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Abstract

Species distribution models (SDMs) have been used to predict potential distributions of hab-

itats and to model the effects of environmental changes. Despite their usefulness, currently

there is no standardized sampling strategy that provides suitable and sufficiently represen-

tative predictive models for littoral marine benthic habitats. Here we aim to establish the best

performing and most cost-effective sample design to predict the distribution of littoral habi-

tats in unexplored areas. We also study how environmental variability, sample size, and

habitat prevalence may influence the accuracy and performance of spatial predictions. For

first time, a large database of littoral habitats (16,098 points over 562,895 km of coastline) is

used to build up, evaluate, and validate logistic predictive models according to a variety of

sampling strategies. A regularly interspaced strategy with a sample of 20% of the coastline

provided the best compromise between usefulness (in terms of sampling cost and effort)

and accuracy. However, model performance was strongly depen upon habitat characteris-

tics. The proposed sampling strategy may help to predict the presence or absence of target

species or habitats thus improving extensive cartographies, detect high biodiversity areas,

and, lastly, develop (the best) environmental management plans, especially in littoral

environments.

Introduction

The prediction of species and habitat distributions through numerical models still represents

one of the most challenging areas of work in ecology [1], especially in light of the current sce-

nario of a rapidly changing environment. Species distribution models (SDMs) and habitat dis-

tribution models (HDMs) find many applications in ecology [2, 3], including conservation

and management [4], and, in conjunction with rich, high coverage data sets and simulation

experiments, may help in designing efficient sampling strategies for habitat suitability model-

ling [5] for both terrestrial and marine areas.
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SDMs and HDMs are statistical models of the relationship between species and habitat dis-

tributions, and those environmental variables that potentially drive such distributions [2].

Mechanistic, empirical (or correlative), and theoretical models can be used, depending on the

research objectives and the variables available [2]. Empirical models are most frequently used,

especially those coupling the distributions of species and environmental variables [6]. Recent

access to data from remote sensing techniques and geomorphological cartographies, as well as

rapid advances in geographical information systems (GIS) have provided large sets of species

and environmental data to build empirical models [1]. Empirical models relate known occur-

rences (presence and absence) of species or habitats to the environmental variables that best

reflect the species’ or habitats’ environmental requirements. Once the empirical model is fitted,

the output is used to predict the most suitable or unsuitable areas for species and habitats [7].

The degree to which causal relationships between species/habitat distributions and the pre-

dictor variables are unveiled depends on the adequacy of the predictors used for model build-

ing and on the quality of species or habitats occurrence data [8, 9]. Sample size, sample design,

species and habitat characteristics, environmental stratification, and species prevalence are

also important for the success of predictive spatial distribution models [2, 6, 8, 10, 11]. The

paucity of fine environmental and species occurrence data for marine ecosystems may explain

why sea-focused SDMs and HDMs are fewer compared to terrestrial ones [12]. However,

many efforts have been made in recent years to collect data on environmental variables and

species distributions (e.g. BIO-ORACLE [13], OBIS, www.iobis.org), thus allowing the appli-

cation of SDMs to marine systems. Most models aim to predict the potential distribution of

one or a few benthic species or habitats of special conservation interest [14–19], endangered

fish species that are commercially exploited [20–22], or the effects of global change on a single

species or habitat [23–27]. Nevertheless, most researchers have not yet analyzed the impor-

tance of sample size, sampling design, or species occurrences to build up accurate SDMs for

marine environments. Those parameters are crucial for achieving the best accuracy (as mea-

sured by AUC, area under the receiver operating characteristic [ROC] curve) and performance

(measured as sensitivity and specificity) in predictive SDMs [5].

