT filter at a known distance. Optical pathway lengths were set between 0.04-0.10 cm 

depending on the experiment. 

Furthermore, spectroelectrochemical information not only provides qualitative information 

but also quantitative information that can be used to calculate the efficiency of the degradation 

process using FS-SWCNT electrochemical filters. In all experiments, the spectrum of the initial 

solution with the electroactive compound was taken as reference spectrum before starting the 

cyclic voltammetry. Theoretical maximum absorbance value (when 100% of the initial compound 

is converted into the final product) is calculated according to the Lambert-Beer’s law:  

Atheoretical =  · b · C                 (eq. 1) 

where  is the molar absorption coefficient, b is the optical pathway length (determined by the 

distance between the two bare optical fibers), and C is the electroactive compound concentration. 

Experimental maximum absorbance value is extracted from the UV-vis spectra and the efficiency 

(r) of this FS-SWCNT filter is calculated as: 

𝑟 =  
𝐴𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝐴𝑡ℎ𝑒𝑜𝑟𝑒𝑡ℎ𝑖𝑐𝑎𝑙
×  100      (eq. 2) 
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However, the molar absorption coefficient is not always known and the efficiency of the 

electrochemical process cannot be calculated. UV-vis absorption spectroelectrochemistry allows 

us to calculate this value at any wavelength of the UV-vis spectral region using eq. 3 (see details 

in Section S1 of the Supporting Information) [53]: 

𝐴𝑁 = (𝜀𝐵 − 𝜀𝐴)
103

𝑛 · 𝐹 · 𝑆
𝑄 = ∆𝜀

103

𝑛 · 𝐹 · 𝑆
𝑄     (eq. 3) 

where AN is the absorbance in normal configuration (the light passes through the solution 

perpendicularly to the electrode surface) [53],  and  are the molar absorption coefficients of 

initial and final species, respectively,  is the difference between these two molar absorption 

coefficients, n is the number of electrons, F is Faraday’s constant, S is the area of the electrode and 

Q is the total electric charge passed during the experiment. As can be observed, in this case UV-

vis absorption measurements in normal configuration are required instead of those in parallel 

configuration [53]. Absorbance changes in spectroelectrochemistry experiments are related to the 

concentration changes of redox-active compounds in the diffusion layer and parallel arrangement 

only provides information of the first micrometers of solution adjacent to the electrode. 

 

3. Results and discussion 

3.1. Validation of the electrochemical filter with o-tolidine 

The experimental setup for spectroelectrochemical measurements (Fig. 2) was validated using 

o-tol because it is a well-known molecule commonly used in UV-vis absorption 

spectroelectrochemistry. In order to select the potential that will be applied to study the oxidation 

of o-tol to o-tolidinium cation by UV-vis spectroelectrochemistry, a previous cyclic voltammetry 
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was performed. Fig. S4 in Supporting Information displays the cyclic voltammogram obtained 

scanning the potential from +0.40 V to +0.80 V and back to +0.40 V at 0.01 V s-1 in 1 × 10-4 M o-

tol, 0.5 M HAc and 1 M HClO4 solution using a SWCNT working electrode. Voltammetric 

experiment (Fig. S4 in Supporting Information) shows an anodic peak at +0.63 V related to the 

electrogeneration of o-tolidinium cation in the forward scan, and a reversible cathodic peak at 

+0.58 V that is related to the reduction of this cation to o-tol in the backward scan [39].  According 

to the cyclic voltammogram, the potential selected to study the oxidation of o-tol using the 

electrochemical filter was +0.80 V. Although this potential is more positive than the anodic peak 

observed in the cyclic voltammogram (+0.63 V), it allow us to be completely sure that o-tol will 

be oxidized to o-tolidinium cation.  

Spectroelectrochemical oxidation of o-tol was performed by chronoamperometry in 1 × 10-4 

M o-tol, 0.5 M HAc and 1 M HClO4 solution using a FS-SWCNT filter. Video S1 in Supporting 

Information shows the spectroelectrochemical performance of FS-SWCNT electrochemical filters 

with the experimental setup shown in Fig. 2. Video S1 in Supporting Information evidences the 

oxidation of o-tol to o-tolidinium cation by changes in the colorless starting solution to a yellowish 

one at the end of the experiment. In order to quantify this oxidation process, UV-vis 

spectroelectrochemical measurements in parallel configuration were performed. Electrochemical 

experiment consisted of two steps, the first one in which no potential (open circuit) was applied 

during 50 s and the second one, in which a chronoamperometry was carried out at +0.80 V for 150 

s. Fig. 3a displays the UV-vis spectra recorded during the electrochemical oxidation of  o-tol to o-

tolidinium cation. The spectrum of the initial solution (o-tol) was taken as reference for the UV-

vis absorption spectra. As can be observed, an absorption band related to o-tolidinium cation 

emerges at 438 nm. Fig. 3b shows the comparison between the electrochemical response (brown 
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line) and evolution of UV-vis absorption band at 438 nm (blue line) along the chronoamperometric 

experiment. Both signals display several periodic peaks that correspond to the falling of each drop 

generated on the bottom side of the filter while the solution fluxes through the FS-SWCNT. 