The littoral zone harbors a rich array of habitats [28–30] with specific environmental

requirements. Habitat cartographies require much detail to cope with the small-scale variabil-

ity of littoral habitats and species distributions. This variability requires big, often expensive

sampling efforts. It is paramount then, to define valid, logistically easy-to-perform and com-

petitive sampling strategies to achieve species distribution models for large spatial areas. Addi-

tionally, littoral habitats are often exposed to many environmental pressures and disturbances

[31]. Monitoring possible changes in habitat distribution patterns, especially in relation to

anthropogenic pressures may help improve both local and international management actions

and build up new bioindicators to be used in Habitat Directives. In Europe, for instance, this is

critical to conservation actions for the Habitats Directive (92/43/EC) and the Marine Strategy

Framework Directive (2008/56/EC) and thus this study reinforces the validity of these habitats

as working units. Hence, there is an increasing need to investigate the extent of the relation-

ships between species, habitats, and environmental pressures to obtain models that predict

with the maximum accuracy and performance littoral habitat shifts in response to environ-

mental changes [32, 33].

Recently, Cefalı̀ et al. [34] analyzed the relationship between littoral habitats and environ-

mental factors from a large, high-resolution dataset (16,098 data points), identifying the envi-

ronmental variables associated with the spatial distributions from a total of 29 littoral habitats.

In this paper, we use this dataset, which integrates the occurrence (presence and absence)

of rocky littoral habitats and that of environmental variables such as shore slope, geology,

wave exposure, seawater temperature, and substrate type, [34, 35] to build HDMs for a long
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(562,895 km) stretch of rocky coastline. Specifically, in this study, we explored the relevance of

sampling design and sample size to the accuracy and performance of predictive models. Our

aim was to assess the best sampling strategy to predict the distribution of coastal habitats with

a resolution of tens of meters. The specific objectives of this study are: 1) to identify the best

(in terms of accuracy, performance, and cost-effectiveness) sampling strategy and sample size

for building predictive models for six rocky littoral habitats and to produce predictive maps of

potential habitat distribution at a regional scale; 2) to assess changes in model accuracy and

performance for habitats with different distributional patterns (i.e. abundant and widely dis-

tributed, abundant and locally distributed, uncommon habitats); and 3) to examine how sam-

ple size, sample design, habitat characteristics, and habitat prevalence (occurrence, frequency)

may influence model accuracy and performance.

Material and methods

Ethics statements

The permission for the field studies and especially for the MPAs (Illes Medes, Montgrı́, and

S’Encalladora Marine Reserve and the National Park of Cap de Creu) was provided by the Cat-

alonia Government. This study is based on observational data and no animal or algae, endan-

gered or protected species were collected.

Study site

Data on littoral habitat distribution and environmental variables were collected along the

whole coast of Catalonia (North-Western Mediterranean between 3º 10’ 28.072" E, 42º 26’

17.619" N and 0º 30’ 57.001" E, 40º 31’ 26.302" N) (Fig 1). This coast shows high geomorpho-

logical heterogeneity [36, 37], a very complex tectonic setting [38], and strong differences in

the geometry of the coastline from north to south. The northern coast is in fact much more

irregular than the central and southern ones. The studied coast encompasses most of the Medi-

terranean rocky littoral habitat diversity, including natural and artificial (man-made) hard-

bottom environments [35]. Sampling was done by recording the presence of all habitats from

the supralittoral to the upper infralittoral level (-1 m a.m.s.l.). More details about the sampling

and dataset generation for this exhaustive habitat cartography are in Mariani et al. [35] and

Cefalı̀ et al. [34]. The original database is a layer of 16,098 points with biological (habitat pres-

ence) and environmental information (Fig 1) and covers the complete rocky coastline

(562,895 km) of Catalonia (10 m resolution). Habitats are defined following the definition of

the European Habitats Directive (92/43/EEC) and named by the dominant species. This

exhaustive cartography of the littoral habitats is available online for the entire Catalan coast

from (http://mediambient.gencat.cat/es/05_ambits_dactuacio/patrimoni_natural/sistemes_

dinformacio/habitats/habitats-litorals-/).

Data collection

We have modeled the spatial distribution of six littoral habitats (Table 1), which were strongly

and significantly influenced by environmental variables [34]. These habitats showed different

distributional patterns, although most of them had clear north distributions. The habitats of

the red alga Rissoella verruculosa and the crusts (no rim-forming) of the coralline alga Litho-
phyllum byssoides were also abundant but nearly absent in the south [39]. The rim-forming

Lithophyllum byssoides (so-called “Trottoir”, present in the northern coast) and the Neogonioli-
thon brassica-florida concretions (present in the south) were overall uncommon and localized

[39]. Finally, the habitat of the cave-dwelling red algae Hildenbrandia rubra and Phymatolithon

Littoral habitats modelling
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lenormandii showed a very scattered distribution along the coast [39]. The habitat dominated

by the brown alga Cystoseira mediterranea [39–42] was overall abundant and widespread.

The distribution of all habitats (Table 1) was significantly influenced by environmental vari-

ables [34]. The variables used as predictors were (Table 2): minimum and mean wave height

(WH, data from 1998 to 2008), estimated using the Downscaled Ocean Waves model (DOW)

[43]; mean sea surface temperature (SST; data from 2003 to 2010), obtained from satellite mea-

surements performed by the MODIS (aqua) sensor system (http://oceancolor.gsfc.nasa.gov/),

available as “Ocean Level-2” HDF data by NASA’s Goddard Space Flight Center; rock slope,

Fig 1. Map of the study site. The 16,098 points along the coast contain information on habitats presence/absence and values of

environmental variables. The map was created with ArcGis 10.1 (ESRI).

https://doi.org/10.1371/journal.pone.0197234.g001

Table 1. List of the habitats studied. Number of occurrences and frequency (F) of selected habitats in the original database (16,098) are presented. Each habitat is named

after the principal species that characterizes it. Habitat characteristics are from Ballesteros et al. [39].

Habitat N F (%) Habitat characteristics

Rissoella verruculosa 7710 47.9 Mediolittoral habitat from exposed littoral environments, preferably on plutonic rocks dominated by the red alga R.

verruculosa.

Lithophyllum byssoides 5621 34.9 Mediolittoral habitat from environments with high desiccation levels and strong hydrodynamism dominated by the

red coralline L. byssoides.
Lithophyllum byssoides rims

("Trottoir")

1154 7.2 Characteristic rims of the red coralline L. byssoides on very exposed, mediolittoral rock with low irradiance, preferably

on calcareous or metamorphic rock.

Neogoniolithon brassica-florida 528 2.8 Association with the red coralline N. brassica-florida and/or the mollusc D. petraeum on moderately-to-calm

mediolittoral rocks.

Hildenbrandia rubra/
Phymatolithon lenormandii

119 0.7 Mediolittoral caves and overhangs.

Cystoseira mediterranea 4576 28.4 Shallow, exposed and well-lit infralittoral rock dominated by the brown alga C. mediterranea.

https://doi.org/10.1371/journal.pone.0197234.t001
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obtained from a Digital Elevation Model (DEM) created with a LiDAR detection method by

the Institut Geològic i Cartogràfic de Catalunya (IGCC); rock geology (plutonic, sedimentary,

metamorphic and mineral), provided by the Institut Geològicic i Cartogràfic de Catalunya

(IGCC, www.igc.cat); finally, the substrate type (an index of two categories identifying whether

the rocky substrate was natural or man-made), obtained from the CARLIT data set [37]. As

detailed in Cefalı̀ et al. [34], spatial resolution grain sizes were: 0.01º latitude and 0.008º longi-

tude for minimum and mean wave height; a data point every 10 km for mean sea surface tem-

perature; a raster format with pixel resolution of 2 x 2m for rock slope; a 1:50.000 map scale for

rock geology and a map scale of 1:1000 for substrate type.

Sampling scenarios

Two strategies for data sampling were compared to address the first objective of the study,

aggregated and interspaced. For the aggregated sampling strategy, a unique stretch of arbi-

trarily chosen neighboring points was selected (Fig 2). For the interspaced sampling, we

selected a minimum of 5 data units (stretches of continuous points) interspaced by equivalent

numbers of unselected data points (Fig 2). To assess changes in model accuracy and perfor-

mance for habitats with different distributional patterns (see above), different scenarios were

performed for the aggregated samplings considering different spatial distributions from north

to south (Fig 2). The interspaced sampling inherently gathered data from the whole coast.