Chronoabsorptogram at 438 nm (blue line) shows that the absorbance does not change during 

approximately the first 50 s when no potential was applied. However, the absorbance shows a 

sharp increase when the potential of +0.80 V was applied. Absorbance value increases as the 

solution passes through the filter, the o-tolidinium cation is electrogenerated and the drop is 

formed, while it decreases when the drops fall down. Conversely, the current intensity in the 

electrochemical signal (brown line) decreases when the solution with the o-tolidinium cation 

passes through the filter and a new drop is generated in the bottom side of the FS-SWCNT, whereas 

it increases abruptly when each droplet falls. Hence, electrochemical and spectroscopic signals are 

completely correlated and thus, the spectroelectrochemical FS-SWCNT filtration device was 

validated, demonstrating that this kind of filters is useful to remove different species by 

electrochemical processes. 

Spectroelectrochemical information allows us to calculate the efficiency of the oxidation o-

tol using FS-SWCNT electrochemical filters. According to the Lambert-Beer’s law (eq. 1) and 

being o-tolidinium cation = 60670 L mol-1 cm-1 at 438 nm [39,40], b = 0.099 cm, and C = 1 × 10-4 M, 

the Atheoretical value was 0.601 a.u. (eq. 1). On the other hand, the experimental maximum value of 

absorbance observed in Fig. 3b is 0.558 a.u., so the efficiency of the electrochemical process (eq. 

2) was r = 93 %, demonstrating the good performance of the spectroelectrochemical device. 

3.2. Removal of indigo carmine 
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This molecule is a dye commonly used in the pharmaceutical and food industry. An aqueous 

solution of 1 × 10-4 M IC in acid media (1 M H2SO4) avoids the formation of dimers in solution 

and ensures that the dimerization equilibrium is shifted towards the monomeric form [62]. Prior to 

study its spectroelectrochemical behavior using FS-SWCNT filters, an electrochemical study was 

performed by cyclic voltammetry (Fig. S5 in Supporting Information) in 1 × 10-4 M IC and 1 M 

H2SO4 solution, scanning the potential from +0.20 V to -0.10 V and backwards to +0.20 V at 0.01 

V s-1 using a SWCNT electrode. As can be noticed in the cyclic voltammogram, a cathodic peak 

at +0.03 V related to the electrogeneration of leuco-IC is observed in the forward scan [63]. On 

the other hand, in the anodic scan a peak at +0.07 V related to the oxidation of leuco-IC to the 

initial IC is observed. According to the cyclic voltammogram, the potential selected to study the 

reduction of IC by UV-vis absorption spectroelectrochemistry was -0.10 V.  

Removal of IC was performed by chronoamperometry in 1 × 10-4 M IC in 1 M H2SO4 solution 

using a FS-SWCNT filter. As in the previous case, during the first 50 s no potential was applied. 

After this time, chronoamperometry was carried out at -0.10 V for 100 s. Fig. 4a displays the UV-

vis spectra recorded during the electrochemical reduction of IC to leuco-IC. The spectrum of the 

initial solution was taken as reference for the UV-vis absorption spectra. As can be noticed, two 

absorption bands emerge in the UV-vis spectra at 372 and 617 nm [64]. Fig. 4b shows the 

comparison between the electrochemical response (brown line) and evolution of UV-vis 

absorption band at 617 nm (blue line). As occurs with o-tol (Fig. 3b), both signals show different 

periodic peaks associated with generation and falling down of a droplet with the reduced form of 

IC in the bottom side of the FS-SWCNT filter, process cyclically repeated along the 

chronoamperometric experiment. Although during approximately the first 50 s absorbance does 

not change, it decreases when -0.10 V is applied because IC is consumed and leuco-IC is generated. 
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Absorbance value slightly increases as the solution passes through the filter and the droplet is 

formed, while the fall of the drops produces small and periodic decrease of absorbance at 617 nm. 