To define the best cost effective sampling size, we tested 5 different sampling sizes from the

original matrix (16,098 points; 562,895 km): 10% (1,610 points; 56,290 km), 20% (3,219 points;

112,579 km), 30% (4,829 points; 168,868 km), 40% (6,439 points; 225,158 km), and 50% (8,049

points; 281,447 km) and for both, the aggregated and interspaced sampling (Fig 2). We com-

pared the models performed with both aggregated and interspaced scenarios and different

sampling sizes. Additionally, null models were fitted to randomly selected points for each sam-

pling size (from 10% to 50%). All scenarios were applied to each of the 6 selected habitats. All

spatial selections were performed in ArcGIS 10.1 (ESRI), whereas the random sampling for

null models was made in R (R Development Core Team 2011).

Table 2. List and description of the environmental variables studied. A detailed explanation on the variable source and the calculation method are provided in the text.

Environmental predictors Units or Categories Source Year

Average Sea Surface Temperature 16.8º – 18.7º ˚C MODIS 2003–2013

Average Wave Height 0.02–0.9 m DOW 1998–2008

Minimum Wave Height 0.01–0.07 m DOW 1998–2008

Slope 0º – 10.8º DEM 2014

10.8º – 22.8º DEM 2014

22.8º – 45.1º DEM 2014

45.1º – 68.2º DEM 2014

68.2º – 87.8º DEM 2014

Geology Metamorphic IGCC 2000

Mineral IGCC 2000

Plutonic IGCC 2000

Sedimentary IGCC 2000

Artificial IGCC 2000

Substrate type Natural CARLIT 2012

Artificial CARLIT 2012

https://doi.org/10.1371/journal.pone.0197234.t002
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Habitat modelling

Since our habitat data were binary, to describe the relationship between the distribution of

habitats and environmental variables (Table 2) we fitted generalized linear models with bino-

mial error distribution and the logistic link function (GLM, [44]) using the entire dataset

(16,098 points). The most parsimonious model for each habitat was obtained through variable

selection using the “glmulti” function in the glmulti R package [45] based on AIC values. The

environmental variables selected for each of the habitats are listed in Table 3. Samples, selected

as described in the previous section, were used as training datasets to build the models. The

remaining data were used as test data for model validation. For example, in Fig 2, the 10% por-

tion of the coast sampled was used as training dataset and the remaining 90% was used as test

dataset. The same procedure was repeated to compare the performance of all models built for

each of the sampling scenarios. Model fit was assessed as the proportion (%) of explained

Fig 2. Sampling designs. Sampling scenarios considered in this study based on combinations of sampling size (20%, 30%, 40%, 50%) and

sampling strategy: A) aggregated and interspaced; B) aggregated case 1, case 2, case 3 and case 4. Red dots represent data points selected for

model training whereas black dots represent data points used for model validation. Random samples for null models are not depicted. Please

notice that the percent sampling size (either red or black dots) may appear unrealistic at the scale of the figure. This is because of the extremely

irregular shape of the northern portion of coast where much more data points exist.

https://doi.org/10.1371/journal.pone.0197234.g002

Table 3. Principal results. The most important environmental predictors, the best cost-effective models, the frequency (F %) of habitat in each sampling strategy and the

model prediction results are shown. For more information about relationships between predictors and habitats, see Cefalı̀ et al. [34].

Principal environmental

predictors

Best cost effective model strategies Habitat F (%) AUC threshold se spe

R. verruculosa SST average

WH average

Slope

Geology

Substrate type

20% interspaced 0,4936 0,87 0,57 0,90 0,74

L. byssoides SST average

WH average

WH minimum

Slope

Geology

20% interspaced 0,3988 0,77 0,40 0,92 0,54

L. byssoides rims SST average

WH average

WH minimum

Slope

Geology

10% interspaced 0,160 0,87 0,18 0,74 0,86

20% interspaced 0,031 0,75 0,03 0,74 0,68

N. brassica-florida SST average

WH average

WH minimum

Slope

30%

aggregated

0,01 0,90 0,21 0,94 0,87

20%

interspaced

0,399 0,77 0,4 0,92 0,54

Hildenbrandia / Phymatholiton SST average

WH average

Geology

20%

interspaced

0,0037 0,73 0,01 0,37 0,90

30%

interspaced

0,0033 0,81 0,01 0,65 0,79

30%

aggregated

case 2

0,0161 0,82 0,02 0,74 0,81

C. mediterranea SST average

WH average

WH minimum Slope

Geology

Substrate type

20%

interspaced

0,295 0,77 0,37 0,84 0,61

https://doi.org/10.1371/journal.pone.0197234.t003
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deviance (D2):

D2 ¼
ðnull deviance � residual devianceÞ

null deviance
� 100

Altogether, we fitted 19 models for each of the 6 selected habitats. The same procedure was

conducted for the null models, where each random selection (10%, 20%, 30%, 40%, and 50%)

was used as training data and tested on the remaining data, and repeated 10 times. For the null

models, the D2 value presented is the mean and standard deviation of the 10 fitted models. All

statistical analyses were performed in R (R Development Core Team 2011).

Model validation

Model selection based on AIC identifies the “best” model among the set of candidate models,

but it does not measure its performance in predicting independent data. To assess the predic-

tive accuracy and performance of our models, we employed three statistics that compare the

predictions to the observations in the test data: AUC (area under the receiver operating char-

acteristic [ROC] curve), sensitivity (se), and specificity (spe). Because binomial GLM predic-

tions are continuous probabilities between 0 and 1, we must specify a cut-off threshold to

convert the continuous predictor to a discrete, binary predictor in order to calculate the per-

centage of correct classifications [10]. AUC is a synthetic index of the model accuracy, and is

independent of threshold choice, weighing omission, and commission errors equally [10, 46,

47]. We used the AUC, which ranges from 0 to 1, as first model selection, where values� 0.5

indicating that the model had not predictive power and 1 meaning that we had a good model.

Following Swets [48], models providing values> 0.9 were considered “highly accurate”, those

providing values in the range 0.7–0.9 were considered “useful”, and those with AUC below 0.7

are “poorly accurate”.

However, to select the best models and their discrimination power, it is necessary to calcu-

late the percentage of predicted versus observed presences and absences. For this purpose, sen-

sitivity and specificity were derived from a confusion matrix. Sensitivity (or true positive rate)

is the portion of data points for which presence was correctly predicted, whereas specificity

(true negative rate) is the portion of data points for which absence was correctly predicted

[10]. Because habitats differed in their prevalence, we decided to use habitat-specific classifica-

tion thresholds that maximized the sum of sensitivity and specificity [49]. Both sensitivity and

specificity range from 0 when the model is completely inaccurate to 1 when either presences

or absences are well predicted [50, 51]. The mean AUC, sensitivity and specificity of the 10

null models were also calculated. Analysis of AUC, and sensitivity specificity were performed

in R (R Development Core Team 2011), using the pROC [52] and SDMTools [53] packages

respectively.

Results

Best model strategy

Model accuracy and performance in predicting the distribution of the six benthic littoral habi-

tats were tested for sampling design, sample size, and habitat prevalence. Only models with

high accuracy (AUC > 0.70) and performance (sensitivity and specificity > 0.60) were

considered.

As expected, null models were the most accurate and had the highest performance values

(high AUC, sensitivity and specificity values) (Fig 3), and provided performance standards

against which to compare the other sampling strategies. Although model performance was

Littoral habitats modelling
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habitat-dependent, in general it was strongly dependent on the sampling design, with the best

strategy being the interspaced data collection. The prediction performed with the interspaced

strategy obtained accuracy and performance values close to the null models for all habitats

studied, regardless the habitat spatial distribution (Fig 3, Table 3, S1 File).