It should be noted, that absorbance takes negative values because the spectrum of the initial 

solution was taken as reference for the UV-vis absorption spectra. IC exhibits a band around 617 

nm (A = 0 a.u. at t = 0 s), that decreases when IC is reduced to leuco-IC (A = -0.081 a.u. at t > 50 

s). Evolution of absorbance at 372 nm shows the same behavior than band at 617 nm but with 

opposite sign, because is related to the generation of leuco-IC. The electrochemical signal (brown 

line) shows that the current decreases when leuco-IC passes through the filter and it increases when 

each droplet falls. As in the o-tol experiments, electrochemical and spectroscopic signals totally 

agree, showing the utility of the spectroelectrochemical FS-SWCNT filtration setup for monitoring 

the degradation of dye in pharmaceutical and food industry.  

In order to check the suitable performance of the spectroelectrochemical device with this 

extremely colored dye, the efficiency of the reduction and filtration process was evaluated, 

selecting the absorbance values at 617 nm. At this wavelength the two compounds, IC and leuco-

IC absorb UV-vis radiation. The molar absorption coefficient of leuco-IC at 617 nm was assessed 

because this coefficient cannot be found in literature. With this objective, linear regressions of 

absorbance in normal configuration (AN) vs the electric charge involved in the redox process (Q) 

for the experiments at different scan rates were performed (eq. 3) [53]. From the slopes of the 

linear regressions, and being n = 2, F = 96485 C mol−1, and S = 0.056 cm2, the difference of the 

molar absorption coefficients of leuco-IC and IC (ε) can be obtained at any wavelength of the 

UV-vis spectral region using eq. 3. The experimental ε value obtained from the slopes was 10181 

M−1 cm−1. On the other side, the molar absorption coefficient of IC at 617 nm was obtained by 

spectrophotometric calibration, IC = 15190 M−1 cm−1. With these two values, ε and IC, the molar 
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absorption coefficient of leuco-IC at 617 nm was calculated, leuco-IC = 5009 M−1 cm−1. Once the 

two molar absorption coefficients for IC and leuco-IC are estimated, the efficiency of the 

electrochemical degradation of IC is calculated. According to the Lambert-Beer’s law (eq. 1), 

being  = 10181 L mol-1 cm-1 [39], b = 0.085 cm and C = 1 × 10-4 M,  the Atheoretical  was 0.086 

a.u., while the experimental maximum value at 617 nm observed in Fig. 4 is 0.081 a.u. The 

efficiency of the electrochemical process was 94 %, demonstrating the good performance of the 

spectroelectrochemical device to quantify the electrochemical degradation process of dyes. 

3.3. Degradation of 4-nitrophenol 

The interest in this compound lies in its toxicity and its wide presence in industrial waste. 

Electrochemical reduction offers an easy possibility of degradation from 4-NP to 4-aminophenol 

(4-AP) in wastewater. In order to select the reduction potential that will be applied to study the 

reduction of 4-NP to 4-AP, a previous cyclic voltammetry was performed scanning the potential 

from 0.00 V to -0.60 V and back to 0.00 V at 0.01 V s-1 in 5 × 10-4 M 4-NP and 0.05 M Na2SO4 

solution using a SWCNT electrode (Fig. S6 in Supporting Information According to the cyclic 

voltammogram, reduction of 4-NP to 4-AP is an irreversible process because oxidative peaks are 

not observed in the backward scan, showing only a cathodic peak at -0.43 V related to the 4-AP 

electrogeneration in the forward scan. The potential selected was -0.60 V because this potential 

accomplishes well the reduction requirement. 

Spectroelectrochemical reduction of 4-NP was carried out by chronoamperometry in 5 × 10-4 

M 4-NP and 0.05 M Na2SO4 solution using a FS-SWCNT filter. A chronoamperometry was 

performed at -0.60 V for 200 s. Fig. 5a shows the UV-vis spectra recorded during the 

electrochemical reduction of  4-NP to 4-AP. The spectrum of the initial solution (4-NP) was taken 
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as reference for the UV-vis absorption spectra. UV-vis spectra shows two absorption bands that 

emerge at 332 and 405 nm related to the consumption and generation of 4-NP and 4-AP, 

respectively. Fig. 5b shows the comparison between the electrochemical response (brown line) 

and evolution of UV-vis band at 405 nm (blue line). A similar behavior is observed in the two 

signals recorded during the chronoamperometric experiment, absorbance at 405 nm and the 

intensity current increased along the 200 s the potential of -0.60 V is applied. As in the experiments 

described above for the other two chemical systems, periodic peaks are observed in the two signals 

related to the falling down of each drop generated in the bottom side of the filter after passing the 

flux through it: the current  in the electrochemical s measurement (brown line in Fig. 5b) decreases 

when 4-AP electrogenerated passes through the filter, and simultaneously, absorbance value (blue 

line in Fig. 5b) increases because 4-AP is formed and it passes to the bottom side of the FS-

SWCNT filter. 