In contrast, the results of aggregated sampling designs depended on the prevalence of the

habitat considered. In fact, aggregated strategies performed well where habitat prevalence was

high (i.e. Rissoella verruculosa, Lithophyllum byssoides, Cystoseira mediterranea) or with large

sampling size (i.e. Hildenbrandia/Phymatholiton and Neogoniolithon brassica-florida). In con-

trast, habitat sample size and spatial distribution had lower effect on model accuracy and per-

formance with the interspaced strategy. In fact, with the interspaced sampling and only 20%

sampling size, we reached sufficient prevalence to obtain good model predictions for all the

habitats considered. In general, with the interspaced design, increasing sample size did not

substantially increase model accuracy and performance (Fig 3, Table 3, Tables A-F in S1 File).

These results agreed with the null models, where increasing sample size did not always result

in increased accuracy and performance prediction (Table 3, Tables A-F in S1 File).

Fig 3. Statistical diagnostics of the predictive models for the aggregated strategy (aggr), the interspaced strategy (intsp) and the null (null) models. In each panel,

the x-axis shows the sample size for the training data set (Fig 2). The y-axis, with values from 0 to 1, shows AUC, sensitivity (se), and specificity (spe) for each of the three

sampling strategies.

https://doi.org/10.1371/journal.pone.0197234.g003
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Predictive habitat models

Model performance was clearly habitat-dependent. Models for abundant but localized habitats

(Rissoella verruculosa and Lithophyllum byssoides) were in general highly accurate and showed

good performance (high specificity and sensitivity), with values comparable to those of null

models (AUC > 0.80 for both habitats) (Table A and Table B in S1 File). The interspaced

design provided the best model predictions (Fig 4). With 20% sample size we obtained models

with good accuracy and performance for R. verruculosa (AUC = 0.87, sensitivity = 0.90 and

specificity = 0.73) and for L. byssoides (AUC = 0.77, sensitivity = 0.92 and specificity = 0.54). In

the interspaced design, increasing habitat occurrence improved model accuracy and predic-

tion performance independently of sample size. With the aggregated designs, accurate and

good performance models were obtained only with large sample sizes, regardless of habitat

occurrence (Fig 4, Table 3, Table A and Table B in S1 File).

For uncommon and localized habitats (i.e. Lithophyllum byssoides rims and Neogoniolithon
brassica-florida concretions), model predictions were accurate and performed well with both

aggregated and interspaced strategies. However, using the aggregated strategy, a large sample

size was necessary to obtain good predictions. In contrast, when the interspaced strategy was

used, a sample size of only 20% was enough to get AUC values higher than 0.7 for both habi-

tats, 0.74 sensitivity and 0.68 specificity for L. byssoides rims, and of 0.92 sensitivity and 0.81

specificity for N. brassica-florida (Fig 4, Table 3, Table C and Table D in S1 File).

For the uncommon and scattered habitat of Hildenbrandia/Phymatholiton, few models

yielded good accuracy and performance. In fact, with the interspaced design and 20% sample

size, predictions were accurate (AUC of 0.73) and specific (specificity of 0.90), but the model

was not sensitive enough (sensitivity of 0.37) (Table 3). Only the aggregated case 2, with 30%

sample size, provided a prediction with good accuracy and performance, possibly as a result of

the higher habitat frequency (Table 3 and Table E in S1 File).

At the infralittoral level, for the widespread and abundant habitat of Cystoseira mediterra-
nea, the 20% sample size interspaced model was again the most accurate, with AUC of 0.77

(Fig 4), but more sensitive (sensitivity of 0.84 and specificity of 0.61) (Table 3 and Table F in

S1 File). With the exceptions of the most widespread habitats, aggregated sampling designs led

to low accuracy models, independently of sample size or habitat prevalence (aggregated case 2

with 40% sample size, aggregated with 50% and interspaced with 50% sample size), (Table F in

S1 File).

Discussion

We found strong consistency (sensu Oreskes et al. [54]) between the distributions predicted by

our models and those observed in the field for the six rocky littoral habitats studied, which ran-

ged from uncommon to frequent and from localised to scattered along the whole coastline.

Additionally, our models show that, in terms of minimum effort and highest accuracy, the

interspaced is the best sampling strategy for accurate and well-performing predictions. Hirzel

and Guisan [5] established that, when habitats with different distributional patterns are con-

sidered, the regular and ‘equally-stratified’ sampling strategies may yield the most accurate

and robust predictive models based on simulated data. Our results from field data clearly sup-

port this idea.

Technically speaking, the interspaced sampling design ensured that the training datasets

adequately represented the distribution of the environmental conditions faced by the different

habitats (S1 Table). Completeness, or the degree to which the habitat spatial range of environ-

mental variables is covered by the sample, has been shown to positively affect SDMs, especially

when the SDMs are used to infer distribution data from other locations [6, 55]. Here we show
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Fig 4. Habitat frequency and AUC values. Relation between habitat frequency (x-axis) and AUC values (y-axis), for sample sizes from 10% to 40% are presented.

https://doi.org/10.1371/journal.pone.0197234.g004
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that the interspaced sampling strategy reduced the environmental divergence between the two

data sets better than the aggregated strategy, thus improving the accuracy of predictive models.

Sampling size has also been suggested to have strong effects on SDM or HDM predictive

accuracy [5, 11, 47, 56, 57]. In our interspaced models, increasing sample size did not increase

accuracy or model performance, because accuracy depends on the habitat prevalence. Thus,

an interspaced sampling design also guarantees a representative coverage of habitats occur-

rences (prevalence) with a minimum number of observations [8]. In fact, with only 20% of the

sample size (3,216 observations out of 16,098) we achieved accurate prediction models (high

AUC) of the distribution of nearly all studied habitats for the rest of the coast (Fig 3). This

means that by sampling a relatively small fraction of the littoral (20% of the coast), the ranges

of environmental variables driving the presence or the absence of several habitats were well-

covered. Our high-resolution sampling provided a large amount of high-quality observations.

Thus, the split-sample approach with the interspaced design did not reduce the model capacity

to fit the data [2]. However, when an aggregated strategy was used, both model accuracy and

performance strongly depended on the habitat distribution. Either high sample size or high

habitat prevalence in the training data set was needed to build accurate models (Figs 3 and 4).

In fact, the aggregated strategy might prove useful when modelling focuses on a single habitat,

but may require prior knowledge of where the habitat occurs.

In order to compare predicted vs. observed distributions with the interspaced strategy and

a sample size of 20%, we transformed the probabilities into binary (presence/absence) maps

(Fig 5). Although all the habitats considered here contain specialist species, which are strongly

associated with the environmental variables considered, we obtained the best model predic-

tions with both abundant and uncommon habitats. This supports results obtained in previous

studies [6, 58]. In fact, model effectiveness strongly depends on the relation between species

and predictors [58, 59].

The habitats of Rissoella verruculosa and Lithophyllum byssoides were more abundant in the

northern coast (where they occur in 68% and 49% of sampling points, respectively, Fig 5),

where environmental conditions are suitable for their optimum development [34]. These habi-

tats are spatially strongly associated with the explanatory variables used, so the accuracy of the

resulting models was high. Performance was also high because the habitat prevalence in the

training data reached nearly 50%, thus covering the suitable range and improving the capacity

of the model to discern between presences and absences in the test data (Fig 4). Models tend to

perform better when habitat prevalence is intermediate [60]. This effect is to be expected

because logistic probabilities are computed on the values of the predictors as well as on the rel-

ative proportion of presence/absence data [47, 61].

For rare habitats like the Lithophyllum byssoides “rims” and Neogoniolithon brassica-florida
concretions, which are uncommon but locally aggregated (present in 7.2% and 3.3% of data

points, respectively, with latitudinal interquartile ranges [IQR] of 6.3 and 6.6 km) we obtained

useful predictions depending on their prevalence in training data. However, the presence of N.

brassica-florida was over predicted (Fig 5) although the values of both sensitivity and specificity

were high.