To determine the efficiency of this process, the molar absorption coefficients of 4-NP (4-NP) 

and 4-AP (4-AP) or difference value between them () at 405 nm are needed. UV-vis absorption 

spectroelectrochemistry offers different possibilities to calculate these values. One of the simplest 

one consists of the estimation of the difference of the molar absorption coefficients (4-AP - 

4-NP) when the reactant (4-NP) is completely electrolyzed into the product (4-AP) [53]. A 

chronoabsorptometry was performed to provoke an exhaustive electrolysis in the 4-NP solution 

sampled by the optical fibers in parallel arrangement. According to the Lambert-Beer’s law (eq. 

1), where A = 0.486 a.u., b = 0.056 cm and assuming that a 4-NP concentration of 5 × 10−4 M was 

completely reduced to 4-AP in the 100 μm closest to the electrode surface, the difference between 

the molar absorption coefficients of 4-NP and 4-AP at 405 nm is  = 17357 L mol-1 cm-1. The 

efficiency of the reduction of 4-NP using FS-SWCNT electrochemical filters was calculated 
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according eq. 3 at 405 nm. By the Lambert-Beer’s law (eq. 1), and considering that  = 17357 L 

mol-1 cm-1 [65], b = 0.042 cm and C = 5 × 10-4 M, Atheoretical is calculated (0.365 a.u). Taking into 

account that the mean maximum absorbance observed in Fig. 5b is 0.351 (obtained from the 

absorbance at 405 nm from 60 s onwards), the efficiency of this FS-SWCNT filter was calculated 

with eq. 2, obtaining a value of 96 %. 

4. Conclusions 

Combination of electrochemical FS-SWCNT filters and UV-vis absorption 

spectroelectrochemical techniques not only provokes the degradation of different compounds of 

wastewater but also allows the spectroelectrochemical monitoring of the whole process and the 

determination of the efficiency of the process. In this way, the development of new devices should 

facilitate this purpose. Quantitative information provided by  

UV-vis spectroelectrochemistry has demonstrated to be very useful in the determination of the 

efficiency of the electrochemical filtration process.  
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Figures 

Figure 1 

 

    

Fig. 1. (a) Chronoamperogram performed in 0.1 M NH4PF6 applying 0.00 V, 10 s; +1.20 V, 20 s; 

0.00 V, 10 s; +1.40 V, 20 s; 0.00 V, 10 s; +1.60 V, 20 s; 0.00 V, 10 s and +1.80 V, 20 s. FS-

SWCNT filter (b) before and (c) after the electrochemical functionalization. 
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Figure 2 

  

Fig. 2. Schematic view of the experimental setup, in which two optical fibers (F1 and F2) aligned 

and fixed on the bottom side of the filter provide the evolution of the UV-vis absorption signal in 

parallel configuration during the electrochemical experiment. The SEM image shows the area of 

the FS-SWCNT filter. 
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Figure 3 

 

Fig. 3. (a) UV-vis absorption spectra recorded on the bottom side of the filter during the 

electrochemical oxidation from o-tol to o-tolidinium cation during the first 60 seconds of the 

chonoamperometric experiment. (b) Comparison of the evolution of the UV-vis absorbance at 438 
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nm (blue line) and the chronoamperogram (brown line) recorded during the electrochemical 

filtration. Integration time = 200 ms. 

Figure 4 

 

 

Fig. 4. (a) UV-vis absorption spectra recorded on the bottom side of the filter during the 

electrochemical reduction from IC to leuco-IC during the first 60 s of the chronoamperometric 
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experiment. (b) Comparison of the evolution of the UV-vis absorbance at 617 nm (blue line) and 

the chronoamperogram (brown line) recorded during the electrochemical filtration. Integration 

time = 200 ms. 

Figure 5 
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Fig. 5. (a) UV-vis absorption spectra recorded on the bottom side of the filter during the 

electrochemical reduction from 4-NP to 4-AP during the first 20 s of the chronoamperometric 

experiment. (b) Comparison of the evolution of the UV-vis absorbance at 405 nm (blue line) and 

the chronoamperogram (brown line) recorded during the electrochemical filtration. Integration 

time = 50 ms. 
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