The cave habitat dominated by Hildenbrandia and Phymatolithon, was uncommon but scat-

tered along the coast [34] (0.7% of data points but latitudinal IQR of 22 km). Although highly

accurate (as measured by AUC), the model showed high specificity but low sensitivity, i.e. it

was able to detect habitat absence but failed to detect habitat presence (low true positive rate,

Fig 5). Habitats with low prevalence in the training data and absent from many coastline points

may have led to misspecification of the response curve [6, 62]. In fact, when one of the two

events (presence or absence) is over represented with respect to the other, mean probabilities

tend to be biased towards the most common event [47, 63–65]. The model also failed to predict
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the presence of the habitat of Cystoseira mediterranea (Fig 5). Accuracy and specific perfor-

mance were moderate, although the habitat was abundant along the coast. Therefore, while

model outputs were useful (as measured by AUC) they only predicted well the habitat absence

but they were not the best to predict its presence.

From our results, the most important factors in model prediction were the sampling strat-

egy and the habitat prevalence. However, we observed that low environmental dispersion

between training and test data is essential to improve the outputs models. Sample size influ-

enced the models effectiveness mostly when the aggregated strategy was used.

Our data showed that using the right sample design (interspaced) we may obtain a fair

representation of habitat prevalence following the environmental variability in both our train-

ing and test datasets. Spatially biased (i.e. aggregated) survey designs have been proven to

cover inefficiently the real geographic pattern of species distribution within a region [63, 64].

Some authors have stressed that incrementing sample sizes may lead to higher model perfor-

mance in predicting species distributions [11]. In contrast, for uncommon habitats, either

localized or scattered, increasing sample size may not necessarily increase the number of pres-

ences in the training dataset.

In brief, the interspaced sampling procedure allows reaching useful and accurate predictive

models, whereas performance is dependent on the occurrence and distribution of each habitat.

We also highlight that it is not only the accuracy of the model that should be considered, but

performance is also crucial to get reliable ecological information on the distribution patterns.

Sampling is often costly and time consuming, especially for marine environments. When the

aim is to predict the geographical distributions of species and habitats, static, comparative,

empirical models, rather than mechanistic models [2], may help reduce significantly the sam-

pling effort by identifying the best sampling strategy in terms of cost and effort. This informa-

tion is particularly relevant for littoral marine environments, for which SDMs have lacked so

far a systematic and planned sampling strategy and model performance has never been consid-

ered. These cost effective sampling strategies can be applied to different habitats in different

areas, especially those where field work and ground-truthing of habitat distributions have not

been yet performed (i.e. in some unexplored areas of the southern and eastern Mediterranean

Sea). Nevertheless, it is pivotal to be in possession of data about the best environmental vari-

ables to combine with habitat data, thus obtaining the best predictions across seascapes.

Finally, the outcome of these models is essential to improve extensive habitat cartographies, to

inform studies addressed at detecting high biodiversity areas, to identify and design protected

areas and, in general, to implement management plans, especially in littoral environments.

Supporting information

S1 File. Tables A-F. Results of logistic regression models. Results of logistic regression mod-

els for all sampling strategy designs are presented for each habitat and for all sample sizes. For

training data, the number (N) and frequency (F) of the habitat occurrence are presented.

Results of null models are shown with the mead and standard deviation of the 10 models calcu-

lated. The D2 is the Deviance of the model in the training data; AUC is the area under the

receiver operating characteristic (ROC) curve, se and spe are the sensitivity and specificity

respectively, for the predictive model in the test data.

(PDF)

Fig 5. Predicted distribution vs. observed distribution along the Catalan coastline for the six habitats considered. The coastline on the

left side of each panel represents the training data and the probability of habitat occurrence in the test data; the coastline in the right side

represents the observed habitats as recorded in the Cartography of the Littoral Habitats (see Material and Methods section).

https://doi.org/10.1371/journal.pone.0197234.g005
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S1 Table. Full data base. Projected coordinates, environmental variables and the presence/

absence (1/0) of each habitat are presented for each point. Slope code: 1 = 0º-10.8º; 2 = 10.8º-
22.8º; 3 = 22.8º-45.1º; 4 = 45.1º-68.2º; 5 = 68.2º-87.8º. Habitats code: Riv = Rissoella verruculosa;

Lby = Lithophyllum byssoides; Tro = Lithophyllum byssoides rims ("Trottoir”); Neo = Neogonio-
lithon brassica-florida; Hph = Hildenbrandia rubra/ Phymatolithon lenormandi.
(XLSX)
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